ON THE NORMALITY OF SOME CAYLEY DIGRAPHS WITH VALENCY 2

Mehdi Alaeiyan ${ }^{1}$ and Mohsen Ghasemi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
${ }^{2}$ Department of Mathematics Urmia University,
Urmia, 57135, Iran m.ghasemi@mail.urmia.ac.ir

Abstract

We call a Cayley digraph $\Gamma=\operatorname{Cay}(G, S)$ normal for G if $R(G)$, the right regular representation of G, is a normal subgroup of the full automorphism group $\operatorname{Aut}(\Gamma)$ of Γ. In this paper we determine the normality of Cayley digraphs of valency 2 on the groups of order $p q$ and also on non-abelian finite groups G such that every proper subgroup of G is abelian.

Key words: Cayley digraph, normal Cayley digraph, automorphism group.

Abstract

Abstrak. Digraf Cayley $\Gamma=\operatorname{Cay}(G, S)$ dinyatakan normal untuk G jika $R(G)$, representasi reguler kanan G, adalah subgrup normal dari grup automorfisma penuh Aut(Γ) dari Gamma. Dalam paper ini kami menentukan normalitas digraf Cayley bervalensi 2 pada grup berorde $p q$ dan juga grup hingga non-Abelian G sedemikian sehingga setiap subgrup sejati dari G adalah Abelian.

Kata kunci: Digraf Cayley, digraf Cayley normal, grup automorfisma.

1. Introduction

Let G be a finite group, and S a subset of G such that $1_{G} \notin S$. The Cayley digraph $\Gamma=\operatorname{Cay}(G, S)$ of G with respect to S is defined to have vertex set $V(\Gamma)=G$ and edge set $E(\Gamma)=\{(g, s g) \quad \mid \quad g \in G, s \in S\}$. From the definition the following obvious facts are basic for Cayley digraphs. (1) the automorphism group Aut(Γ) of Γ contains $R(G)$, the right regular representation of G, as a subgroup; (2) Γ is connected if and only if S generates the group G; (3) Γ is undirected if and only if $S=S^{-1}$. A Cayley digraph $\Gamma=\operatorname{Cay}(G, S)$ is called normal if the subgroup $R(G)$ is
a normal subgroup of the automorphism group of Γ.
The concept of normality of Cayley digraphs is known to be important for the study of arc-transitive graphs and half-transitive graphs (e.g. see [10]). In general, it is known to be difficult to determine the normality of Cayley digraphs. The only groups for which a complete classification of normal Cayley digraphs is available, are the cyclic groups of prime order and the groups of order twice a prime [1, 4]. Since Wang, Wang and Xu [9] obtained all normal disconnected Cayley digraphs of finite groups, we always suppose in this paper that the Cayley digraph Cay (G, S) is connected. That is, S is a generating subset of G.

A subset S of G is said to be a CI-subset (CI stands for Cayley isomorphism) if whenever $\operatorname{Cay}(G, T)$ is isomorphic to $\operatorname{Cay}(G, S)$, there is an automorphism α of G such that $S^{\alpha}=T$. (Then we call the corresponding graph Cay (G, S) a CI-graph.) Let G be a finite group and let S be a minimal generating set of G. Then Xu [10, Problem 6] asked the question:
(1) Are S and $S \cup S^{-1}$ CI-subsets?
(2) Are the corresponding Cayley digraphs and graphs normal?

For abelian groups, Feng and Gao [5] proved that if the Sylow 2-subgroup of G is cyclic, then the answers to both questions (1) and (2) are positive; otherwise, they are negative in general. More details can be found in $[3,6,7]$.

