ON THE NORMALITY OF SOME CAYLEY DIGRAPHS WITH VALENCY 2

Mehdi Alaeiyan¹ and Mohsen Ghasemi²

¹Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran ²Department of Mathematics Urmia University, Urmia, 57135, Iran m.ghasemi@mail.urmia.ac.ir

Abstract. We call a Cayley digraph $\Gamma = \operatorname{Cay}(G, S)$ normal for G if R(G), the right regular representation of G, is a normal subgroup of the full automorphism group $\operatorname{Aut}(\Gamma)$ of Γ . In this paper we determine the normality of Cayley digraphs of valency 2 on the groups of order pq and also on non-abelian finite groups G such that every proper subgroup of G is abelian.

Key words: Cayley digraph, normal Cayley digraph, automorphism group.

Abstrak. Digraf Cayley $\Gamma = \operatorname{Cay}(G, S)$ dinyatakan normal untuk G jika R(G), representasi reguler kanan G, adalah subgrup normal dari grup automorfisma penuh Aut (Γ) dari *Gamma*. Dalam paper ini kami menentukan normalitas digraf Cayley bervalensi 2 pada grup berorde pq dan juga grup hingga non-Abelian G sedemikian sehingga setiap subgrup sejati dari G adalah Abelian.

Kata kunci: Digraf Cayley, digraf Cayley normal, grup automorfisma.

1. Introduction

Let G be a finite group, and S a subset of G such that $1_G \notin S$. The Cayley digraph $\Gamma = \operatorname{Cay}(G, S)$ of G with respect to S is defined to have vertex set $V(\Gamma) = G$ and edge set $E(\Gamma) = \{(g, sg) \mid g \in G, s \in S\}$. From the definition the following obvious facts are basic for Cayley digraphs. (1) the automorphism group $\operatorname{Aut}(\Gamma)$ of Γ contains R(G), the right regular representation of G, as a subgroup; (2) Γ is connected if and only if S generates the group G; (3) Γ is undirected if and only if $S = S^{-1}$. A Cayley digraph $\Gamma = \operatorname{Cay}(G, S)$ is called normal if the subgroup R(G) is

67

²⁰⁰⁰ Mathematics Subject Classification: 05C25, 20B25.

Received: 23-06-2011, revised: 16-08-2011, accepted: 23-09-2011.

a normal subgroup of the automorphism group of Γ .

The concept of normality of Cayley digraphs is known to be important for the study of arc-transitive graphs and half-transitive graphs (e.g. see [10]). In general, it is known to be difficult to determine the normality of Cayley digraphs. The only groups for which a complete classification of normal Cayley digraphs is available, are the cyclic groups of prime order and the groups of order twice a prime [1, 4]. Since Wang, Wang and Xu [9] obtained all normal disconnected Cayley digraphs of finite groups, we always suppose in this paper that the Cayley digraph Cay(G, S) is connected. That is, S is a generating subset of G.

A subset S of G is said to be a CI-subset (CI stands for Cayley isomorphism) if whenever $\operatorname{Cay}(G,T)$ is isomorphic to $\operatorname{Cay}(G,S)$, there is an automorphism α of G such that $S^{\alpha} = T$. (Then we call the corresponding graph $\operatorname{Cay}(G,S)$ a CI-graph.) Let G be a finite group and let S be a minimal generating set of G. Then Xu [10, Problem 6] asked the question:

(1) Are S and $S \cup S^{-1}$ CI-subsets?

(2) Are the corresponding Cayley digraphs and graphs normal?

For abelian groups, Feng and Gao [5] proved that if the Sylow 2-subgroup of G is cyclic, then the answers to both questions (1) and (2) are positive; otherwise, they are negative in general. More details can be found in [3, 6, 7].

