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Abstract. We call a Cayley digraph Γ = Cay(G,S) normal for G if R(G), the

right regular representation of G, is a normal subgroup of the full automorphism

group Aut(Γ) of Γ. In this paper we determine the normality of Cayley digraphs of

valency 2 on the groups of order pq and also on non-abelian finite groups G such

that every proper subgroup of G is abelian.
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Abstrak. Digraf Cayley Γ = Cay(G,S) dinyatakan normal untuk G jika R(G),

representasi reguler kanan G, adalah subgrup normal dari grup automorfisma penuh

Aut(Γ) dari Gamma. Dalam paper ini kami menentukan normalitas digraf Cayley

bervalensi 2 pada grup berorde pq dan juga grup hingga non-Abelian G sedemikian

sehingga setiap subgrup sejati dari G adalah Abelian.

Kata kunci: Digraf Cayley, digraf Cayley normal, grup automorfisma.

1. Introduction

Let G be a finite group, and S a subset of G such that 1G 6∈ S. The Cayley
digraph Γ=Cay(G,S) of G with respect to S is defined to have vertex set V (Γ) = G
and edge set E(Γ) = {(g, sg) | g ∈ G, s ∈ S}. From the definition the following
obvious facts are basic for Cayley digraphs. (1) the automorphism group Aut(Γ)
of Γ contains R(G), the right regular representation of G, as a subgroup; (2) Γ is
connected if and only if S generates the group G; (3) Γ is undirected if and only if
S = S−1. A Cayley digraph Γ=Cay(G,S) is called normal if the subgroup R(G) is
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a normal subgroup of the automorphism group of Γ.

The concept of normality of Cayley digraphs is known to be important for the
study of arc-transitive graphs and half-transitive graphs (e.g. see [10]). In general,
it is known to be difficult to determine the normality of Cayley digraphs. The only
groups for which a complete classification of normal Cayley digraphs is available,
are the cyclic groups of prime order and the groups of order twice a prime [1, 4].
Since Wang, Wang and Xu [9] obtained all normal disconnected Cayley digraphs of
finite groups, we always suppose in this paper that the Cayley digraph Cay(G,S)
is connected. That is, S is a generating subset of G.

A subset S of G is said to be a CI-subset (CI stands for Cayley isomorphism)
if whenever Cay(G,T ) is isomorphic to Cay(G,S), there is an automorphism α of G
such that Sα = T . (Then we call the corresponding graph Cay(G,S) a CI-graph.)
Let G be a finite group and let S be a minimal generating set of G. Then Xu [10,
Problem 6] asked the question:
(1) Are S and S ∪ S−1 CI-subsets?
(2) Are the corresponding Cayley digraphs and graphs normal?

For abelian groups, Feng and Gao [5] proved that if the Sylow 2-subgroup of
G is cyclic, then the answers to both questions (1) and (2) are positive; otherwise,
they are negative in general. More details can be found in [3, 6, 7].

Let X and Y be two graphs. The direct product X × Y is defined as the
graph with vertex set V (X × Y ) = V (X) × V (Y ) such that for any two vertices
u = [x1, y1] and v = [x2, y2] in V (X × Y ), [u, v] is an edge in X × Y whenever
x1 = x2 and [y1, y2] ∈ E(Y ) or y1 = y2 and [x1, x2] ∈ E(X). Two graphs are called
relatively prime if they have no nontrivial common direct factor. The lexicographic
product X[Y ] is defined as the graph with vertex set V (X[Y ]) = V (X) × V (Y )
such that for any two vertices u = [x1, y1] and v = [x2, y2] in V (X[Y ]), [u, v] is
an edge in X[Y ] whenever [x1, x2] ∈ E(X) or x1 = x2 and [y1, y2] ∈ E(Y ). Let
V (Y ) = {y1, y2, ..., yn}. Then there is a natural embedding of nX in X[Y ], where
for 1 ≤ i ≤ n, the ith copy of X is the sub-graph induced on the vertex subset
{(x, yi)|x ∈ V (X)} in X[Y ]. The deleted lexicographic product X[Y ] − nX is the
graph obtained by deleting all the edges of (this natural embedding of) nX from
X[Y ].