Let X and Y be two graphs. The direct product $X \times Y$ is defined as the graph with vertex set $V(X \times Y)=V(X) \times V(Y)$ such that for any two vertices $u=\left[x_{1}, y_{1}\right]$ and $v=\left[x_{2}, y_{2}\right]$ in $V(X \times Y),[u, v]$ is an edge in $X \times Y$ whenever $x_{1}=x_{2}$ and $\left[y_{1}, y_{2}\right] \in E(Y)$ or $y_{1}=y_{2}$ and $\left[x_{1}, x_{2}\right] \in E(X)$. Two graphs are called relatively prime if they have no nontrivial common direct factor. The lexicographic product $X[Y]$ is defined as the graph with vertex set $V(X[Y])=V(X) \times V(Y)$ such that for any two vertices $u=\left[x_{1}, y_{1}\right]$ and $v=\left[x_{2}, y_{2}\right]$ in $V(X[Y]),[u, v]$ is an edge in $X[Y]$ whenever $\left[x_{1}, x_{2}\right] \in E(X)$ or $x_{1}=x_{2}$ and $\left[y_{1}, y_{2}\right] \in E(Y)$. Let $V(Y)=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Then there is a natural embedding of $n X$ in $X[Y]$, where for $1 \leq i \leq n$, the i th copy of X is the sub-graph induced on the vertex subset $\left\{\left(x, y_{i}\right) \mid x \in V(X)\right\}$ in $X[Y]$. The deleted lexicographic product $X[Y]-n X$ is the graph obtained by deleting all the edges of (this natural embedding of) $n X$ from $X[Y]$.

In the first theorem we determine all non-normal connected Cayley digraphs of valency 2 on the groups of order $p q$, where p and q are prime numbers. From elementary group theory we know that up to isomorphism there are two groups of order $p q(p<q)$ defined as: $G_{1}=\mathbb{Z}_{p q}$, and $G_{2}=\left\langle x, y \mid x^{p}=y^{q}=1, x^{-1} y x=y^{r}\right\rangle$ where r, p, q satisfy $r^{p} \equiv 1(\bmod q), r \not \equiv 1(\bmod q),(r, p)=1$. If $p \nmid q-1$, then the second case can not occur. Moreover when $p=q$, then G is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

Theorem 1.1. Let G be a group of order $p q$ where p, q are distinct primes, and S a two-element generating subset of G. If $\Gamma=\operatorname{Cay}(G, S)$ is not normal, then $\Gamma=\operatorname{Cay}(G, S) \cong C_{q}\left[2 K_{1}\right]$ and $\operatorname{Aut}(\Gamma) \cong C_{2} \imath C_{q}$, where C_{q} is a directed cyclic of length q.

In the following theorem we determine the normality of Cayley digraphs of valency 2 on nonabelian finite groups G such that every proper subgroup of G is abelian. Note that Frattini subgroup $\Phi(G)$ is the intersection of maximal subgroups of group G.

Theorem 1.2. Let G be a finite minimal non-abelian group, such that $2 \nmid|G|$ and $G / \Phi(G)$ is abelian. Moreover suppose that $\Gamma=\operatorname{Cay}(G, S)$ be a 2-valent connected Cayley digraph of G with respect to $S=\{e, f\}$. Then Γ is normal.

2. Primary Analysis

Let G be a finite group and let $\Gamma=\operatorname{Cay}(G, S)$ be a connected Cayley (di)graph of valency two. Denote by $\left(g, z_{1} g, z_{2} z_{1} g, \ldots ., z_{n-1} z_{n-2} \ldots . z_{1} g, z_{n} z_{n-1} \ldots . z_{1} g\right)$ a cycle of length n in Γ, where $z_{i} \in S(1 \leq i \leq n)$. Obviously $z_{i+l} \ldots . z_{i+1} z_{i} \neq 1(1 \leq i \leq$ $i+l \leq n)$, except $z_{n} z_{n-1} \ldots . z_{1}=1$. For simplicity we use $C_{g}\left(z_{n} z_{n-1} \ldots z_{1}\right)\left(=C_{g}(1)\right)$ to denote this cycle.
We give some results which will be used later in the proofs of Theorems 1.1 and 1.2.
Proposition 2.1. [2, Proposition 2.5] Let $\Gamma=\operatorname{Cay}(G, S)$ and $\Gamma^{\prime}=\operatorname{Cay}\left(G, S^{\alpha}\right)$ where $\alpha \in \operatorname{Aut}(G)$. Then Γ is normal if and only if Γ^{\prime} is normal.

