STRONGLY CLEAN ELEMENTS IN A CERTAIN BLOCK MATRIX RING

Abolfazl Nikkhah and Bijan Davvaz

Department of Mathematics, Yazd University, Yazd, Iran nikkhah@stu.yazd.ac.ir, davvaz@yazd.ac.ir

Abstract. In this paper, we investigate the concepts of strongly clean, strongly π -regular and strongly J_n -clean related to the ring $A = \begin{pmatrix} R & _RMS \\ 0 & S \end{pmatrix}$. Moreover, we give several equivalent conditions such that an element $\alpha \in End(A)$ is strongly clean.

Key words and Phrases: Strongly clean, strongly $\pi\text{-}\mathrm{regular},$ strongly $J_n\text{-}\mathrm{clean},$ endomorphism.

Abstrak. Dalam makalah ini, konsep dari strongly clean, strongly π -regular dan strongly J_n -clean yang berhubungan dengan ring $A = \begin{pmatrix} R & _RM_S \\ 0 & S \end{pmatrix}$ diselidiki. Selanjutnya, beberapa kondisi ekivalen diberikan sedemikian sehingga sebuat element $\alpha \in End(A)$ adalah strongly clean

Kata kunci: Strongly clean, strongly π -regular, strongly J_n -clean, endomorphism.

1. INTRODUCTION

An element in a ring R is strongly clean provided that it is the sum of an idempotent and a unit that commute with each other. This notion was firstly introduced by Nicholson in [?]. Let R, S be two rings, and let M be an R - S-bimodule. This means that M is a left R-module and a right S-module such that (rm)s = r(ms) for all $r \in R$, $m \in M$, and $s \in S$. Given such a bimodule M, we can form

$$A = \begin{pmatrix} R & {}_{R}M_{S} \\ 0 & S \end{pmatrix} = \left\{ \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} : r \in R, m \in M, s \in S \right\},$$

²⁰⁰⁰ Mathematics Subject Classification: 15A13, 16L99.

Received: 01-06-2016-, revised: 12-09-2016, accepted: 12-09-2016.

and define a multiplication on A by using formal matrix multiplication:

$$\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \begin{pmatrix} r' & m' \\ 0 & s' \end{pmatrix} = \begin{pmatrix} rr' & rm' + ms' \\ 0 & ss' \end{pmatrix}.$$

In [?], a characterization of strongly J_n -clean rings by virtue of strongly π -regularity is given. The main purpose of this note is to study about strongly clean, strongly π -regular and strongly J_n -clean of the ring A. We give several equivalent conditions under which such element $\alpha \in End(A)$ is strongly clean.

2. Strongly clean, strongly π -regular and strongly J_n -clean

Let us define the following subsets of a ring R.

$$\mathcal{U}(R) = \{ r \in R \mid r \text{ is a unit of } R \},$$

$$\mathcal{ID}(R) = \{ r \in R \mid r \text{ is an idempotent of } R \}.$$

We begin with

Proposition 2.1. Let $A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$, where R and S are commutative rings and $_{R}M_{S}$ is a bimodule. Then, A is a strongly clean ring if and only if R and S are strongly clean rings.

Proof. Suppose that $r \in R$, $s \in S$ and $\begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix} \in A$. Then, $\begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix} = \begin{pmatrix} r_1 & m_1 \\ 0 & s_1 \end{pmatrix} + \begin{pmatrix} r_2 & m_2 \\ 0 & s_2 \end{pmatrix}$ such that $r_1 \in \mathcal{U}(R)$, $s_1 \in \mathcal{U}(S)$, $r_2 \in \mathcal{ID}(R)$, $s_2 \in \mathcal{ID}(S)$, $m_1, m_2 \in M$ and $r_2m_2 + m_2s_2 = m_2$. So, $\begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix} = \begin{pmatrix} r_1 + r_2 & m_1 + m_2 \\ 0 & s_1 + s_2 \end{pmatrix}$. Hence, $r = r_1 + r_2$ and $s = s_1 + s_2$.

For the converse, suppose that R and S are strongly clean rings and $\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \in A$. Then, $\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} r_1 + r_2 & m \\ 0 & s_1 + s_2 \end{pmatrix}$ such that $r_1 \in \mathcal{U}(R)$, $s_1 \in \mathcal{U}(S)$, $r_2 \in \mathcal{ID}(R)$ and $s_2 \in \mathcal{ID}(S)$. So, $\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} = \begin{pmatrix} r_1 & m_1 \\ 0 & s_1 \end{pmatrix} + \begin{pmatrix} r_2 & m_2 \\ 0 & s_2 \end{pmatrix}$, where $m_1 + m_2 = m$ and $r_2m_2 + m_2s_2 = m_2$. Hence, $\begin{pmatrix} r_1 & m_1 \\ 0 & s_1 \end{pmatrix} \in \mathcal{U}(A)$ and $\begin{pmatrix} r_2 & m_2 \\ 0 & s_2 \end{pmatrix} \in \mathcal{ID}(A)$.

