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Abstract. In the current paper we propose a collocation method to achieve an

algorithm for numerically solving of fractional order linear systems where a fractional

derivative is defined in the Caputo form. We have used the Taylor collocation

method for solving fractional differential equations; a collocation method which is

based on taking the truncated Taylor expansions of the vector function’s solution

in the fractional order linear system and substituting their matrix forms into the

system. Through using collocation points we have obtained a system of linear

algebraic equation. The method has been tested by some numerical examples.
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1. Introduction

Fractional differential equations have been generalized from integer order
derivatives through replacing the integer order derivatives by fractional ones. The
field of fractional differential equations has received attention and interest only in
the past 20 years or so [2, 4, 3]. In recent years, studies concerning the application
of the fractional differential equations in science has attracted more interest among
scholars [9, 5]; readers can refer to [7, 8] for the theory and applications of fractional
calculus in this regard. For instance, [10, 15] formulated the motion of a rigid plate
immersing in a Newtonian fluid. They show that the use of fractional derivatives
for the mathematical modelling of viscoelastic materials is quite natural [19]. It
should be mentioned that the main reason for the theoretical development here is
the wide use of polymers in various fields of engineering [19]. Moreover, in 1991,
S. Westerlund in a paper on electrochemically polarizable media proposed the use
of fractional derivatives for the description of propagation of plane electromagnetic
waves in an isotropic and homogeneous lossy dielectric [19]. Caputo suggested the
fractional order version of the relationship between the electric field and electric
flux density [19].

Recently, fractional derivatives have been used to new applications in neu-
ral networks and control system [5, 6, 20]. Several methods such as Haar-wavelet
operational matrix method have exited to solve the fractional linear system [16].
In [16] the authors introduced Haar-wavelet operational matrix method for frac-
tional control system and translated the control system with initial condition into
a Sylvester equation. A typical n-term linear non-homogeneous fractional order
differential equation in time domain can be described as the following form

an(Dαn
t y(t)) + · · ·+ a1(Dα1

t y(t)) + a0(Dα0
t y(t)) = u(t). (1)

A fractional order system described by n-term fractional differential (1) can
be rewritten to the state-space representation in the form [12, 24]:

aD
β
t x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
. (2)

For this reason, the behavior of output in system (2) is useful. Recently, the collo-
cation method has become a very useful technique for solving differential equations
[18, 13, 1]. In the current study, we present a numerical solution of the fractional
order system through the use of Taylor collocation method for a system of the form

aD
α
t x(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t),

0 ≤ t ≤ η, x(0) =
(
λ1, λ2, · · · , λn

)T
,

(3)

with 0 < α ≤ 1, where A, B, C and D are n×n, n×m, p×n and p×m matrices,
and u(t) is an m-vector function, and aD

α
t x(t) is the αth-order (always fractional)

derivative of x(t) in the Caputo form. By using this method, we can translate (3)
into an algebraic linear equation that can be solved through the use of existing
methods [21, 22].
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This paper is organized as follows. We review some basic definitions of frac-
tional derivative operators. The function approximations and two applicable algo-
rithms are presented in section 3. Section 4 contains four examples, and finally,
conclusions are presented in section 5.

2. Basic Definition and Theorem

Here and in this part of the study, we deal with fractional calculus, definitions
and theorems; see [23, 14, 17]. for more details in this regard.

Definition 2.1. A real function f(x), x ≥ 0 is said to be in space Cµ, µ ∈ R if
there exists a real number p(> µ), such that f(x) = xpf1(x) where f1(x) ∈ [0,∞),
and it is said to be in the space Cmµ iff fm ∈ Cµ,m ∈ N .

Definition 2.2. The Riemann-Liouville fractional derivative of order α with re-
spect to the variable x and with the starting point at x = a is

aD
α
t f(x) =


1

Γ(−α+m+1) ×
dm+1

dxm+1 ×
∫ x
a

(x− τ)m−αf(τ)dτ ; 0 ≤ m ≤ α < m+ 1,

dm+1

dxm+1 ;α = m+ 1 ∈ N.
(4)

Definition 2.3. The Riemann-Liouville fractional integral of order α is

aD
−α
t f(x) =

1

Γ(α)

∫ x

a

(x− τ)α−1f(τ)dτ ;α > 0. (5)

Definition 2.4. The fractional derivative of f(x) in the Caputo form is defined as

Dα
t f(x) =

1

Γ(n− α)

∫ x

0

(x−τ)n−α−1f (n)(τ)dτ ;n−1 < α ≤ n, n ∈ N, x > 0, f ∈ Cn−1.

