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Abstract. Building the dual of the primal problem of Conic Optimization (CO) is

a very important step to make the finding optimal solution. In many cases a given

problem does not have the simple structure of CO problem (i.e., minimizing a linear

function over an intersection between affine space and convex cones) but there are

several conic constraints and sometimes also equality constraints. In this paper we

deal with the question how to form the dual problem in such cases. We discuss the

answer by considering several conic constraints with or without equality constraints.

The recipes for building the dual of such cases is formed in standard matrix forms,

such that it can be used easily on the numerical experiment. Special attention is

given to dual development of special classes of CO problems, i.e., conic quadratic

and semidefinite problems. In this paper, we also briefly present some preliminaries

theory on CO as an introduction to the main topic.
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Abstrak. Pembentukan dual dari masalah primal untuk Optimisasi Konik (OK)

adalah suatu langkah yang sangat penting untuk menentukan solusi optimal. Dalam

banyak kasus, suatu permasalahan tidak disajikan dalam struktur sederhana dari

OK (yaitu meminimumkan suatu fungsi linear atas irisan antara ruang affine dan

kerucut konveks) tetapi melibatkan beberapa kendala konik dan atau persamaan

kendala. Dalam paper ini, pembahasan terfokus pada bagaimana membentuk

formulasi masalah dual dalam kasus-kasus demikian. Pembahasan dimulai den-

gan memperhatikan keterlibatan kendala konik dengan atau tanpa kendala per-

samaan. Resep pembentukan dual dalam hal ini disajikan dalam bentuk matriks

standar, sedemikian sehingga dapat digunakan dengan mudah dalam eksperimen

numerik. Perhatian khusus diberikan pada pembentukan dual untuk kelas khusus

dari masalah OK, yaitu masalah conic quadratic dan semidefinite. Dalam paper

ini, beberapa teori dasar dalam OK dibahas sebagai suatu pengantar untuk topik

pembahasan utama.

Kata kunci: optimisasi konik, primal-dual, conic quadratic, semidefinite.

1. Introduction

Conic optimization (CO) is a very useful optimization technique that concerns
the problem of minimizing a linear objective function over the intersection of an
affine set and a convex cone. The general form of a conic optimization problem is
as follows:

min
x∈Rn

{
cT x : Ax− b ∈ K}

. (CP)

The objective function is cT x, with objective vector c ∈ Rn. Furthermore, Ax− b
represents an affine function from Rn to Rm, K denotes a convex cone in Rm and
the constraint matrix A is of size m× n.

The importance of this class of problems is due to two facts, i.e., many prac-
tical nonlinear problems can be modelled as a CO problem, and a wide class of CO
problems can be solved efficiently by so-called interior-point methods.

The interest in CO was highly stimulated when it became clear that the
interior-point methods that were developed in the two last decades for LO (see,
e.g.,Hertog [6], Jansen [7], Karmakar [9], Roos et al. [15], Terlaky [18], Wright [19],
Ye [20]), and which revolutionized the field of LO, could be naturally extended
to obtain polynomial-time methods for CO. The most elegant theory developed
by Nesterov and Nemirovskii [11] provides an interior-point method with polyno-
mial complexity if the underlying cone has a so-called self-concordant barrier that
is computationally tractable. This opened the way to a wide spectrum of new
applications which cannot be captured by LO, e.g., in image processing, finance,
economics, control theory, combinatorial optimization, etc. For a nice survey both
of the theory of CO and many new applications, we refer to the book of Ben-Tal and
Nemirovskii [2]. In this paper we not touch the algorithmic aspects of interior-point
methods for CO. We refer the interested reader to the existing literature, where one
can find a wide variety of such methods. See, e.g., the above references and also
Boyd [4], Jarre [8], deKlerk [5], Peng [12], Renegar [13]. Numerical evidence for the
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efficiency of these methods has been provided by many authors (e.g. Andersen [1],
Mehrotra [10], Strum [16, 17]).

The easiest and most well known case occurs when the cone K is the non-
negative orthant of Rm, i.e., when K = Rm

+ . Then the above problem gets the
form

min
x∈Rn

{
cT x : Ax− b ∈ Rm

+

}
. (LO)

This is nothing but one of the standard forms of the well-known Linear Optimization
(LO) problem. Thus it becomes clear that LO is a special case of CO.