Definition 2.2. An element in a ring R is called strongly π -regular if for every $a \in R$, the chain $aR \supseteq a^2R \supseteq \ldots$ terminates (or equivalently, the chain $Ra \supseteq Ra^2 \supseteq \ldots$ terminates, see [?, ?].

As defined by artinian ring, if $A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ is artinian, then the chain

$$A\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \supseteq A\begin{pmatrix} r & m \\ 0 & s \end{pmatrix}^2 \supseteq \dots$$

terminates. So, A is strongly π -regular.

REMARK 1. [?] Let $A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$, where R and S are rings and $_RM_S$ is a bimodule. Then, A is artinian if and only if R and S are artinian.

Proposition 2.3. Let $A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$, where R and S are artinian rings and M as a R-S-module is artinian. Then, A is strongly π -regular.

Proof. The verification is straightforward.

Definition 2.4. We say that
$$x \in R$$
 is strongly J_n -clean provided that there exists
an idempotent $e \in R$ such that $x - e \in U(R)$, $ex = xe$ and $(ex)^n \in J(R)$, where
 $J(R)$ is the Jacobson radical of R .

Proposition 2.5. Let $A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$, where R and S are commutative local rings and ${}_{R}M_{S}$ is a bimodule. Then, $\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \in A$ is strongly J_{n} -clean if there exists an idempotent $\begin{pmatrix} r_{1} & m_{1} \\ 0 & s_{1} \end{pmatrix} \in A$ such that $r_{1}m + m_{1}s = rm_{1} + ms_{1}$ and $(r_{1}r)^{n} = (s_{1}s)^{n} = 0$.

Proof. By
$$\begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \begin{pmatrix} r_1 & m_1 \\ 0 & s_1 \end{pmatrix} = \begin{pmatrix} r_1 & m_1 \\ 0 & s_1 \end{pmatrix} \begin{pmatrix} r & m \\ 0 & s \end{pmatrix}$$
 and $J(A) = \begin{pmatrix} J(R) & M \\ 0 & J(S) \end{pmatrix} = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$, the proof is clear.

3. Endomorphisms and strongly clean

In this section, we study the endomorphisms of the ring A and also necessary and sufficient conditions under which an endomorphism of the ring A is strongly clean.

Lemma 3.1. Let $A = \begin{pmatrix} R & _RM_S \\ 0 & S \end{pmatrix}$, $\alpha \in End(A)$ and let $\pi^2 = \pi \in End(A)$. Then,

- (1) $\pi(A)$ is α -invariant if and only if $\pi \alpha = \pi \alpha \pi$.
- (2) Both $\pi(A)$ and $(1 \pi)(A)$ are α -invariant if and only if $\pi \alpha = \alpha \pi$.

Proof. The proof is a routine verification.

A. NIKKHAH AND B. DAVVAZ

Proposition 3.2. Let $A = \begin{pmatrix} R & _RM_S \\ 0 & S \end{pmatrix}$, $\alpha \in End(A)$ and let $A = \underbrace{\begin{pmatrix} R & _RP_S \\ 0 & S \end{pmatrix}}_{A'} \oplus \underbrace{\begin{pmatrix} R & _RQ_S \\ 0 & S \end{pmatrix}}_{A''},$

where A' and A'' are both α -invariant. The following are equivalent.

- (1) $\alpha \mid_{A'}$ is an isomorphism.
- (2) $ker(\alpha) \subseteq A''$ and $A' \subseteq \alpha(A)$.

Proof. (1) \Rightarrow (2). If $F \in ker(\alpha)$ write F = G + H. Then, $0 = \alpha(F) = \alpha(G + H) = \alpha(G) + \alpha(H) \in A' \oplus A''$, so $0 = \alpha(G) = \alpha \mid_{A'} (G)$. Thus, we have G = 0 by (1), so $F = H \in A''$. Hence, $ker(\alpha) \subseteq A''$. Finally, $A' = \alpha \mid_{A'} (A') = \alpha(A') \subseteq \alpha(A)$.