In the first theorem we determine all non-normal connected Cayley digraphs
of valency 2 on the groups of order pq, where p and q are prime numbers. From ele-
mentary group theory we know that up to isomorphism there are two groups of order
pq (p < q) defined as: G1 = Zpq, and G2 = 〈x, y | xp = yq = 1, x−1yx = yr〉
where r, p, q satisfy rp ≡ 1 (mod q), r 6≡ 1 (mod q), (r, p) = 1. If p - q − 1, then
the second case can not occur. Moreover when p = q, then G is isomorphic to Zp2
or Zp × Zp.
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Theorem 1.1. Let G be a group of order pq where p, q are distinct primes,
and S a two-element generating subset of G. If Γ = Cay(G,S) is not normal, then
Γ = Cay(G,S) ∼= Cq[2K1] and Aut(Γ) ∼= C2 o Cq, where Cq is a directed cyclic of
length q.

In the following theorem we determine the normality of Cayley digraphs of
valency 2 on nonabelian finite groups G such that every proper subgroup of G is
abelian. Note that Frattini subgroup Φ(G) is the intersection of maximal subgroups
of group G.

Theorem 1.2. Let G be a finite minimal non-abelian group, such that 2 - |G|
and G/Φ(G) is abelian. Moreover suppose that Γ = Cay(G,S) be a 2-valent con-
nected Cayley digraph of G with respect to S = {e, f}. Then Γ is normal.

2. Primary Analysis

Let G be a finite group and let Γ=Cay(G,S) be a connected Cayley (di)graph
of valency two. Denote by (g, z1g, z2z1g, ...., zn−1zn−2....z1g, znzn−1....z1g) a cycle
of length n in Γ, where zi ∈ S (1 ≤ i ≤ n). Obviously zi+l....zi+1zi 6= 1 (1 ≤ i ≤
i+ l ≤ n), except znzn−1....z1 = 1. For simplicity we use Cg(znzn−1...z1)(= Cg(1))
to denote this cycle.
We give some results which will be used later in the proofs of Theorems 1.1 and 1.2.

Proposition 2.1. [2, Proposition 2.5] Let Γ = Cay(G,S) and Γ
′

= Cay(G,Sα)

where α ∈ Aut(G) . Then Γ is normal if and only if Γ
′

is normal.

Proposition 2.2. [10, Proposition 1.5] Let Γ = Cay(G,S) and A = Aut(Γ).
Then Γ is normal if and only if A1 = Aut(G,S), where A1 is the stabilizer of 1G
in A, and Aut(G,S) = {α ∈ Aut(G)|Sα = S}.

Proposition 2.3. [3, Lemma 2.2] Let G be a finite group and S = {e, f} be a two-
element generating subset of G not containing the identity 1G. Set Γ = Cay(G,S)
and A = Aut(Γ). If A∗

1 denotes the subgroup of A which fixes 1G, e and f , then we
have the following:
(i) A∗

1 = 1 if and only if Γ = Cay(G,S) is normal.
(ii) Let o(e−1f) = m be odd. Suppose that 〈d〉 ⊆ 〈e−1f〉 or 〈e−1f〉 ⊆ 〈d〉, where
d = f(e−1f)(m−1)/2. Then Γ = Cay(G,S) is normal.
(iii) Suppose α ∈ A∗

1. If o(e−1f) = m is odd, then α fixes at least 〈d〉〈e−1f〉 point-
wise, where d = f(e−1f)(m−1)/2.
(iv) If one of e and f has order 2, then Γ = Cay(G,S) is normal.

A finite group G is called minimal non-abelian if G is not abelian, but every proper
subgroup of G is abelian. Now we have the following result.
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Proposition 2.4. [8] Let G be a finite minimal non-abelian group. Then one
of the following holds:
(1) G is a minimal non-abelian p-group;
(2) G is a semi-direct product of an elementary abelian p-group P of order pα by a
cyclic group Q = 〈b〉 of order qβ, where p, q are distinct primes and the action of
b on P is an automorphism of P of order q.

Proposition 2.5. [2, Theorem 1.1] Let G be a finite abelian group and S a gen-
erating subset of G not containing the identity 1. Assume S satisfies the condition

x, y, u, v ∈ S with 1 6= xy = uv, implies {x, y} = {u, v}.
(1)

Then the Cayley (di)graph Cay(G,S) is normal.

3. Proof of Theorem 1.1

Note that if S = S−1, then Γ=Cay(G,S)∼=Cn (the cycle of length n), and
obviously Γ is normal. Therefore we may let S 6= S−1.