The organization of this paper is presented as follows. In Section 2 we recall
some basic concepts such as affine sets, convex sets and convex cones. The main
theoretical results for conic optimization are presented in Section 2.3. This section
includes the conic duality theorem and recipes for building the dual problem. We
discuss as special cases the conic quadratic problem (CQP) in Section 3.3 and the
semidefinite problem (SDP) in Section 3.4. The conic duality for each discussed
cases can be read in Section 4.

2. Preliminaries

This section contains some basic concepts that are used in conic optimization.
We first recall some well-known facts on affine sets, convex sets and convex cones.
Sources for this section are Ben-Tal and Nemirovskii [2], Boyd [3] and Rockafellar
[14].

2.1. Affine and Convex Sets. If x and y are different points in Rm, the set of
points

`(x, y) := {(1− λ)x + λy = x + λ(y − x) : λ ∈ R}
is the line through x and y. A subset M of Rm is called an affine set if `(x, y) ⊆M
for all x, y ∈ M. Geometrically, an affine set is simply a translation of a linear
subspace L of Rm. As a consequence, any affine set can be represented either as

M = b + L,

where b is an arbitrary point of M, or as,

M = {x : Bx = d},
where the kernel of the matrix B is L and Bb = d.

A set C ⊆ Rm is a convex set if it contains the line segment

l[x, y] := {(1− λ)x + λy = x + λ(y − x) : λ ∈ [0, 1]},
joining x and y, for all x, y ∈ C.

All affine sets are convex since l[x, y] ⊆ l(x, y) for any two points x, y ∈ Rm.
It is well known, and may be easily verified, that the intersection of an arbitrary
collection of convex sets is convex.
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2.2. Convex Cones. A subset K of Rm is called a cone if it is closed under
multiplication with nonnegative scalars:

a ∈ K, λ ≥ 0 ⇒ λa ∈ K. (1)

Thus a cone is the union of half lines emanating from the origin.
A cone is convex if and only if

a, a′ ∈ K ⇒ a + a′ ∈ K, (2)

which is easy to verify. So, a subsetK of Rm is a convex cone if and only if it is closed
under addition and nonnegative scalar multiplication. As an easy consequence we
mention that the intersection of an arbitrary collection of convex cones is a convex
cone.

In this paper we are interested in convex cones that are pointed, closed and
that have nonempty interior. A convex cone K is called pointed if it does not
contain a line. This property can be stated equivalently as

a ∈ K, −a ∈ K ⇒ a = 0. (3)

A convex cone K is called closed if it is closed under taking limits:

ai ∈ K (i = 1, 2, . . .), a = lim
i→∞

ai ⇒ a ∈ K. (4)

A cone has a nonempty interior if there exist a vector such that a ball with positive
radius centered at the vector is contained in the cone. The set of all such vectors
is called the interior of the cone. Denoting the interior of a cone K as intK, we
require that

intK 6= ∅. (5)

If a cone K is pointed, closed and solid (i.e., has nonempty interior), we call K a
proper cone.

In CO we only deal with cones K that enjoy all of the above properties. So
we always assume that K is a proper cone. The three relevant examples of such
cones are

(1) The linear cone

Rm
+ = {x = (x1; . . . ; xm) : xi ≥ 0, i = 1, . . . , m} .

(2) The Lorentz cone

Lm = {x ∈ Rm : xm ≥
√

x2
1 + . . . + x2

m−1}.
This cone is also called the second-order cone, or the ice-cream cone, or the
quadratic cone.

(3) The positive semidefinite cone Sm
+ . This cone ”lives” in the space Sm of

m×m symmetric matrices and consists of all m×m matrices A which are
positive semidefinite, i.e.,

Sm
+ =

{
A ∈ Sm : xT Ax ≥ 0, ∀x ∈ Rp

}
.
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We assume that the cone K in (CP ) is a direct product of the form

K = K1 × . . .×Kp,

where each component Ki is either a linear, a Lorentz or a semidefinite cone. Any
such direct product is itself a proper cone.