Let X and Y be two graphs. The direct product $X \times Y$ is defined as the graph with vertex set $V(X \times Y) = V(X) \times V(Y)$ such that for any two vertices $u = [x_1, y_1]$ and $v = [x_2, y_2]$ in $V(X \times Y)$, [u, v] is an edge in $X \times Y$ whenever $x_1 = x_2$ and $[y_1, y_2] \in E(Y)$ or $y_1 = y_2$ and $[x_1, x_2] \in E(X)$. Two graphs are called relatively prime if they have no nontrivial common direct factor. The lexicographic product X[Y] is defined as the graph with vertex set $V(X[Y]) = V(X) \times V(Y)$ such that for any two vertices $u = [x_1, y_1]$ and $v = [x_2, y_2]$ in V(X[Y]), [u, v] is an edge in X[Y] whenever $[x_1, x_2] \in E(X)$ or $x_1 = x_2$ and $[y_1, y_2] \in E(Y)$. Let $V(Y) = \{y_1, y_2, ..., y_n\}$. Then there is a natural embedding of nX in X[Y], where for $1 \le i \le n$, the *i*th copy of X is the sub-graph induced on the vertex subset $\{(x, y_i) | x \in V(X)\}$ in X[Y]. The deleted lexicographic product X[Y] - nX is the graph obtained by deleting all the edges of (this natural embedding of) nX from X[Y].

In the first theorem we determine all non-normal connected Cayley digraphs of valency 2 on the groups of order pq, where p and q are prime numbers. From elementary group theory we know that up to isomorphism there are two groups of order pq (p < q) defined as: $G_1 = \mathbb{Z}_{pq}$, and $G_2 = \langle x, y \mid x^p = y^q = 1, x^{-1}yx = y^r \rangle$ where r, p, q satisfy $r^p \equiv 1 \pmod{q}, r \not\equiv 1 \pmod{q}, (r, p) = 1$. If $p \nmid q - 1$, then the second case can not occur. Moreover when p = q, then G is isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p \times \mathbb{Z}_p$. **Theorem 1.1.** Let G be a group of order pq where p, q are distinct primes, and S a two-element generating subset of G. If $\Gamma = Cay(G, S)$ is not normal, then $\Gamma = Cay(G, S) \cong C_q[2K_1]$ and $Aut(\Gamma) \cong C_2 \wr C_q$, where C_q is a directed cyclic of length q.

In the following theorem we determine the normality of Cayley digraphs of valency 2 on nonabelian finite groups G such that every proper subgroup of G is abelian. Note that Frattini subgroup $\Phi(G)$ is the intersection of maximal subgroups of group G.

Theorem 1.2. Let G be a finite minimal non-abelian group, such that $2 \nmid |G|$ and $G/\Phi(G)$ is abelian. Moreover suppose that $\Gamma = Cay(G, S)$ be a 2-valent connected Cayley digraph of G with respect to $S = \{e, f\}$. Then Γ is normal.

2. Primary Analysis

Let G be a finite group and let $\Gamma = \operatorname{Cay}(G, S)$ be a connected Cayley (di)graph of valency two. Denote by $(g, z_1g, z_2z_1g, \dots, z_{n-1}z_{n-2}\dots z_1g, z_nz_{n-1}\dots z_1g)$ a cycle of length n in Γ , where $z_i \in S$ $(1 \leq i \leq n)$. Obviously $z_{i+1}\dots z_{i+1}z_i \neq 1$ $(1 \leq i \leq i + l \leq n)$, except $z_nz_{n-1}\dots z_1 = 1$. For simplicity we use $C_g(z_nz_{n-1}\dots z_1)(=C_g(1))$ to denote this cycle.

We give some results which will be used later in the proofs of Theorems 1.1 and 1.2.

Proposition 2.1. [2, Proposition 2.5] Let $\Gamma = Cay(G, S)$ and $\Gamma' = Cay(G, S^{\alpha})$ where $\alpha \in Aut(G)$. Then Γ is normal if and only if Γ' is normal.