 $\begin{array}{l} (2) \Rightarrow (1). \ \alpha \mid_{A'} \text{ is one-to-one because } ker(\alpha \mid_{A'}) = ker(\alpha) \cap A' \subseteq A'' \cap A' = 0. \\ \text{Let } \pi^2 = \pi \in End(A) \text{ satisfy } ker(\pi) = A'' \text{ and } \pi(A) = A'. \text{ Then, } \alpha \pi = \pi \alpha \text{ by } \ref{eq:alpha}, \\ \text{so } A' = \pi(A') \subseteq \pi \alpha(A) = \alpha \pi(A) = \alpha(A') \text{ using } (2). \text{ Hence, } \alpha \mid_{A'} \text{ is onto.} \end{array}$

REMARK 2. In Proposition ??, it is important the existence of a ring R with the property $R \cong R \oplus R$. Here we mention a well known fact. If V is an infinite dimensional vector space over a field F, then $R = End(V_F)$ is a ring with the property that $R \cong R \oplus R$.

Theorem 3.3. Let $A = \begin{pmatrix} R & {}_{R}M_{S} \\ 0 & S \end{pmatrix}$ and E = End(A). The following are equivalent for $\alpha \in E$.

- (1) α is strongly clean in E.
- (2) There exists $\pi^2 = \pi \in E$ such that $\alpha \pi = \pi \alpha$, $\alpha \pi$ is a unit in $\pi E \pi$ and $(1 \alpha)(1 \pi)$ is a unit in $(1 \pi)E(1 \pi)$.
- (3) $A = \underbrace{\begin{pmatrix} R & RPS \\ 0 & S \end{pmatrix}}_{M'} \oplus \underbrace{\begin{pmatrix} R & RQS \\ 0 & S \end{pmatrix}}_{M''}, \text{ where } A' \text{ and } A'' \text{ are } \alpha\text{-invariant, and}$

 $\alpha \mid_{A'}$ and $(1 - \alpha) \mid_{A''}$ are isomorphisms.

- (4) $A = A' \oplus A''$, where A' and A'' are α -invariant, $ker(\alpha) \subseteq A'' \subseteq (1-\alpha)(A)$ and $ker(1-\alpha) \subseteq A' \subseteq \alpha(A)$.
- (5) $A = A_1 \oplus A_2 \oplus ... \oplus A_n$ for some $n \ge 1$ where A_i is α -invariant and $\alpha \mid_{A_i}$ is strongly clean in $End(A_i)$ for each *i*.

Proof. (1) \Rightarrow (2). Let $\alpha = (1 - \pi) + \sigma$ where $\pi\sigma = \sigma\pi$, $\pi^2 = \pi$, and $\sigma \in \mathcal{U}(E)$. Note that and α , π , and σ all commute. Now $\alpha - \sigma = 1 - \pi$ so $\alpha\pi = \sigma\pi$. Since $\sigma^{-1}\alpha \in \pi E\pi$ this gives $(\alpha\pi)(\sigma^{-1}\pi) = (\sigma\pi)(\sigma^{-1}\pi) = \pi$. Similarly, $(\sigma^{-1}\pi)(\alpha\pi) = \pi$ so $\alpha\pi$ is a unit in $\pi E\pi$. Finally, observe that $1 - \alpha = \pi + (-\sigma)$ is strongly clean too, so an analog of the above argument shows that $(1 - \alpha)(1 - \pi)$ is a unit in $(1 - \pi)E(1 - \pi)$.

(2) \Rightarrow (3). Given π as in (2) let $A' = \pi(A)$ and $A'' = (1 - \pi)(A)$. Then, $A = A' \oplus A''$ and $\alpha(A') = \alpha \pi(A) = \pi \alpha(A) \subseteq \pi(A) = A'$, so A' is α -invariant. Similarly, $\alpha(A'')$. If $(\alpha \pi)^{-1} = \pi \gamma \pi$ in $\pi E \pi$, let $\gamma_0 = (\pi \gamma \pi) \mid_{A'}$. Then, $\gamma_0 \in$

End(A') so, if $F \in A'$ we have $(\gamma_0(\alpha \mid_{A'}))(F) = (\gamma_0\alpha)(\pi(F)) = \gamma_0(\alpha\pi)(F) = (\gamma_0\pi\alpha)(F) = \pi(F) = F$. Thus $\gamma_0\alpha \mid_{A'} = 1_{A'}$. Similarly $\alpha \mid_{A'} \gamma_0 = 1_{A'}$, because $\alpha \mid_{A'} \gamma_0(F) = (\alpha \mid_{A'} (\pi\gamma\pi))(F) = (\alpha\pi\gamma\pi)(F) = \pi(F) = F$. Thus $\alpha \mid_{A'}$ is a unit in End(A'). A similar argument shows that $(1 - \alpha) \mid_{A''}$ is a unit in End(A'').