(6)

For the Caputo’s derivative we have Dα
t C = 0, and C is a constant. Moreover,

we have

Dα
t x

t =

{
0 ;n ∈ N,n < dαe,

Γ(n+1)
Γ(n+1−α)x

n ;n ∈ N,n < bαc. (7)

Definition 2.5. (Fractional Derivative of a Vector) If X(x) = (X1(x) · · ·Xn(x))T

is a vector function, we define

Dα
xX(x) =


Dα
xX1(x)

Dα
xX2(x)

...
Dα
xXn(x)

 . (8)
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Now consider the fractional differential equations as

Dα
t x(t) = Ax(t) + q(t), (9)

where 0 < α < 1, A is an N × N matrix, and q : [0, h] → CN . Two following
theorems show the form of the general solution of (9) where Eα(t) is the Mittag-
Leffler function.

Definition 2.6. The Mittag-Leffler function with parameter α is given by

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, <(α) > 0, z ∈ C.

It is obvious that if α = 1, then Eα(z) = ez.

Theorem 2.7. If λ1, · · · , λN , be the eigenvalues of A and u(1), · · · , u(N) will be
the corresponding eigenvectors; then the general solution of the homogeneous dif-
ferential equation Dα

t x(t) = Ax(t) will be

x(t) =

N∑
l=1

clu
(l)Eα(λlx

α), (10)

with certain constants cl ∈ C. The unique solution of this differential equation
subject to the initial condition x(0) = x0 is characterized by the linear system

x0 = (u(1), · · · , u(N))(c1, · · · , cN )T . (11)

Proof. See [11].�

For the inhomogeneous boundary value problem, we have the following the-
orem.

Theorem 2.8. The general solution of the boundary value problem (9) has the form
x = xhom+xinhom where xhom is the general solution of the associated homogeneous
problem and xinhom is a particular solution of the inhomogeneous problem.

Proof. See [11].�

Following we recall the generalization of Taylor formula which forms the basis
of our numerical method.

Theorem 2.9. (generalized Taylor formula) Suppose that Dkα
x f(x) ∈ C(a, b] for

k = 0, 1, , n+ 1 where 0 < α ≤ 1; then one has

f(x) =

n∑
i=0

(x− a)iα

Γ(iα+ 1)
Diα
x f(a) +

Dn+1
x f(ζ)

Γ((n+ 1)α+ 1)
(x− a)(n+1)α, (12)

with a ≤ ζ ≤ x, for all x ∈ (a, b], where Dnα
t = Dα

t D
α
t · · · Dα

t (n times).

Proof. See [17].�
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We can use the generalized Taylor formula in the matrix form as follows

f(x) = X(x)M0v +
DN+1
t f(ζ)

Γ((n+ 1)α+ 1)
(x− a)(n+1)α, (13)

where

X(x) =
(

1 (x− a)α (x− a)2α · · · (x− a)Nα
)

1×(N+1)
, (14)

and

M0 =



1
Γ(1) 0 0 · · · 0

0 1
Γ(α+1) 0 · · · 0

0 0 1
Γ(2α+1) · · · 0

... 0 0
. . . 0

0 0 0 · · · 1
Γ(Nα+1)

 , (15)

and

v =
(
D0α
x f(a) Dα

xf(a) D2α
x f(a) · · · DNα

x f(a)
)

; (16)

hence we can approximate f(x) as follows

f(x) ' X(x)M0v. (17)

Moreover, we have

Dα
xf(x) ' Dα

x (X(x)M0v) = (Dα
xX(x))M0v, (18)

and

Dα
x (X(x)) =

(
Dα
x1 Dα

x (x− a)α Dα
x (x− a)2α · · · Dα

x (x− a)Nα
)

1×(N+1)

=
(

0 Γ(α+1)
Γ(1) · · · Γ(Nα+1)

Γ((N−1)α+1) (t− a)Nα
)

1×(N+1)
;

(19)
thus

Dα
x (X(x)) = X(x)M1,

where

M1 =



0 Γ(α+1)
Γ(1) 0 · · · 0

0 0 Γ(2α+1)
Γ(α+1) · · · 0

...
...

...
. . .

...

0 0 0
... Γ(Nα+1)

Γ((N−1)α+1)

0 0 0 · · · 0


; (20)

hence

Dα
xf(x) ' X(x)M1M0v. (21)
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3. Numerical method

In this section, we present two algorithms for numerical solution of system
(3) based on Taylor collocation method. For this, we use equations (14) and (19)
for each array of vector function x(t), and it’s fractional derivative, namely as

xj(t) ' xNj = X(t)M0vj , (22)

and

Dα
t xj(t) ' Dα

t x
N
j (t) = X(t)M1M0vj . (23)

If we use (22) and (23) to approximate xj(t) and Dα
t xj(t) for j = 1, · · ·n; then we

have a system of linear equations.

