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Abstract. We call a Cayley digraph I' = Cay(G, S) normal for G if R(G), the
right regular representation of G, is a normal subgroup of the full automorphism
group Aut(I") of I". In this paper we determine the normality of Cayley digraphs of
valency 2 on the groups of order pg and also on non-abelian finite groups G such

that every proper subgroup of G is abelian.
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Abstrak. Digraf Cayley I' = Cay(G, S) dinyatakan normal untuk G jika R(G),
representasi reguler kanan G, adalah subgrup normal dari grup automorfisma penuh
Aut(T") dari Gamma. Dalam paper ini kami menentukan normalitas digraf Cayley
bervalensi 2 pada grup berorde pg dan juga grup hingga non-Abelian G sedemikian
sehingga setiap subgrup sejati dari G adalah Abelian.

Kata kunci: Digraf Cayley, digraf Cayley normal, grup automorfisma.

1. Introduction

Let G be a finite group, and S a subset of G such that 15 ¢ S. The Cayley
digraph I'=Cay(G, S) of G with respect to S is defined to have vertex set V(I') = G
and edge set E(I') = {(9,s9) | g € G,s € S}. From the definition the following
obvious facts are basic for Cayley digraphs. (1) the automorphism group Aut(T)
of T contains R(G), the right regular representation of G, as a subgroup; (2) T is
connected if and only if S generates the group Gj; (3) T' is undirected if and only if
S = S71. A Cayley digraph I'=Cay(G, S) is called normal if the subgroup R(G) is

2000 Mathematics Subject Classification: 05C25, 20B25.
Received: 23-06-2011, revised: 16-08-2011, accepted: 23-09-2011.

67



68 M. ALAEIYAN AND M. GHASEMI
a normal subgroup of the automorphism group of T.

The concept of normality of Cayley digraphs is known to be important for the
study of arc-transitive graphs and half-transitive graphs (e.g. see [10]). In general,
it is known to be difficult to determine the normality of Cayley digraphs. The only
groups for which a complete classification of normal Cayley digraphs is available,
are the cyclic groups of prime order and the groups of order twice a prime [1, 4].
Since Wang, Wang and Xu [9] obtained all normal disconnected Cayley digraphs of
finite groups, we always suppose in this paper that the Cayley digraph Cay(G,.S)
is connected. That is, S is a generating subset of G.

A subset S of G is said to be a CI-subset (CI stands for Cayley isomorphism)
if whenever Cay(G, T) is isomorphic to Cay(G, S), there is an automorphism « of G
such that S* = T. (Then we call the corresponding graph Cay(G, S) a Cl-graph.)
Let G be a finite group and let S be a minimal generating set of G. Then Xu [10,
Problem 6] asked the question:
(1) Are S and S U S~! Cl-subsets?
(2) Are the corresponding Cayley digraphs and graphs normal?

For abelian groups, Feng and Gao [5] proved that if the Sylow 2-subgroup of
G is cyclic, then the answers to both questions (1) and (2) are positive; otherwise,
they are negative in general. More details can be found in [3, 6, 7].

Let X and Y be two graphs. The direct product X x Y is defined as the
graph with vertex set V(X x Y) = V(X) x V(Y) such that for any two vertices
u = [z1,y1] and v = [22,y92] in V(X X Y), [u,v] is an edge in X x Y whenever
x1 = x9 and [y1,y2] € E(Y) or y1 = y2 and [z1, 23] € E(X). Two graphs are called
relatively prime if they have no nontrivial common direct factor. The lexicographic
product X[Y] is defined as the graph with vertex set V(X[Y]) = V(X) x V(Y)
such that for any two vertices u = [z1,41] and v = [z2,y2] in V(X[Y]), [u,v] is
an edge in X[Y] whenever [z1,25] € E(X) or 1 = 22 and [y1,y2] € E(Y). Let
V() ={y1,y2,.--sYn}. Then there is a natural embedding of nX in X[Y], where
for 1 < i < n, the ith copy of X is the sub-graph induced on the vertex subset
{(z,y;)|lr € V(X)} in X[Y]. The deleted lexicographic product X[Y] —nX is the
graph obtained by deleting all the edges of (this natural embedding of) nX from
X[Y].