In the next section, we discuss the main theoretical result for conic optimiza-
tion, i.e., the conic duality theorem.

2.3. Conic Duality. Before we derive the duality theory for CO, we need to define
the dual cone K∗ of a convex cone K:

K∗ =
{
y ∈ Rm : yT a ≥ 0, ∀a ∈ K}

. (6)

The following theorem (see, e.g., [2]) implies among other things that the dual cone
is always a closed convex cone.

Theorem 2.1. Let K ⊆ Rm be a nonempty cone. Then

(i) the set K∗ is a closed convex cone;
(ii) if K is solid then K∗ is pointed;

(iii) if K is a closed convex pointed cone, then K∗ is solid;
(iv) if K is a closed convex cone, then so is K∗, and (K∗)∗ = K.

An immediate corollary of the theorem is as follows.

Corollary 2.2. If K ⊆ Rm is a proper cone then so is K∗, and vice versa.

A cone K is called self-dual if K∗ = K. By Theorem 2.1, self-dual cones
are closed and convex. The dual of a direct product of convex cones is the direct
product of their duals, i.e.,

K = K1 × . . .×Km ⇒ K∗ = K1
∗ × . . .×Km

∗ . (7)

One may easily verify that the three cones introduced in Section 2.2 are self-dual.
As a consequence, any direct product of linear, Lorentz and semidefinite cones is
self-dual. Now we are ready to deal with the problem dual to a conic problem
(CP ). We start with the observation that whenever x is a feasible solution of (CP )
and y ∈ K∗ then x satisfies the scalar inequality

yT (Ax− b) ≥ 0.

It follows that whenever y satisfies the relation

AT y = c,

then for all x feasible in (CP ) one has

cT x = (AT y)T x = yT Ax ≥ yT b = bT y.

This implies that bT y is a lower bound on the optimal value of (CP ). The best
bound one can get in this way is the optimal value of the problem

max
{
bT y : AT y = c, y ∈ K∗

}
. (CD)

This problem is called the dual problem of (CP ).
Thus we arrive at the following conic weak duality theorem.
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Theorem 2.3. Let x be a feasible solution of (CP ) and y a feasible solution of
(CD). Then bT y ≤ cT x.

After the weak duality theorem, the crucial question is if we have equality of
the optimal values whenever (CP ) and (CD) have optimal values. The theorem
that we present below clarifies the situation.

Before we state the theorem, for convenience let us denote the optimal objec-
tive value of problems (CP ) and (CD) by p∗ and d∗. We will say that the primal
(dual) problem is unbounded if p∗ = −∞ (d∗ = +∞) and that it is infeasible if there
is no feasible solution, in that case we define p∗ = +∞ (d∗ = −∞). We emphasize
the fact that although our cone K is closed, it may happen that the infimum in
(CP ) or the supremum in (CD) is not attained, even if it is finite, because there
may exist a sequence of feasible points whose objectives values tend to p∗ (d∗) but
whose limit is not feasible.

We say that the primal (dual) problem is solvable if the optimal objective
value p∗ (d∗) is attained by a primal (dual) feasible solution. We need one more
definition: if there exists an x such that Ax − b ∈ intK then we say that (CP ) is
strictly feasible. Similarly, (CD) is strictly feasible if there exist a feasible y with
y ∈ intK∗.

Now, we are ready to state the strong conic duality theorem (see Ben-Tal and
Nemirovskii [2]).

Theorem 2.4. Let the primal problem (CP ) and its dual problem (CD) be as given
above. Then one has the following.

(1) The duality is symmetric : the dual problem is conic, and the problem dual
to the dual problem is (equivalent to) the primal problem.

(2) a. If (CP ) is below bounded and strictly feasible, then (CD) is solvable
and the respective optimal values are equal.

b. If (CD) is above bounded and strictly feasible, then (CP ) is solvable,
and the respective optimal values are equal.

(3) Suppose that at least one of the two problems (CP ) and (CD) is bounded
and strictly feasible. Then a primal-dual feasible pair (x, y) is comprised of
optimal solutions to the respective problems

a. if and only if bT y = cT x (zero duality gap);
b. if and only if yT [Ax− b] = 0 (complementary slackness).