Proposition 2.2. [10, Proposition 1.5] Let $\Gamma = Cay(G, S)$ and $A = Aut(\Gamma)$. Then Γ is normal if and only if $A_1 = Aut(G, S)$, where A_1 is the stabilizer of 1_G in A, and $Aut(G, S) = \{\alpha \in Aut(G) | S^{\alpha} = S\}.$

Proposition 2.3. [3, Lemma 2.2] Let G be a finite group and $S = \{e, f\}$ be a twoelement generating subset of G not containing the identity 1_G . Set $\Gamma = Cay(G, S)$ and $A = Aut(\Gamma)$. If A_1^* denotes the subgroup of A which fixes 1_G , e and f, then we have the following:

(i) $A_1^* = 1$ if and only if $\Gamma = Cay(G, S)$ is normal.

(ii) Let $o(e^{-1}f) = m$ be odd. Suppose that $\langle d \rangle \subseteq \langle e^{-1}f \rangle$ or $\langle e^{-1}f \rangle \subseteq \langle d \rangle$, where $d = f(e^{-1}f)^{(m-1)/2}$. Then $\Gamma = Cay(G, S)$ is normal.

(iii) Suppose $\alpha \in A_1^*$. If $o(e^{-1}f) = m$ is odd, then α fixes at least $\langle d \rangle \langle e^{-1}f \rangle$ pointwise, where $d = f(e^{-1}f)^{(m-1)/2}$.

(iv) If one of e and f has order 2, then $\Gamma = Cay(G, S)$ is normal.

A finite group G is called minimal non-abelian if G is not abelian, but every proper subgroup of G is abelian. Now we have the following result.

Proposition 2.4. [8] Let G be a finite minimal non-abelian group. Then one of the following holds:

(1) G is a minimal non-abelian p-group;

(2) G is a semi-direct product of an elementary abelian p-group P of order p^{α} by a cyclic group $Q = \langle b \rangle$ of order q^{β} , where p, q are distinct primes and the action of b on P is an automorphism of P of order q.

Proposition 2.5. [2, Theorem 1.1] Let G be a finite abelian group and S a generating subset of G not containing the identity 1. Assume S satisfies the condition

 $x, y, u, v \in S$ with $1 \neq xy = uv$, implies $\{x, y\} = \{u, v\}$.

Then the Cayley (di)graph Cay(G, S) is normal.

3. Proof of Theorem 1.1

Note that if $S = S^{-1}$, then $\Gamma = \operatorname{Cay}(G, S) \cong C_n$ (the cycle of length n), and obviously Γ is normal. Therefore we may let $S \neq S^{-1}$.

Now we complete the proof of Theorem 1.1. Let G be a group of order pq, where p and q are primes, and $S = \{e, f\}$ be a generating subset for G with $e \neq f$ and $1 \notin S$.

Assume first that p does not divide q - 1, so G is cyclic, and $G \cong \mathbb{Z}_{pq}$. In view of Proposition 2.5, we assume S does not satisfy the condition (1). Thus there are (not necessarily distinct) elements x, y, u, v in S with $1 \neq xy = uv$ and $\{x, y\} \neq \{u, v\}$. If one of e and f has order 2, then by Proposition 2.3 (iv), $\Gamma = \operatorname{Cay}(G, S)$ is normal. Thus $e^2 \neq 1$ and similarly $f^2 \neq 1$. If, say, $\{x, y\} = \{e, f\}$ then since $\{x, y\} \neq \{u, v\}$ we must have $\{u, v\} = \{e\}$ or $\{f\}$ but this implies that $xy \neq uv$, a contradiction. It follows that x = y = e, say, and u = v = f and $e^2 = f^2 \neq 1$. Since $e \neq f$, one of these elements, say e, must have even order, so p, say, is equal to 2. Now G is isomorphic to $\mathbb{Z}_{2q} = \langle a \rangle$. So one may let $S = \{a^i, a^{q+i}\}$ where (i, 2q) = 1. Since $a \mapsto a^i$, can be extended to an automorphism of G, so by Proposition 2.1, we can assume that $S = \{a, a^{q+1}\}$ and $\Gamma = \operatorname{Cay}(G, S) \cong C_q[2K_1]$. In this case $\sigma : a^i \mapsto a^{q+i}$ $(1 \leq i < 2q, i \neq q)$ such that $\sigma(1) = (1), \sigma(a^q) = (a^q)$ is not in $\operatorname{Aut}(G, S)$ but in A_1 . So by Proposition 2.2 Γ is not normal. Also $\operatorname{Aut}(\Gamma) \cong C_2 \wr C_q$.