Proposition 2.2. [10, Proposition 1.5] Let $\Gamma=\operatorname{Cay}(G, S)$ and $A=\operatorname{Aut}(\Gamma)$. Then Γ is normal if and only if $A_{1}=\operatorname{Aut}(G, S)$, where A_{1} is the stabilizer of 1_{G} in A, and $\operatorname{Aut}(G, S)=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$.

Proposition 2.3. [3, Lemma 2.2] Let G be a finite group and $S=\{e, f\}$ be a twoelement generating subset of G not containing the identity 1_{G}. Set $\Gamma=\operatorname{Cay}(G, S)$ and $A=\operatorname{Aut}(\Gamma)$. If A_{1}^{*} denotes the subgroup of A which fixes 1_{G}, e and f, then we have the following:
(i) $A_{1}^{*}=1$ if and only if $\Gamma=\operatorname{Cay}(G, S)$ is normal.
(ii) Let $o\left(e^{-1} f\right)=m$ be odd. Suppose that $\langle d\rangle \subseteq\left\langle e^{-1} f\right\rangle$ or $\left\langle e^{-1} f\right\rangle \subseteq\langle d\rangle$, where $d=f\left(e^{-1} f\right)^{(m-1) / 2}$. Then $\Gamma=\operatorname{Cay}(G, S)$ is normal.
(iii) Suppose $\alpha \in A_{1}^{*}$. If o $\left(e^{-1} f\right)=m$ is odd, then α fixes at least $\langle d\rangle\left\langle e^{-1} f\right\rangle$ pointwise, where $d=f\left(e^{-1} f\right)^{(m-1) / 2}$.
(iv) If one of e and f has order 2, then $\Gamma=\operatorname{Cay}(G, S)$ is normal.

A finite group G is called minimal non-abelian if G is not abelian, but every proper subgroup of G is abelian. Now we have the following result.

Proposition 2.4. [8] Let G be a finite minimal non-abelian group. Then one of the following holds:
(1) G is a minimal non-abelian p-group;
(2) G is a semi-direct product of an elementary abelian p-group P of order p^{α} by a cyclic group $Q=\langle b\rangle$ of order q^{β}, where p, q are distinct primes and the action of b on P is an automorphism of P of order q.

Proposition 2.5. [2, Theorem 1.1] Let G be a finite abelian group and S a generating subset of G not containing the identity 1. Assume S satisfies the condition

$$
\begin{equation*}
x, y, u, v \in S \text { with } 1 \neq x y=u v, \text { implies }\{x, y\}=\{u, v\} \tag{1}
\end{equation*}
$$

Then the Cayley (di)graph Cay (G, S) is normal.

3. Proof of Theorem 1.1

Note that if $S=S^{-1}$, then $\Gamma=\operatorname{Cay}(G, S) \cong C_{n}$ (the cycle of length n), and obviously Γ is normal. Therefore we may let $S \neq S^{-1}$.