Theorem 3.1. If we approximate xj(t) and Dα
t xj(t) for j = 1, · · ·n, by (22) and

(23) respectively; then we have a system of linear equations as X̃F̃ ṽ = b̃ where
ṽ = (v, v, · · · , v)T .

Proof. By substituting equations (22) and (23) in equation (3) we have

X(t)(

n∑
i = 1
i 6= j

aijM0vi + (ajjM0 −M1M0)vj) = −
m∑
i=1

bjiui(t) ; j = 1, ..., n , (24)

or

X(t)(A ∗ I −M1)M0v = β(t), (25)

where X(t) =


X(t) 0 · · · 0

0 X(t) · · · 0

0 0
. . .

...
0 0 · · · X(t)

 ,

I


IN+1 0 · · · 0

0 IN+1 · · · 0

0 0
. . . 0

0 0 · · · IN+1

 ,

M0 =


M0 0 · · · 0
0 M0 · · · 0

0 0
. . . 0

0 0 · · · M0

 ,

M1 =


M1 0 · · · 0
0 M1 · · · 0

0 0
. . . 0

0 0 · · · M1

 ,



A Collocation Method 33

v =


v1

v2

...
vn

 ,

β(t) = −Bu(t), (26)

and

A ∗ I =

 a11IN+1 · · · a1nIN+1

...
. . .

...
an1IN+1 · · · annIN+1

 . (27)

Dispersing equation (24) by the collocation points ti, i = 0, 1, ..., N , we can
obtain

X(ti)Fv = β(ti),

where

F = (A ∗ I −M1)M0. (28)

Now we find the matrix representation of the initial condition x(a),

X(a)M0vj = λj for j = 1, 2, ..., n , (29)

or 
X(a)M0v = λ

λ =
(
λ1 · · · λn

)T
.

(30)

To obtain the numerical solution of (3), by replacing X(tN )Fv = β(tN ) with equa-
tion (29), we have the new algebraic equation, X(ti)Fv = β(ti) for i = 1, ..., N − 1

X(a)M0v = λ

(31)

or in blocked matrix form

X̃F̃ ṽ = b̃, (32)

where

X̃ =


X(t0) 0 · · · 0 0

0 X(t1) · · · 0 0
...

...
. . .

...
...

0 0 · · · X(tN−1) 0

0 0 · · · 0 X(a)


(N+1)×(N+1)

,
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F̃ =


F 0 · · · 0 0
0 F · · · 0 0
...

...
. . .

...
...

0 0 · · · F 0
0 0 · · · 0 M0


(N+1)×(N+1)

,

ṽ =


v
...
v
v


(N+1)×1

, b̃ =


β(t0)

...

β(tN−1)

λ


(N+1)×1

. (33)

From above discussions we found that v is 1× (N +1) and ṽ is 1×n(N +1)2; hence
if in (31) we set{

ṽ =
(
y1 y2 · · · yn(N+1) · · · yn(N+1)2−n · · · yn(N+1)2

)T
,

yi = yjn(N+1)+i for i = 1, 2, . . . , n(N + 1) and j = 1, 2, · · · , N ;
(34)

hence we obtain a system of n(N + 1)2 linear algebraic equations with n(N + 1)2

unknown Taylor coefficients for xi(t), i = 1, 2, ..., n.

From above discussions we find that

vi =
(
y(i−1)(N+1)+1 y(i−1)(N+1)+2 · · · y(i−1)(N+1)+N yi(N+1)

)
, (35)

which is the vector of Taylor coefficients for xi(t), i = 1, 2, ..., n.

The algorithm is

Proposition 3.2. Input A,B, x(a), u(t), N, a, b
Output x(t) = (x1(t), · · · , xn(t))T

1.Compute M0,M1

2.Set M0 = diag(M0, · · · ,M0),M1 = diag(M1, · · · ,M1), I = diag(IN+1, · · · , IN+1)

3.Compute F = (A ∗ I −M1)

4.for i = 0, · · · , N do

Set ti = a+ i b−aN compute X(ti)

Construct X(ti) = diag(X(ti) · · ·X(ti)), β(ti) = −Bu(ti)

end do

5.Set b̃ = (β(t0), · · · , β(tN−1), x(a))T , X̃ = diag(X(t0), · · · , X(tN−1), X(a)), F̃ =

diag(F , · · · , F ,M0)
6.Solve

X̃F̃ ṽ = b̃ such that ṽi = ṽjn(N+1)+i, i = 1, 2, · · · , n(N + 1) and j = 1, 2, · · · , N
7.for i = 1, 2, · · · , n do

xi(t) ' X(t)M0(ṽ(i−1)N+i, · · · , ṽi(N+1))

end do.
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If a ≤ t ≤ b and (b−a) are large, we can divide I = [a, b] into I1 = [a, t1], I2 =
[t1, t2], · · · , IN = [tN−1, b] and approximate x(t) on subinterval Ik+1 and use the
approximated solution at tk+1 to initial condition of next subinterval. The following
Lemma shows that by this procedure error can be decreased.