Now let G be nonabelian. Thus we may assume that p divides q-1 and G is is isomorphic to $\langle x, y \mid x^p = y^q = 1, x^{-1}yx = y^r \rangle$, where r, p, and q satisfy $r^p \equiv 1 \pmod{q}$, $r \not\equiv 1 \pmod{q}$, and (r, p) = 1. By simply checking, we can see that, the elements of order p are $\{x^i y^j\}$ $(1 \le i \le p-1, 0 \le j \le q-1)$, and the elements of order q are y^i , where $1 \le i \le q-1$, thus we will see easily that e and f cannot be of order q simultaneously. Thus we can suppose that o(e) = p and o(f) = p or q. If o(e) = p and o(f) = q, we have $e = x^{\alpha}y^{\beta}$, $(1 \le \alpha \le p-1, 0 \le \beta \le q-1)$ and $f = y^{\delta}, 1 \le \delta \le q-1$. We claim that there is only one directed cycle of length p through every vertex g of Γ . We can suppose g = 1 because of the transitivity of

(1)

Obviously there is a directed cycle of length p through 1: $1 \mapsto e \mapsto e^2 \mapsto \dots \mapsto e^{p-1} \mapsto 1$. Let $C_1(d_pd_{p-1}\dots d_1)$ be another directed cycle of length p through 1, where $d_i = e$ or f (1 < i < p). Let n be the number of e appearing in the product $d_p\dots d_1$. Obviously $1 \leq n < p$, and $d_p\dots d_1 = 1$. Therefore $x^{\alpha n}y^t = 1$ (for some integer t). It is clear that for any $g \in G$, g can be expressed in the unique form: $x^i y^j$ $(0 \leq i < p, 0 \leq j < q)$. Thus $n \equiv 0 \pmod{p}$, a contradiction to $1 \leq n < p$. Suppose $\sigma \in A_1^*$. Since there is only one directed cycle of length p through f: $f \mapsto e^f \mapsto e^2 f \mapsto \dots \mapsto e^p f = f$, we have that σ fixes $\Gamma_1(e)$ and $\Gamma_1(f)$ pointwise. From the connectivity of Γ we have $\sigma = 1$, so $A_1^* = 1$. By Proposition 2.3 (i) $\Gamma=\operatorname{Cay}(G,S)$ in normal.

Now suppose that o(e) = p, o(f) = p. Then $e = x^i y^j$ $(1 \le i < p, 0 \le j < q)$. Since σ , defined by: $x^i y^j \mapsto x, y \mapsto y$ can be extended to automorphism of G, by Proposition 2.1 one may let e = x. If $f = x^{\alpha} y^{\beta}$ $(1 \le \alpha < p, 0 \le \beta < q)$ so $e^{-1}f = x^{\alpha-1}y^{\beta}$ $(0 \le \alpha - 1 < p, 0 \le \beta < p)$. Suppose that $\alpha - 1 = 0$, therefore $e^{-1}f = y^{\beta}$ and $o(e^{-1}f) = q$. We can also suppose that $\langle d \rangle \nsubseteq \langle e^{-1}f \rangle$ by Proposition 2.3 (ii), where $d = f(e^{-1}f)^{(q-1)/2}$. Thus $\langle d \rangle \langle e^{-1}f \rangle = G$. By Proposition 2.3 (iii) A_1^* fixes $G = \langle d \rangle \langle e^{-1}f \rangle$ and so $\Gamma = \operatorname{Cay}(G, S)$ is normal. Now suppose that $\alpha - 1 > 0$, so $o(e^{-1}f) = p$, the same as before we can suppose that $\langle d \rangle \nsubseteq \langle e^{-1}f \rangle$, where $d = f(e^{-1}f)^{(p-1)/2}$. Thus $G = \langle d \rangle \langle e^{-1}f \rangle$ and A_1^* fixes $G = \langle d \rangle \langle e^{-1}f \rangle$ and so $\Gamma = \operatorname{Cay}(G, S)$ is normal. The result now follows.