An important consequence of the conic duality theorem is the following.

Corollary 2.5. Assume that both (CP ) and (CD) are strictly feasible. Then both
problems are solvable, the optimal values are equal to each other and each one of
the conditions 3.a., 3.b. is necessary and sufficient for optimality of a primal-dual
feasible pair.

Thus, now we ready to discuss the main topic of the paper, i.e., the recipes
for building the dual problem for CO.
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3. Recipes for Building The Dual Problem

In many cases a given problem does not have the simple structure of (CP ),
but there are several conic constraints and sometimes also equality constraints, like
in the problem

min
{
cT x : Px = p, Aix− bi ∈ Ki, i = 1, . . . , m

}
, (8)

where Ki are different cones. In this section we deal with the question how to form
the dual problem in such cases. We discuss the answer by considering two cases as
follows.

3.1. Building The Dual of A Conic Problem without Equality Constraints.
In this subsection, we discuss the case where there are no equality constraints in
(8). Then (8) gets the form

min{cT x : Aix− bi ∈ Ki, i = 1, . . . , m}. (9)

In that case the constraints can be taken together in one conic constraint, namely

(A1x− b1; . . . ; Amx− bm) ∈ K = K1 × . . .×Km. (10)

With A = (A1; . . . ;Am) and b = (b1; . . . ; bm), we get the form of (CP). By writing
the dual variable as y = (y1; . . . ; ym) with yi ∈ Ki

∗, we have AT y = AT
1 y1 + . . . +

AT
mym and hence the dual problem is given by

max

{
m∑

i=1

(bi)T yi :
m∑

i=1

AT
i yi = c, yi ∈ Ki

∗, i = 1, . . . , m

}
. (11)

3.2. Building The Dual of A Conic Problem with Equality Constraints.
The second case is when (8) has equality constraints. Because of the above obser-
vation we may then assume that there is only one conic constraint, as follows.

min{cT x : Px = p, Ax− b ∈ K}. (12)

Now the question is what is the dual to (12)? An easy way to find the dual is to
write the equality constraint Px = p as


 Px− p

0


 ∈ Lq+1,

where q is the dimension of p. So we may rewrite (12) as

min





cT x :




P

0T

A


 x−




p

0

b


 ∈


 Lq+1

K








. (13)
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Note that the cone associated with (13) is Lq+1 × K which has the dual cone
Lq+1 ×K∗. Thus, the following conic problem is the dual to (13):

max








p

0

b




T 


v

τ

y


 :




P

0T

A




T 


v

τ

y


 = c,


 v

τ


 ∈ Lq+1, y ∈ K∗





. (14)

Now, consider that (v; τ) ∈ Lq+1 is equivalent to the constraint ‖v‖ ≤ τ . Since τ
does appear neither in the other constraints nor in the objective function, we can
neglect this constraint. Therefore, problem (14) can be rewritten as follows:

max
{
pT v + bT y : PT v + AT y = c, y ∈ K∗

}
. (15)

Here v and y are the dual variables corresponding to the constraints of the primal
problem (12); the dual vector comprises a vector variable v of the same dimension
as the right-hand side p of the system of primal equalities and a vector variable y
of the same dimension as the primal vector inequality in (12).

We summarize the recipes for building the dual in the following theorem.

Theorem 3.1. The dual problem of (8) is given by

max

{
pT v +

m∑

i=1

bT
i yi : PT v +

m∑

i=1

AT
i yi = c, yi ∈ Ki

∗, i = 1, . . . , m

}
. (16)

3.3. Building The Dual of A Conic Quadratic Problem. A conic problem
(CP ) for which the cone K is a direct product of several second-order cones is called
a conic quadratic problem (CQP). Such a problem has the form

min
x∈Rn

{cT x : Aix− bi ∈ Lmi , i = 1, . . . , k}. (CQP)

Omitting the subscript i, the constraints in CQP all have the form Ax−b ∈ Lm, for
some m ≥ 2. In this section we discuss that any such constraint can be written in a
different way. We write the matrix A and the vector b in the constraint Ax−b ∈ Lm

as follows:

A =


 A

aT
m


 , b =


 b

bm


 , (17)

where aT
m is the last row of A and bm is the last entry in b. Then we have

Ax− b =


 Ax− b

aT
mx− bm


 .