Now we complete the proof of Theorem 1.1. Let G be a group of order $p q$, where p and q are primes, and $S=\{e, f\}$ be a generating subset for G with $e \neq f$ and $1 \notin S$.
Assume first that p does not divide $q-1$, so G is cyclic, and $G \cong \mathbb{Z}_{p q}$. In view of Proposition 2.5, we assume S does not satisfy the condition (1). Thus there are (not necessarily distinct) elements x, y, u, v in S with $1 \neq x y=u v$ and $\{x, y\} \neq\{u, v\}$. If one of e and f has order 2 , then by Proposition 2.3 (iv), $\Gamma=\operatorname{Cay}(G, S)$ is normal. Thus $e^{2} \neq 1$ and similarly $f^{2} \neq 1$. If, say, $\{x, y\}=\{e, f\}$ then since $\{x, y\} \neq\{u, v\}$ we must have $\{u, v\}=\{e\}$ or $\{f\}$ but this implies that $x y \neq u v$, a contradiction. It follows that $x=y=e$, say, and $u=v=f$ and $e^{2}=f^{2} \neq 1$. Since $e \neq f$, one of these elements, say e, must have even order, so p, say, is equal to 2 . Now G is isomorphic to $\mathbb{Z}_{2 q}=\langle a\rangle$. So one may let $S=\left\{a^{i}, a^{q+i}\right\}$ where $(i, 2 q)=1$. Since $a \mapsto a^{i}$, can be extended to an automorphism of G, so by Proposition 2.1, we can assume that $S=\left\{a, a^{q+1}\right\}$ and $\Gamma=\operatorname{Cay}(G, S) \cong C_{q}\left[2 K_{1}\right]$. In this case $\sigma: a^{i} \mapsto a^{q+i}$ $(1 \leq i<2 q, i \neq q)$ such that $\sigma(1)=(1), \sigma\left(a^{q}\right)=\left(a^{q}\right)$ is not in $\operatorname{Aut}(G, S)$ but in A_{1}. So by Proposition 2.2Γ is not normal. Also $\operatorname{Aut}(\Gamma) \cong C_{2} 2 C_{q}$.
Now let G be nonabelian. Thus we may assume that p divides $q-1$ and G is is isomorphic to $\left\langle x, y \mid x^{p}=y^{q}=1, x^{-1} y x=y^{r}\right\rangle$, where r, p, and q satisfy $r^{p} \equiv 1$ $(\bmod q), r \not \equiv 1(\bmod q)$, and $(r, p)=1$. By simply checking, we can see that, the elements of order p are $\left\{x^{i} y^{j}\right\}(1 \leq i \leq p-1,0 \leq j \leq q-1)$, and the elements of order q are y^{i}, where $1 \leq i \leq q-1$, thus we will see easily that e and f cannot be of order q simultaneously. Thus we can suppose that $o(e)=p$ and $o(f)=p$ or q. If $o(e)=p$ and $o(f)=q$, we have $e=x^{\alpha} y^{\beta},(1 \leq \alpha \leq p-1,0 \leq \beta \leq q-1)$ and $f=y^{\delta}, 1 \leq \delta \leq q-1$. We claim that there is only one directed cycle of length p through every vertex g of Γ. We can suppose $g=1$ because of the transitivity of

Γ.

Obviously there is a directed cycle of length p through 1: $1 \mapsto e \mapsto e^{2} \mapsto \ldots . \mapsto$ $e^{p-1} \mapsto 1$. Let $C_{1}\left(d_{p} d_{p-1} \ldots . d_{1}\right)$ be another directed cycle of length p through 1 , where $d_{i}=e$ or $f(1<i<p)$. Let n be the number of e appearing in the product $d_{p} \ldots d_{1}$. Obviously $1 \leq n<p$, and $d_{p} \ldots d_{1}=1$. Therefore $x^{\alpha n} y^{t}=1$ (for some integer t). It is clear that for any $g \in G, g$ can be expressed in the unique form: $x^{i} y^{j}(0 \leq i<p, 0 \leq j<q)$. Thus $n \equiv 0(\bmod p)$, a contradiction to $1 \leq n<p$. Suppose $\sigma \in A_{1}^{*}$. Since there is only one directed cycle of length p through f : $f \mapsto e f \mapsto e^{2} f \mapsto \ldots \mapsto e^{p} f=f$, we have that σ fixes $\Gamma_{1}(e)$ and $\Gamma_{1}(f)$ pointwise. From the connectivity of Γ we have $\sigma=1$, so $A_{1}^{*}=1$. By Proposition 2.3 (i) $\Gamma=\operatorname{Cay}(G, S)$ in normal.
Now suppose that $o(e)=p, o(f)=p$. Then $e=x^{i} y^{j}(1 \leq i<p, 0 \leq j<q)$. Since σ, defined by: $x^{i} y^{j} \mapsto x, y \mapsto y$ can be extended to automorphism of G, by Proposition 2.1 one may let $e=x$. If $f=x^{\alpha} y^{\beta}(1 \leq \alpha<p, 0 \leq \beta<q)$ so $e^{-1} f=x^{\alpha-1} y^{\beta}(0 \leq \alpha-1<p, 0 \leq \beta<p)$. Suppose that $\alpha-1=0$, therefore $e^{-1} f=y^{\beta}$ and $o\left(e^{-1} f\right)=q$. We can also suppose that $\langle d\rangle \nsubseteq\left\langle e^{-1} f\right\rangle$ by Proposition 2.3 (ii), where $d=f\left(e^{-1} f\right)^{(q-1) / 2}$. Thus $\langle d\rangle\left\langle e^{-1} f\right\rangle=G$. By Proposition 2.3 (iii) A_{1}^{*} fixes $G=\langle d\rangle\left\langle e^{-1} f\right\rangle$ and so $\Gamma=\operatorname{Cay}(G, S)$ is normal. Now suppose that $\alpha-1>0$, so $o\left(e^{-1} f\right)=p$, the same as before we can suppose that $\langle d\rangle \nsubseteq\left\langle e^{-1} f\right\rangle$, where $d=f\left(e^{-1} f\right)^{(p-1) / 2}$. Thus $G=\langle d\rangle\left\langle e^{-1} f\right\rangle$ and A_{1}^{*} fixes $G=\langle d\rangle\left\langle e^{-1} f\right\rangle$ and so $\Gamma=\operatorname{Cay}(G, S)$ is normal. The result now follows.