In the first theorem we determine all non-normal connected Cayley digraphs
of valency 2 on the groups of order pg, where p and ¢ are prime numbers. From ele-
mentary group theory we know that up to isomorphism there are two groups of order
pq (p < q) defined as: G1 = Zyq, and Go = (z,y | 2P =y? =1, a7 lyz = y")
where r, p, ¢ satisfy r? =1 (mod ¢q), r # 1 (mod q), (r,p) = 1. If pf q¢— 1, then
the second case can not occur. Moreover when p = ¢, then G is isomorphic to Z,:
or Zy X L.
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Theorem 1.1. Let G be a group of order pq where p, q are distinct primes,
and S a two-element generating subset of G. If T' = Cay(G, S) is not normal, then
I' = Cay(G, S) = Cy[2K:1] and Aut(T) = C31 Cy, where Cy is a directed cyclic of
length q.

In the following theorem we determine the normality of Cayley digraphs of
valency 2 on nonabelian finite groups G such that every proper subgroup of G is
abelian. Note that Frattini subgroup ®(G) is the intersection of maximal subgroups
of group G.

Theorem 1.2. Let G be a finite minimal non-abelian group, such that 2 1 |G|
and G/®(G) is abelian. Moreover suppose that I' = Cay(G,S) be a 2-valent con-
nected Cayley digraph of G with respect to S = {e, f}. Then T is normal.

2. Primary Analysis

Let G be a finite group and let I'=Cay(G, S) be a connected Cayley (di)graph
of valency two. Denote by (g, 219, 22210, -+ey Zn—12n—2----210; Znin—1----219g) a cycle
of length n in T, where z; € S (1 < i < n). Obviously z;4;...zi012; #1 (1 <4 <
i+1<n), except z,2p_1....21 = 1. For simplicity we use Cy(2p2n—1...21)(= Cy(1))
to denote this cycle.

We give some results which will be used later in the proofs of Theorems 1.1 and 1.2.

Proposition 2.1. [2, Proposition 2.5] Let I' = Cay(G, S) and ' = Cay(G,S*)
where a € Aut(G) . Then T is normal if and only if I’ is normal.

Proposition 2.2. [10, Proposition 1.5] Let T' = Cay(G,S) and A = Aut(T).
Then T is normal if and only if Ay = Aut(G,S), where Ay is the stabilizer of 1¢
in A, and Aut(G, S) = {a € Aut(G)|S* = S}.

Proposition 2.3. /3, Lemma 2.2] Let G be a finite group and S = {e, f} be a two-
element generating subset of G not containing the identity 1. Set I' = Cay(G, S)
and A = Aut(T'). If A} denotes the subgroup of A which fizes 1¢, e and f, then we
have the following:

(i) Ay =1 if and only if T’ = Cay(G, S) is normal.

(ii) Let o(e"1f) = m be odd. Suppose that (d) C (e=1f) or (e=1f) C (d), where
d=f(e ' f)m=D/2 Then T = Cay(G, S) is normal.

(iii) Suppose o € A%. If o(e 1 f) = m is odd, then « fives at least {d)(e™*f) point-
wise, where d = f(e™ 1 f)(m=1/2,

(iv) If one of e and f has order 2, then T' = Cay(G, S) is normal.

A finite group G is called minimal non-abelian if G is not abelian, but every proper
subgroup of G is abelian. Now we have the following result.
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Proposition 2.4. [8] Let G be a finite minimal non-abelian group. Then one
of the following holds:

(1) G is a minimal non-abelian p-group;

(2) G is a semi-direct product of an elementary abelian p-group P of order p® by a
cyclic group Q = (b) of order ¢°, where p, q are distinct primes and the action of
b on P is an automorphism of P of order q.

Proposition 2.5. [2, Theorem 1.1] Let G be a finite abelian group and S a gen-
erating subset of G not containing the identity 1. Assume S satisfies the condition

x,y,u,v € S with 1 # xy = wv, implies {x,y} = {u,v}.

(1)

Then the Cayley (di)graph Cay(G,S) is normal.

3. Proof of Theorem 1.1

Note that if S = S~!, then I'=Cay(G, S)=C,, (the cycle of length n), and
obviously T is normal. Therefore we may let S # S~1.