4. Proof of Theorem 1.2

Recall that we use A to denote the automorphism group of the Cayley graph Γ , and A_1 to denote the group of all automorphisms of Γ that fix identity 1_G of G. Also a finite group G is called minimal non-abelian if G is not abelian, but every proper subgroup of G is abelian.

We now prove the Theorem 1.2. By Proposition 2.4 we have two cases. First suppose that G is a p-group (p is odd), in this case we assume G has the smallest order such that $\operatorname{Cay}(G, S)$ is not a normal 2-valent connected Cayley digraph. Note that $A=R(G)A_1$ and $R(G) \cap A_1=1_G$. Let N be a nontrivial minimal normal subgroup of A. Since A_1 is a 2-group, A is solvable and hence N is an elementary abelian q-group, with q=2 or p. If N is transitive on $V(\Gamma)$ then N is regular on $V(\Gamma)$. Thus |N| = |G| = |R(G)|. Therefore R(G) = N and R(G) is normal in A which is a contradiction. Thus N is not transitive on $V(\Gamma)$. Let m be the length of an N-orbit on $V(\Gamma)$, then m divides |N|. Note that $N \triangleleft A$ and A acts transitively on $V(\Gamma)$, so m divides |G|. Therefore q=p and N < R(G).

Let $\Sigma = \{T_1, T_2, ..., T_{p^{\alpha}}\}$ be all the orbits of N on $V(\Gamma)$. Consider the quotient digraph Γ_N defined by $V(\Gamma) = \Sigma$ and $(T_i, T_j) \in E(\Gamma_N)$ if and only if there exist $v_i \in T_i, v_j \in T_j$ such that $(v_i, v_j) \in E(\Gamma_N)$. Since the quotient group R(G)/Nacts regularly on Σ , therefore Γ_N must be a connected Cayley digraph of G/N. So $\Gamma_N \cong \operatorname{Cay}(G/N, SN/N)$ $(|S \cap N| \leq 1)$. If $|S \cap N| = 1$, then either e or f has order p. Without loss of generality we may assume that o(e) = p. Now we have two cases:

Γ.

(1) o(f) = p and (2) $o(f) \neq p$.

We know that there is a directed p-path through 1: $1_G \mapsto e \mapsto e^2 \mapsto \dots \mapsto e^p$. Suppose that $1_G \mapsto d_1 \mapsto d_2d_1 \mapsto \dots \mapsto d_pd_{p-1}\dots d_1$ is another p-path through 1 such that $d_pd_{p-1}\dots d_1=1$ and $d_i=f$ or e. Let r, t be the numbers of e and f appearing in $\{d_1, d_2, \dots, d_p\}$ respectively. Since G is a non-cyclic p-group, $G/\Phi(G)$ is an elementary p-group where $\Phi(G)$ is the Frattini subgroup of G, and $G/\Phi(G)=\langle \Phi(G)e\rangle \times \langle \Phi(G)f\rangle$. We have $\Phi(G)d_p\Phi(G)d_{p-1}\dots\Phi(G)d_1=\Phi(G)$, so $(\Phi(G)e)^r(\Phi(G)f)^t=\Phi(G)$, and hence $r=t=0 \pmod{p}$. Note that r+t=p and $0 \leq r, t \leq p$, therefore we have that either r=p and t=0 or r=0 and t=p. Now if o(f)=p then $A_1^*=1_G$ and Γ is normal by Proposition 2.3 (i). If o(f) > p, similarly there is a unique directed p-cycle through $f: f \mapsto ef \mapsto e^2 f \mapsto \dots \mapsto f$ and consequently $A_1^*=1_G$, and Γ is normal.