Hence the conic constraint Ax− b ∈ Lm is equivalent to the constraint∥∥Ax− b
∥∥ ≤ aT

mx− bm.

We call any constraint of this form a conic quadratic constraint. Thus the conic
quadratic problem (CQP) can be represented as follows.

min
{
cT x :

∥∥Aix− bi

∥∥ ≤ (ai)T
mx− (bi)m, i = 1, . . . , m

}
. (QP)
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Of course, the norm appearing above is the standard Euclidean norm, i.e., ‖u‖ =
(uT u)

1
2 .

Denoting y = (y1; y2; . . . ; ym) , with yi ∈ Lmi , Theorem 3.1 implies that the
dual problem to (CQP) is

max

{
m∑

i=1

bT
i yi :

m∑

i=1

AT
i yi = c, yi ∈ Lmi , i = 1, . . . , m

}
. (18)

Here we used that the product of several second-order cones is self-dual. Now we
derive that the dual problem of (QP) can be expressed in terms of the data of (QP),
[Ai, bi] and [(ai)T

m, (bi)m] for i = 1, . . . , m. This is achieved by writing yi = (µi; τi),
with scalar component τi. Then we can rewrite (18) as follows:

max
µi,τi

{
m∑

i=1

[µT
i bi + τi(bi)m] :

m∑

i=1

[A
T

i µi + τi(aT
i )m] = c, ‖µi‖ ≤ τi, i = 1, . . . ,m

}
.

(QD)

3.4. Building The Dual of A Semidefinite Problem. A semidefinite problem
(SDP) is a conic problem for which the cone K is a semidefinite cone. Such a
problem has the form

min
x∈Rn

{cT x : Ax− b ∈ Sm
+}. (SDP)

We start by considering the semidefinite constraint Ax − b ∈ Sm
+ for m ≥ 2. We

show that such a constraint is equivalent to a so-called linear matrix inequality
(LMI).

To show this, recall that the cone Sm
+ consists of all positive m×m semidefinite

matrices. It is assumed so far that Ax and b are vectors. This makes it necessary
to explain what is the meaning of Ax− b ∈ Sm

+ . This can be clarified as follows.
By associating to every m×m symmetric matrix Z the concatenation of its

columns, in their natural order, we get a vector z ∈ Rm2
. The mapping Z 7→ z is

linear and one-to-one. This mapping is denoted as vec(·) and its inverse mapping
as mat(·). So we may write

z = vec(Z), Z = mat(z). (19)

Consider that when U is another m×m symmetric matrix and u = vec(U) then

zT u =
m2∑

k=1

zkuk =
m∑

i,j=1

ZijUij =
m∑

i=1




m∑

j=1

ZijUij


 =

m∑

i=1

(ZU)ii = Tr(ZU). (20)

This shows that Tr(ZU) is the natural inner product of two symmetric matrices Z
and U . It is (therefore) also represented as 〈Z, U〉. The corresponding norm is the
well-known Frobenius norm, which satisfies

‖Z‖F =
√
〈Z,Z〉 =

√
zT z = ‖z‖ .

Obviously, the trace function is commutative, i.e., Tr(ZU) = Tr(UZ).
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Thus, using the above notational conventions, any constraint Ax − b ∈ Sm
+

should be understood as follows.

mat(Ax− b) ∈ Sm
+ .

Denoting the i-th column of A as ai, we have

mat(Ax− b) ∈ Sm
+ ⇔

n∑

i=1

ximat(ai)−mat(b) ∈ Sm
+

⇔
n∑

i=1

xiAi −B ∈ Sm
+ , (21)

where Ai = mat(ai) and B = mat(b). We call any constraint of the form (21) a
linear matrix inequality (LMI).

Consequently, a semidefinite problem can be represented as follows.

min
x∈Rn

{cT x :
n∑

i=1

xiAi −B ∈ Sm
+}. (SP)

By Theorem 3.1, the dual problem of (SDP ) is given by

max{bT y : AT y = c, y ∈ Sm
+}. (22)

To write the dual problem of (SP ) in terms of matrices, we use (20). To this end
we observe that

AT y = c ⇔ aT
i y = ci, i = 1, . . . , n.