Now we complete the proof of Theorem 1.1. Let G be a group of order pq,
where p and ¢ are primes, and S = {e, f} be a generating subset for G with e # f
and 1 &€ S.

Assume first that p does not divide ¢ — 1, so G is cyclic, and G = Zp,. In view of
Proposition 2.5, we assume S does not satisfy the condition (1). Thus there are (not
necessarily distinct) elements z,y, u,v in S with 1 # zy = wv and {z,y} # {u,v}.
If one of e and f has order 2, then by Proposition 2.3 (iv), '=Cay(G, S) is normal.
Thus e? # 1 and similarly f2 # 1. If, say, {z,y} = {e, f} then since {z,y} # {u, v}
we must have {u,v} = {e} or {f} but this implies that xy # wv, a contradiction.
It follows that z = y = e, say, and uw = v = f and e? = f? # 1. Since e # f, one
of these elements, say e, must have even order , so p, say, is equal to 2. Now G is
isomorphic to Zs, = (a). So one may let S = {a’,a?""} where (i,2¢) = 1. Since
a + a’, can be extended to an automorphism of G, so by Proposition 2.1, we can
assume that S = {a,a?"!} and I'=Cay(G, S)= C,[2K;]. In this case o : a’ > a9t
(1 <4 < 2q,i # q) such that (1) = (1), o(a?) = (a?) is not in Aut(G, S) but in
Aq. So by Proposition 2.2 T' is not normal. Also Aut(I')= Cy C,,.

Now let G be nonabelian. Thus we may assume that p divides ¢ — 1 and G is is
isomorphic to {(z,y | xP =y =1, a lyz =y"), where r, p, and ¢ satisfy r? = 1
(mod ¢q), 7 # 1 (mod gq), and (r,p) = 1. By simply checking, we can see that, the
elements of order p are {z'y/} (1 <i<p—1, 0<j<q—1), and the elements of
order ¢ are y*, where 1 < i < ¢ — 1, thus we will see easily that e and f cannot be
of order ¢ simultaneously. Thus we can suppose that o(e) = p and o(f) = p or q.
If o(e) = p and o(f) = ¢, we have e = 2°y%, (1 <a<p—-1,0< 3 <qg—1) and
f=1v%1<0d<q—1. We claim that there is only one directed cycle of length p
through every vertex g of I'. We can suppose g = 1 because of the transitivity of
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T.

Obviously there is a directed cycle of length p through 1: 1 — e > €2 — ... —
eP~! +— 1. Let Cy(dpdp—1....d1) be another directed cycle of length p through 1,
where d; = e or f (1 <i < p). Let n be the number of e appearing in the product
dp....d;. Obviously 1 < n < p, and d,....dy = 1. Therefore 2°"y" = 1 (for some
integer t). It is clear that for any g € G, g can be expressed in the unique form:
2y (0<i<p, 0<j<gq). Thus n =0 (mod p), a contradiction to 1 < n < p.
Suppose o € A}. Since there is only one directed cycle of length p through f:
frrefre?frs ... ePf = f, we have that o fixes I';(e) and I'y(f) pointwise.
From the connectivity of I we have ¢ = 1, so A} = 1. By Proposition 2.3 (i)
I'=Cay(G, S) in normal.

Now suppose that o(e) = p, o(f) = p. Thene = z'y? (1 <i <p, 0<j < q).
Since o, defined by:z'y? — x,y — y can be extended to automorphism of G, by
Proposition 2.1 one may let e = z. If f = 2°9% (1 < a <p, 0 < B < q) so
e lf =21y (0<a—-1<p, 0< 83 <p). Suppose that o — 1 = 0, therefore
e~ 1f =y” and o(e~!f) = q. We can also suppose that (d)  (e~! f) by Proposition
2.3 (i), where d = f(e=1f)@=1/2 Thus (d)(e~'f) = G. By Proposition 2.3 (iii) A%
fixes G = (d)(e"' f) and so I'=Cay(G, S) is normal. Now suppose that oz — 1 > 0,
so o(e1f) = p, the same as before we can suppose that (d) ¢ (e~!f), where
d = f(e7'f)P=D/2, Thus G = (d)(e~'f) and A} fixes G = (d){e"'f) and so
I'=Cay(G, S) is normal. The result now follows.