 $(3) \Rightarrow (4)$. This follows from Proposition ??.

 $(4) \Rightarrow (5)$. Suppose that $A = A' \oplus A''$ as in (4). Then, $\alpha \mid_{A'}$ is strongly clean in End(A') because it is a unit by Proposition ??. Similarly A' and A'' are $(1-\alpha)$ -invariant so $(1-\alpha)\mid_{A''}$ is a unit in End(A''), again by Proposition ??. This gives (5) with n = 2, $A_1 = A'$ and $A_2 = A''$.

(5) \Rightarrow (1). Given the situation in (5), extend maps $\lambda_i \in End(A_i)$ to $\widehat{\lambda_i} \in End(A)$ by defining

$$\lambda_i(F_1 + F_2 + \dots + F_n) = \lambda_i(F_i).$$

Then, $\widehat{\lambda_i}\widehat{\lambda_j} = 0$ if $i \neq j$ while $\widehat{\lambda_i}\widehat{\mu_i} = \widehat{\lambda_i}\widehat{\mu_i}$ for all $\mu_i \in End(A_i)$. Now let $\alpha \mid_{A_i} = \pi_i + \sigma_i \in End(A_i)$ where $\pi_i^2 = \pi_i$, $\sigma_i \in \mathcal{U}(End(A_i))$ and $\pi_i\sigma_i = \sigma_i\pi_i$. If $\pi = \Sigma_i\widehat{\pi_i}$ and $\sigma = \Sigma_i\widehat{\sigma_i}$, then $\pi^2 = \Sigma_i\widehat{\pi_i}^2 = \pi$, $\pi\sigma = \Sigma_i\widehat{\pi_i}\widehat{\sigma_i} = \Sigma_i\widehat{\sigma_i}\widehat{\pi_i} = \sigma\pi$, and $\sigma \in \mathcal{U}(End(A))$ because $\sigma^{-1} = \Sigma_i\widehat{\sigma_i}^{-1}$. Since $\alpha = \Sigma_i\widehat{\alpha}\mid_{A_i} = \Sigma_i(\widehat{\pi + \sigma_i}) = \pi + \sigma$, the proof of (1) is complete.

A ring is called uniquely clean [?] if every element is uniquely the sum of an idempotent and a unit.

Definition 3.4. An element a of a ring R is called uniquely strongly clean (or USC for short) if a has a unique strongly clean expression in R as stated above. The ring R is called uniquely strongly clean (or USC for short) if every element of R is uniquely strongly clean.

Proposition 3.5. Let $A = \begin{pmatrix} R & _{R}M_{S} \\ 0 & S \end{pmatrix}$ and $\alpha \in End(A)$. The following are equivalent:

- (1) α is USC in End(A).
- (2) There exists a unique decomposition $A = A' \oplus A''$ where A' and A'' are α -invariant, and $\alpha \mid_{A'}$ and $(1 \alpha) \mid_{A''}$ are isomorphisms.

Conclusion. A ring is said to be clean if every element of A can be written as a sum of an idempotent and a unit. Till now, many authors considered clean rings and obtained many results in this respect. In this work, we investigated the ring $A = \begin{pmatrix} R & RMS \\ 0 & S \end{pmatrix}$. In particular, we studied the endomorphisms of the ring A and gave necessary and sufficient conditions under which an endomorphism of A is strongly clean.

References

[1] Azumaya, G., "Strongly π-regular rings", J. Fac. Sci. Hokkiado U., 13 (1954), 34-39.

- [2] Chen, J., Wang, Z. and Zhou, Y., "Rings in which elements are uniquely the sum of an idempotent and a unit that commute", J. Pure Appl. Algebra, 213 (2009), 215-223.
- [3] Chen, H., "Some classes of strongly clean rings", Bull. Iran. Math. Soc., 30:6 (2013), 1099-1115.
- [4] Nicholson, W.K., "Strongly clean rings and Fitting's lemma", Comm. Algebra, 27:8 (1999), 3583-3592.
- [5] Lam, T.Y., A First Course in Noncommutative Rings, Springer-Verlag, 1991.
- [6] Rajeswari, K.N. and Aziz, R., "A note on clean matrices in $M_2(\mathbb{Z})$ ", Int. J. Algebra, 3:(5-8) (2009), 241-248.