As before, let Ai = mat(ai) and Y = mat(y). Then by (20) we may write

AT y = c ⇔ Tr(AiY ) = ci, i = 1, . . . , n. (23)

Similarly, bT y = Tr(BY ). So the dual problem of (SP ) becomes

max
Y

{
Tr(BY ) : Tr(AiY ) = ci, i = 1, . . . , n, Y ∈ Sm

+

}
. (DP)

Thus, we can summarize the results by representing explicit forms of the
primal and the dual for each problems, respectively in Table 1.

4. Conic Duality in The Discussed Cases

The idea of this section is to make an investigation for checking the necessary
and sufficient conditions of Conic Duality Theorem to each cases of conic problem
as we discussed in the previous section. The results are presented as follows.

4.1. Conic duality in case of a conic problem with or without equality
constraints. Consider the problem (13), the weak conic duality theorem is hold
since once we start with the observation that whenever x is a feasible solution of
(13) and




v
τ
y


 ∈


 Lq+1

K∗


 (24)
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Table 1. Summary of the recipes for building the dual of conic
optimization problem.

Primal Problem Dual Problem
Conic problem with equality constraint

min cT x
s.t.
(a) Px = p,
(b) Aix− bi ∈ Ki, i = 1, . . . , m.

max pT v +
∑m

i=1 bT
i yi

s.t.
(a) PT v +

∑m
i=1 AT

i yi = c
(b) yi ∈ Ki

∗, i = 1, . . . , m.

Conic problem with a direct product of second order cones

min cT x
s.t. ∥∥Aix− bi

∥∥ ≤ (ai)T
mx− (bi)m,

i = 1, . . . , m.

max
∑m

i=1[µ
T
i bi + τi(bi)m]

s.t.
(a)

∑m
i=1[A

T

i µi + τi(aT
i )m] = c,

(b) ‖µi‖ ≤ τi, i = 1, . . . , m.

Conic problem with semidefinite cone

min cT x
s.t. ∑n

i=1 xiAi −B ∈ Sm
+ .

with Ai = mat(ai), B = mat(b)

max Tr(BY )
s.t.
(a) Tr(AiY ) = ci, i = 1, . . . , n,
(b) Y ∈ Sm

+

then x satisfies the scalar inequality




v

τ

y




T 





P

0T

A


 x−




p

0

b





 ≥ 0. (25)

It follows that whenever (24) satisfies the relation




P

0T

A




T 


v

τ

y


 = c (26)
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then for all x feasible in (13) one has

cT x =







P

0T

A




T 


v

τ

y







T

x =




v

τ

y




T 


P

0T

A


 x

≥




v

τ

y




T 


p

0

b


 =




p

0

b




T 


v

τ

y


 = pT v + bT y. (27)

This implies that pT v + bT y is a lower bound on the optimal value of (13). The
best bound one can get in this way is the optimal value of the problem (14).

Furthermore, as stated in [2], there is a strong assumption that when speaking
about (CP ), it always assume that the matrix A is of full column rank (i.e., its
column are linearly indepent). This means that to the problem (13) and (14) the
following conditions are hold.

(1) The rows of the matrix P in (13) are linearly independent.
(2) There is no x such that Px = 0 and Aix = 0 for i = 1, . . . , m.
(3) A problem of form (13) is called strictly feasible if there exist a feasible

solution x such that Aix− bi ∈ Ki, i = 1, . . . , m.
(4) The weakly duality is hold (as we discussed), i.e., the optimal value of (14)

is less than or equal to the optimal value of (13).
(5) The strong duality condition is hold if one of the problems (13) and (14)

is strictly feasible and bounded, then the other problem is solvable, and
the optimal value in the problems are equal to each other. If both of the
problems are feasible, then both are solvable with equal optimal value.