4. Proof of Theorem 1.2

Recall that we use A to denote the automorphism group of the Cayley graph
I', and A; to denote the group of all automorphisms of I" that fix identity 1 of G.
Also a finite group G is called minimal non-abelian if G is not abelian, but every
proper subgroup of G is abelian.

We now prove the Theorem 1.2. By Proposition 2.4 we have two cases. First
suppose that G is a p-group (p is odd), in this case we assume G has the small-
est order such that Cay(G,S) is not a normal 2-valent connected Cayley digraph.
Note that A=R(G)A; and R(G) N A;=1¢g. Let N be a nontrivial minimal normal
subgroup of A. Since A; is a 2-group, A is solvable and hence N is an elementary
abelian g-group, with ¢=2 or p. If N is transitive on V(T") then N is regular on
V(T'). Thus |[N| = |G| = |R(G)|. Therefore R(G) = N and R(G) is normal in A
which is a contradiction. Thus N is not transitive on V(I'). Let m be the length of
an N-orbit on V(I'), then m divides |N|. Note that N << A and A acts transitively
on V(T'), so m divides |G|. Therefore g=p and N < R(G).

Let ¥ = {T1,T5,...,Tpa } be all the orbits of N on V(I'). Consider the quotient
digraph I'y defined by V(I')=X and (7;,7;) € E(T'y) if and only if there exist
v; € T;, v; € T; such that (v;,v;) € E(T'y). Since the quotient group R(G)/N
acts regularly on X, therefore I' y must be a connected Cayley digraph of G/N. So
I'v= Cay(G/N,SN/N) (]SN N| <1). If |[SN N|=1, then either e or f has order
p. Without loss of generality we may assume that o(e)=p. Now we have two cases:
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(1) o(f)=p and (2) o(f) £ p.
We know that there is a directed p-path through 1: 1lg — e — €° — ..... —
eP. Suppose that 1g — di — dady — ... — dpdp_1...dy is another p-path
through 1 such that dpdp,—i...dy=1 and d;=f or e. Let r, t be the numbers
of e and f appearing in {di,ds,...,d,} respectively. Since G is a non-cyclic p-
group, G/®(G) is an elementary p-group where ®(G) is the Frattini subgroup of
G, and G/®(G)=(P(G)e) x ((GQ)f). We have ®(G)d,®(G)dp—1...2(G)d1=2(G),
so (®(Q)e)"(®(G) f)!=(G), and hence r =t = 0 (mod p). Note that r + t=p and
0 < r,t < p, therefore we have that either r = pand ¢t = 0 or r = 0 and t = p.
Now if o(f)=p then Aj=1¢ and I' is normal by Proposition 2.3 (i). If o(f) > p,
similarly there is a unique directed p-cycle through f: f +— ef — €2f — ... = f
and consequently A7=14, and I' is normal.

Now suppose that |S N N|=0 and G/N is non-abelian. By the minimality of |G|,
Cay(G/N,SN/N) is normal. Therefore R(G)/N < A/N. Since R(G) is the full
preimage of R(G)/N under A+— A/N, R(G) is normal in A, which is a contradic-
tion. Now suppose that G/N is abelian. Suppose o € A/N, such that o(1) = 1,
o(Ne) = Ne, and o(Nf) = Nf. It is easy to show that o fixes I';(e), and T'y (f)
pointwise. Since T' is connected, o=1. Therefore by Proposition 2.3 (i) 'y is
normal, and so under A — A/N, T is normal. This is a contradiction.

2

Now let |G|=p*q”®, where P and Q are Sylow p-subgroups and Sylow ¢-
subgroup of G, respectively such that P = Z,, X Z,, x ... X Zy, and @ is a cyclic group.
We consider the quotient group R(G)/P, and suppose that ¥ = {Bj, Ba,...B,} be
all the orbits of P on V(T'). R(G)/P acts on X regularly, therefore the quotient
graph I'p is isomorphic to Cay(G/P,SP/P) (|[SNP| < 1). Since G/®(G) is abelian
with the same reason as before one can show I' is normal, which is a contradiction
and the proof of Theorem 1.2 is complete.
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