Now we complete the proof of Theorem 1.1. Let G be a group of order pq,
where p and q are primes, and S = {e, f} be a generating subset for G with e 6= f
and 1 6∈ S.
Assume first that p does not divide q − 1, so G is cyclic, and G ∼= Zpq. In view of
Proposition 2.5, we assume S does not satisfy the condition (1). Thus there are (not
necessarily distinct) elements x, y, u, v in S with 1 6= xy = uv and {x, y} 6= {u, v}.
If one of e and f has order 2, then by Proposition 2.3 (iv), Γ=Cay(G,S) is normal.
Thus e2 6= 1 and similarly f2 6= 1. If, say, {x, y} = {e, f} then since {x, y} 6= {u, v}
we must have {u, v} = {e} or {f} but this implies that xy 6= uv, a contradiction.
It follows that x = y = e, say, and u = v = f and e2 = f2 6= 1. Since e 6= f , one
of these elements, say e, must have even order , so p, say, is equal to 2. Now G is
isomorphic to Z2q = 〈a〉. So one may let S = {ai, aq+i} where (i, 2q) = 1. Since
a 7→ ai, can be extended to an automorphism of G, so by Proposition 2.1, we can
assume that S = {a, aq+1} and Γ=Cay(G,S)∼= Cq[2K1]. In this case σ : ai 7→ aq+i

(1 ≤ i < 2q, i 6= q) such that σ(1) = (1), σ(aq) = (aq) is not in Aut(G,S) but in
A1. So by Proposition 2.2 Γ is not normal. Also Aut(Γ)∼= C2o Cq.
Now let G be nonabelian. Thus we may assume that p divides q − 1 and G is is
isomorphic to 〈x, y | xp = yq = 1, x−1yx = yr〉, where r, p, and q satisfy rp ≡ 1
(mod q), r 6≡ 1 (mod q), and (r, p) = 1. By simply checking, we can see that, the
elements of order p are {xiyj} (1 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1), and the elements of
order q are yi, where 1 ≤ i ≤ q − 1, thus we will see easily that e and f cannot be
of order q simultaneously. Thus we can suppose that o(e) = p and o(f) = p or q.
If o(e) = p and o(f) = q, we have e = xαyβ , (1 ≤ α ≤ p− 1, 0 ≤ β ≤ q − 1) and
f = yδ, 1 ≤ δ ≤ q − 1. We claim that there is only one directed cycle of length p
through every vertex g of Γ. We can suppose g = 1 because of the transitivity of
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Γ.
Obviously there is a directed cycle of length p through 1: 1 7→ e 7→ e2 7→ .... 7→
ep−1 7→ 1. Let C1(dpdp−1....d1) be another directed cycle of length p through 1,
where di = e or f (1 < i < p). Let n be the number of e appearing in the product
dp....d1. Obviously 1 ≤ n < p, and dp....d1 = 1. Therefore xαnyt = 1 (for some
integer t). It is clear that for any g ∈ G, g can be expressed in the unique form:
xiyj (0 ≤ i < p, 0 ≤ j < q). Thus n ≡ 0 (mod p), a contradiction to 1 ≤ n < p.
Suppose σ ∈ A∗

1. Since there is only one directed cycle of length p through f :
f 7→ ef 7→ e2f 7→ .... 7→ epf = f , we have that σ fixes Γ1(e) and Γ1(f) pointwise.
From the connectivity of Γ we have σ = 1, so A∗

1 = 1. By Proposition 2.3 (i)
Γ=Cay(G,S) in normal.
Now suppose that o(e) = p, o(f) = p. Then e = xiyj (1 ≤ i < p, 0 ≤ j < q).
Since σ, defined by:xiyj 7→ x, y 7→ y can be extended to automorphism of G, by
Proposition 2.1 one may let e = x. If f = xαyβ (1 ≤ α < p, 0 ≤ β < q) so
e−1f = xα−1yβ (0 ≤ α − 1 < p, 0 ≤ β < p). Suppose that α − 1 = 0, therefore
e−1f = yβ and o(e−1f) = q. We can also suppose that 〈d〉 * 〈e−1f〉 by Proposition

2.3 (ii), where d = f(e−1f)(q−1)/2. Thus 〈d〉〈e−1f〉 = G. By Proposition 2.3 (iii) A∗
1

fixes G = 〈d〉〈e−1f〉 and so Γ=Cay(G,S) is normal. Now suppose that α − 1 > 0,
so o(e−1f) = p, the same as before we can suppose that 〈d〉 * 〈e−1f〉, where

d = f(e−1f)(p−1)/2. Thus G = 〈d〉〈e−1f〉 and A∗
1 fixes G = 〈d〉〈e−1f〉 and so

Γ=Cay(G,S) is normal. The result now follows.