Therefore, we can state the optimality conditions as follows. Let x be a feasible
solution to (13) and and (v, {yi}m

i=1) be the feasible solution to (14). The duality
gap at the pair (x, (v, {yi}m

i=1))

∆(x, (v, {yi}m
i=1)) = cT x− (pT v +

m∑

i=1

bT
i yi) (28)

is nonnegative and equal to
m∑

i=1

yT
i (Aix− bi). (29)

The duality gap is zero if and only if the complementary slackness holds:

yT
i (Aix− bi) = 0, i = 1, . . . ,m. (30)

This means that the duality gap is zero if and only if x is an optimal solution to
(13) and (v, {yi}m

i=1) is an optimal solution to (14). Since (13) is a special form
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of (8) and (14) can be rewritten as (16) thus the Theorem 3.1 satisfies the conic
duality.

4.2. Conic Duality in Case of Conic Quadratic Optimization. From our
recipes on building the dual problem, now we treat the problem (QP ) and (QD)
as the standard form of conic quadratic problem and its dual. Now, we interpret
for these two problems the strong assumption for conic problem as stated in [2] as
follows.

(1) There is no nonzero x that is orthogonal to all rows of all matrices Ai and
to all vectors ai, i = 1, . . . , k.

(2) Strict feasibility of (QP ) means that there exists x such that
∥∥Aix− bi

∥∥ ≤ (ai)T
mx− (bi)m, i = 1, . . . , m. (31)

(3) Strict feasibility of (QP ) means that there exists a feasible solution yi =
(µi; τi) to the problem such that

‖µi‖2 < τi, ∀i = 1, . . . , k. (32)

(4) The strong duality condition is hold if one of the problems (QP ) and (QP )
is strictly feasible and bounded, then the other problem is solvable, and
the optimal value in the problems are equal to each other. If both of the
problems are feasible, then both are solvable with equal optimal value.

We can state the optimality conditions as follows. Let x be a feasible solution to
(QP ) and y = (y1; y2; . . . ; ym) with yi = (µi; τi) ∈ Lmi , i = 1, . . . , m be the feasible
solution to (QD). The duality gap at the pair (x, y)

∆(x, y) = cT x−
m∑

i=1

[µT
i bi + τi(bi)m] (33)

is nonnegative and equal to

yT (Ax− b) =
m∑

i=1

yi(Aix− bi) =
m∑

i=1


 µi

τi




T 
 Aix− bi

(ai)T
mx− (bi)m


 . (34)

The duality gap is zero if and only if the complementary slackness holds:

yT
i (Aix− bi) =


 µi

τi




T 
 Aix− bi

(ai)T
mx− (bi)m


 0, ∀i = 1, . . . , m. (35)

This means that the duality gap is zero if and only if x is an optimal solution to
(QP ) and yi = (µi, τi) is an optimal solution to (QD).

4.3. Conic Duality in Case of Semidefinite Optimization. In this subsection,
we discuss what we can get from the conic duality theorem in case of semidefinite
optimization. Note that the important assumption on a conic problem in the form
of (CP ) is said that the matrix A is of full column rank (i.e., its column are linearly
independent). This means that in case of semidefinite problem,
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(1) There is no nontrivial linear combination of the matrices A1, . . . , An is 0.
(2) Strict feasibility of the dual problem (SP ) means that there exists x such

that
n∑

i=1

xiAi −B ∈ Sm
+ . (36)

(3) Strict feasibility of (DP ) means that there exists a positive semidefinite Y
satisfying

Tr(AiY ) = ci, i = 1, . . . , n, Y ∈ Sm
+ . (37)

Thus, according to the conic duality theorem, if both primal and dual are strictly
feasible, both are solvable, the optimal values are equal to each other and the
complementary slackness condition

Tr

(
Y

(
n∑

i=1

xiAi −B

))
= 0 ⇔

〈
Y,

n∑

i=1

xiAi −B

〉
= 0 (38)

is necessary and sufficient for a pair of primal feasible solution x and a dual feasible
solution Y to be optimal for the corresponding problems.

5. Concluding Remarks

It is now well-known that CO is a powerful tool for the mathematical mod-
elling of inherently nonlinear problems. Indeed, the subject thanks its existence to
the development of efficient solution methods for CO problems in the last decade.
Building the dual of the primal problem of CO is a very important step to make
the finding optimal solution. As a suggestion of the future problem to this topic,
finding some suitable examples will be interesting to be explored.
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