4. Proof of Theorem $\mathbf{1 . 2}$

Recall that we use A to denote the automorphism group of the Cayley graph Γ, and A_{1} to denote the group of all automorphisms of Γ that fix identity 1_{G} of G. Also a finite group G is called minimal non-abelian if G is not abelian, but every proper subgroup of G is abelian.

We now prove the Theorem 1.2. By Proposition 2.4 we have two cases. First suppose that G is a p-group (p is odd), in this case we assume G has the smallest order such that $\operatorname{Cay}(G, S)$ is not a normal 2 -valent connected Cayley digraph. Note that $A=R(G) A_{1}$ and $R(G) \cap A_{1}=1_{G}$. Let N be a nontrivial minimal normal subgroup of A. Since A_{1} is a 2-group, A is solvable and hence N is an elementary abelian q-group, with $q=2$ or p. If N is transitive on $V(\Gamma)$ then N is regular on $V(\Gamma)$. Thus $|N|=|G|=|R(G)|$. Therefore $R(G)=N$ and $R(G)$ is normal in A which is a contradiction. Thus N is not transitive on $V(\Gamma)$. Let m be the length of an N-orbit on $\mathrm{V}(\Gamma)$, then m divides $|N|$. Note that $N \triangleleft A$ and A acts transitively on $V(\Gamma)$, so m divides $|G|$. Therefore $q=p$ and $N<R(G)$.
Let $\Sigma=\left\{T_{1}, T_{2}, \ldots, T_{p^{\alpha}}\right\}$ be all the orbits of N on $V(\Gamma)$. Consider the quotient digraph Γ_{N} defined by $V(\Gamma)=\Sigma$ and $\left(T_{i}, T_{j}\right) \in E\left(\Gamma_{N}\right)$ if and only if there exist $v_{i} \in T_{i}, v_{j} \in T_{j}$ such that $\left(v_{i}, v_{j}\right) \in E\left(\Gamma_{N}\right)$. Since the quotient group $R(G) / N$ acts regularly on Σ, therefore Γ_{N} must be a connected Cayley digraph of G / N. So $\Gamma_{N} \cong \operatorname{Cay}(G / N, S N / N)(|S \cap N| \leq 1)$. If $|S \cap N|=1$, then either e or f has order p. Without loss of generality we may assume that $o(e)=\mathrm{p}$. Now we have two cases:
(1) $o(f)=\mathrm{p}$ and $(2) o(f) \neq p$.