Now suppose that $|S \cap N| = 0$ and G/N is non-abelian. By the minimality of |G|, Cay(G/N, SN/N) is normal. Therefore $R(G)/N \triangleleft A/N$. Since R(G) is the full preimage of R(G)/N under $A \mapsto A/N$, R(G) is normal in A, which is a contradiction. Now suppose that G/N is abelian. Suppose $\sigma \in A/N$, such that $\sigma(1) = 1$, $\sigma(Ne) = Ne$, and $\sigma(Nf) = Nf$. It is easy to show that σ fixes $\Gamma_1(e)$, and $\Gamma_1(f)$ pointwise. Since Γ is connected, $\sigma=1$. Therefore by Proposition 2.3 (i) Γ_N is normal, and so under $A \mapsto A/N$, Γ is normal. This is a contradiction.

Now let $|G|=p^{\alpha}q^{\beta}$, where P and Q are Sylow p-subgroups and Sylow qsubgroup of G, respectively such that $P \cong \mathbb{Z}_p \times \mathbb{Z}_p \times ... \times \mathbb{Z}_p$, and Q is a cyclic group. We consider the quotient group R(G)/P, and suppose that $\Sigma = \{B_1, B_2, ..., B_n\}$ be all the orbits of P on $V(\Gamma)$. R(G)/P acts on Σ regularly, therefore the quotient graph Γ_P is isomorphic to $\operatorname{Cay}(G/P, SP/P)$ ($|S \cap P| \leq 1$). Since $G/\Phi(G)$ is abelian with the same reason as before one can show Γ is normal, which is a contradiction and the proof of Theorem 1.2 is complete.

References

- Alspach, B., "Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree", J. Combin. Theory, 15 (1973), 12-17.
- [2] Baik, Y.G., Feng, Y.Q., Sim, H.S. and Xu, M.Y., "On the normality of Cayley Graphs of Abelian Groups", Algebra Colloquium, 5(3) (1998), 297-307
- [3] Chen, J.L., Feng, Y.Q., and Wang, D.J., "A Family of non-normal Cayley digraphs", Acta Mathematica Sinica, English series, 17 (2001), 147-152.
- [4] Du, S.F., Wang, R.J., and Xu, M.Y., "On the normality of Cayley digraphs of order twice a prime", Australasian Journal of Combinatorics, 18 (1998), 227-234.
- [5] Feng, Y.Q., and Gao, T.P., "Automorphism groups and isomorphisms of Cayley digraphs of abelian groups", Australasian Journal of Combinatorics, 16 (1997), 183-187.
- [6] Huang, Q.X., and Meng, J.X., "On the isomorphisms and automorphism groups of circulants", Graphs Combin., 12 (1996), 179-181.
- [7] Li, C.H.,"Isomorphisms of connected Cayley digraphs", Graphs Combin., 14 (1998), 37-44.
- [8] Miller, G.A., and Moreno, H.C., "Non-abelian groups in which every subgroup is abelian", *Trans. Amer. Math. Soc.*, 4 (1993), 389-404.
- [9] Wang, C.Q., Wang, D.J., and Xu, M.Y., "On normal Cayley graphs of finite groups", Science in China (A) 28(2) (1998), 131-139.
- [10] Xu, M.Y., "Automorphism groups and isomorphisms of Cayley digraphs", Discrete Math., 182 (1998), 309-319.

72