4. Proof of Theorem 1.2

Recall that we use A to denote the automorphism group of the Cayley graph
Γ, and A1 to denote the group of all automorphisms of Γ that fix identity 1G of G.
Also a finite group G is called minimal non-abelian if G is not abelian, but every
proper subgroup of G is abelian.

We now prove the Theorem 1.2. By Proposition 2.4 we have two cases. First
suppose that G is a p-group (p is odd), in this case we assume G has the small-
est order such that Cay(G,S) is not a normal 2-valent connected Cayley digraph.
Note that A=R(G)A1 and R(G) ∩A1=1G. Let N be a nontrivial minimal normal
subgroup of A. Since A1 is a 2-group, A is solvable and hence N is an elementary
abelian q-group, with q=2 or p. If N is transitive on V (Γ) then N is regular on
V (Γ). Thus |N | = |G| = |R(G)|. Therefore R(G) = N and R(G) is normal in A
which is a contradiction. Thus N is not transitive on V (Γ). Let m be the length of
an N -orbit on V(Γ), then m divides |N |. Note that N �A and A acts transitively
on V (Γ), so m divides |G|. Therefore q=p and N < R(G).
Let Σ = {T1, T2, ..., Tpα} be all the orbits of N on V (Γ). Consider the quotient
digraph ΓN defined by V (Γ)=Σ and (Ti, Tj) ∈ E(ΓN ) if and only if there exist
vi ∈ Ti, vj ∈ Tj such that (vi, vj) ∈ E(ΓN ). Since the quotient group R(G)/N
acts regularly on Σ, therefore ΓN must be a connected Cayley digraph of G/N . So
ΓN∼= Cay(G/N,SN/N) (|S ∩ N | ≤ 1). If |S ∩ N |=1, then either e or f has order
p. Without loss of generality we may assume that o(e)=p. Now we have two cases:
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(1) o(f)=p and (2) o(f) 6= p.
We know that there is a directed p-path through 1: 1G 7→ e 7→ e2 7→ ..... 7→
ep. Suppose that 1G 7→ d1 7→ d2d1 7→ .... 7→ dpdp−1...d1 is another p-path
through 1 such that dpdp−1...d1=1 and di=f or e. Let r, t be the numbers
of e and f appearing in {d1, d2, ..., dp} respectively. Since G is a non-cyclic p-
group, G/Φ(G) is an elementary p-group where Φ(G) is the Frattini subgroup of
G, and G/Φ(G)=〈Φ(G)e〉 × 〈Φ(G)f〉. We have Φ(G)dpΦ(G)dp−1...Φ(G)d1=Φ(G),
so (Φ(G)e)r(Φ(G)f)t=Φ(G), and hence r = t = 0 (mod p). Note that r+ t=p and
0 ≤ r, t ≤ p, therefore we have that either r = p and t = 0 or r = 0 and t = p.
Now if o(f)=p then A∗

1=1G and Γ is normal by Proposition 2.3 (i). If o(f) > p,
similarly there is a unique directed p-cycle through f : f 7→ ef 7→ e2f 7→ ... 7→ f
and consequently A∗

1=1G, and Γ is normal.
Now suppose that |S ∩ N |=0 and G/N is non-abelian. By the minimality of |G|,
Cay(G/N,SN/N) is normal. Therefore R(G)/N C A/N . Since R(G) is the full
preimage of R(G)/N under A 7→ A/N , R(G) is normal in A, which is a contradic-
tion. Now suppose that G/N is abelian. Suppose σ ∈ A/N , such that σ(1) = 1,
σ(Ne) = Ne, and σ(Nf) = Nf . It is easy to show that σ fixes Γ1(e), and Γ1(f)
pointwise. Since Γ is connected, σ=1. Therefore by Proposition 2.3 (i) ΓN is
normal, and so under A 7→ A/N , Γ is normal. This is a contradiction.

Now let |G|=pαqβ , where P and Q are Sylow p-subgroups and Sylow q-
subgroup of G, respectively such that P ∼= Zp×Zp×...×Zp, and Q is a cyclic group.
We consider the quotient group R(G)/P , and suppose that Σ = {B1, B2, ...Bn} be
all the orbits of P on V (Γ). R(G)/P acts on Σ regularly, therefore the quotient
graph ΓP is isomorphic to Cay(G/P, SP/P ) (|S∩P | ≤ 1). Since G/Φ(G) is abelian
with the same reason as before one can show Γ is normal, which is a contradiction
and the proof of Theorem 1.2 is complete.
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