We know that there is a directed p-path through $1: 1_{G} \mapsto e \mapsto e^{2} \mapsto \ldots \ldots \mapsto$ e^{p}. Suppose that $1_{G} \mapsto d_{1} \mapsto d_{2} d_{1} \mapsto \ldots . \mapsto d_{p} d_{p-1} \ldots d_{1}$ is another p-path through 1 such that $d_{p} d_{p-1} \ldots d_{1}=1$ and $d_{i}=f$ or e. Let r, t be the numbers of e and f appearing in $\left\{d_{1}, d_{2}, \ldots, d_{p}\right\}$ respectively. Since G is a non-cyclic p group, $G / \Phi(G)$ is an elementary p-group where $\Phi(G)$ is the Frattini subgroup of G, and $G / \Phi(G)=\langle\Phi(G) e\rangle \times\langle\Phi(G) f\rangle$. We have $\Phi(G) d_{p} \Phi(G) d_{p-1} \ldots \Phi(G) d_{1}=\Phi(G)$, so $(\Phi(G) e)^{r}(\Phi(G) f)^{t}=\Phi(G)$, and hence $r=t=0(\bmod p)$. Note that $r+t=p$ and $0 \leq r, t \leq p$, therefore we have that either $r=p$ and $t=0$ or $r=0$ and $t=p$. Now if $o(f)=p$ then $A_{1}^{*}=1_{G}$ and Γ is normal by Proposition 2.3 (i). If $o(f)>p$, similarly there is a unique directed p-cycle through $f: f \mapsto e f \mapsto e^{2} f \mapsto \ldots \mapsto f$ and consequently $A_{1}^{*}=1_{G}$, and Γ is normal.
Now suppose that $|S \cap N|=0$ and G / N is non-abelian. By the minimality of $|G|$, $\operatorname{Cay}(G / N, S N / N)$ is normal. Therefore $R(G) / N \triangleleft A / N$. Since $R(G)$ is the full preimage of $R(G) / N$ under $A \mapsto A / N, R(G)$ is normal in A, which is a contradiction. Now suppose that G / N is abelian. Suppose $\sigma \in A / N$, such that $\sigma(1)=1$, $\sigma(N e)=N e$, and $\sigma(N f)=N f$. It is easy to show that σ fixes $\Gamma_{1}(e)$, and $\Gamma_{1}(f)$ pointwise. Since Γ is connected, $\sigma=1$. Therefore by Proposition 2.3 (i) Γ_{N} is normal, and so under $A \mapsto A / N, \Gamma$ is normal. This is a contradiction.

Now let $|G|=p^{\alpha} q^{\beta}$, where P and Q are Sylow p-subgroups and Sylow q subgroup of G, respectively such that $P \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \ldots \times \mathbb{Z}_{p}$, and Q is a cyclic group. We consider the quotient group $R(G) / P$, and suppose that $\Sigma=\left\{B_{1}, B_{2}, \ldots B_{n}\right\}$ be all the orbits of P on $V(\Gamma) . R(G) / P$ acts on Σ regularly, therefore the quotient graph Γ_{P} is isomorphic to $\operatorname{Cay}(G / P, S P / P)(|S \cap P| \leq 1)$. Since $G / \Phi(G)$ is abelian with the same reason as before one can show Γ is normal, which is a contradiction and the proof of Theorem 1.2 is complete.

References

[1] Alspach, B., "Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree", J. Combin. Theory, 15 (1973), 12-17.
[2] Baik, Y.G., Feng, Y.Q., Sim, H.S. and Xu, M.Y., "On the normality of Cayley Graphs of Abelian Groups", Algebra Colloquium, 5(3) (1998), 297-307
[3] Chen, J.L., Feng, Y.Q., and Wang, D.J., "A Family of non-normal Cayley digraphs", Acta Mathematica Sinica, English series, 17 (2001), 147-152.
[4] Du, S.F., Wang, R.J., and Xu, M.Y., "On the normality of Cayley digraphs of order twice a prime", Australasian Journal of Combinatorics, 18 (1998), 227-234.
[5] Feng, Y.Q., and Gao, T.P., "Automorphism groups and isomorphisms of Cayley digraphs of abelian groups", Australasian Journal of Combinatorics, 16 (1997), 183-187.
[6] Huang, Q.X., and Meng, J.X., "On the isomorphisms and automorphism groups of circulants", Graphs Combin., 12 (1996), 179-181.
[7] Li, C.H.,"Isomorphisms of connected Cayley digraphs", Graphs Combin., 14 (1998), 37-44.
[8] Miller, G.A., and Moreno, H.C., "Non-abelian groups in which every subgroup is abelian", Trans. Amer. Math. Soc., 4 (1993), 389-404.
[9] Wang, C.Q., Wang, D.J., and Xu, M.Y., "On normal Cayley graphs of finite groups", Science in China (A) 28(2) (1998), 131-139.
[10] Xu, M.Y., "Automorphism groups and isomorphisms of Cayley digraphs", Discrete Math., 182 (1998), 309-319.