Lemma 3.3. Let x(t) be bounded on [a, b]. If we use I1 = [a, t1], I2 = [t1, t2], · · · , IN =
[tN−1, b] and approximate x(t) on subinterval Ik+1 and use approximated solution at
tk+1 to initial condition of next subinterval, absolute error at time t = b decreases.

Proof. From (12), for interval I, if |DN+1
t xi(ζ)| < li; then we have

e = |xi(b)− xNi (b)|
= |DN+1

t xi(ζ)| (b−a)(N+1)α

Γ((N+1)α+1) < li
(b−a)(N+1)α

Γ((N+1)α+1)

= Li(Nh)(N+1)α,

(36)

where h = b−a
N . Moreover, for subinterval Ij we have

ej = |xi(tj)− xNi (tj)| < li
(tj − tj−1)(N+1)α

Γ((N + 1)α+ 1)
= Lih

(N+1)α;

thus
e1 + e2 + · · ·+ eN < LiNh

(N+1)α < Li(Nh)(N+1)α = e.

This shows that the following algorithm can be more efficient than algorithm
3.2 at t = b.�

Proposition 3.4. Input A,B, x(a), u(t), N, a, b
Output x(b)

1.for i = 0, 1, · · · , N − 1 do

Set Ii = [ti, ti + 1], a = ti, b = ti+1

Utilize algorithm 3.2 and approximate x(ti+1)

Set x(a) = x(ti+1)

2. Set x(b) = x(tN )

end do.

4. Numerical Examples

To illustrate the method and algorithms referred to in the previous section,
we consider the following examples. In order to show the efficiency of the method
for solving fractional order linear systems, we apply it to solve different types of
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fractional linear systems whose exact solutions are known. We use ‖ . ‖2 to compare
the exact and numerical solutions.

Example 4.1. Let us consider the following system with the initial conditions

Dα
t x(t) =

(
1 3
3 1

)
x(t) +

(
1 0
0 1

)(
1
4

)
; 0 ≤ t ≤ 1;x(0) =

(
1
−3

)
, (37)

the exact solution when α = 1 is

x(t) =

(
x1(t)
x2(t)

)
=

1

8
e−2t

(
22− 11e2t − 3e6t

−22 + e2t − 3e6t

)
. (38)

We approximately solve the above system for N = 10 and obtain the approximate
solution for α = 1 as

x1(t) = 1− 7
t

Γ(2)
+ 4.9990

t2

Γ(3)
− 45.9461

t3

Γ(4)
− 53.7703

t4

Γ(5)
−

−4.3006× 102 t5

Γ(6)
− 2.1043× 103 t6

Γ(7)
+ 3.3841× 103 t7

Γ(8)
−

−1.1878× 105 t8

Γ(9)
+ 5.1080× 105 t9

Γ(10)
− 2.5584× 106 t10

Γ(11)
,

x2(t) = −3 + 4
t

Γ(2)
− 17.0010

t2

Γ(3)
− 1.9462

t3

Γ(4)
− 141.7694

t4

Γ(5)
−

−254.0886
t5

Γ(6)
− 2.4559× 103 t6

Γ(7)
+ 4.0813× 103 t7

Γ(8)
−

−1.2011× 105 t8

Γ(9)
+ 5.1302× 105 t9

Γ(10)
− 2.5607× 106 t10

Γ(11)
.

In figure 1 we can see the numerical and exact solutions.

Example 4.2. Let us consider following fractional equation

Dα
t x(t) = x(t);x(0) = 1; 0 ≤ t ≤ 1; (39)

the exact solution, when α = 1, is

x(t) = et, (40)

and for α = 1
2 is

x(t) = et(erf
√
t+ 1). (41)

We approximately solve fractional equation (39) for α = 1 with N = 3 and obtained
the approximate solution,

x(t) = 1.0000 + 1.0000
t1

Γ(2)
+ 09474

t2

Γ(3)
+ 1.4211

t3

Γ(4)
,

also for α = 0.5 and N = 9 we have,

x(t) = 1.0000 + 1.0000
t
1
2

Γ(1.5)
+ 0.9916

t

Γ(2)
+ 1.1163

t
3
2

Γ(2.5)
+
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Figure 1. Numerical and exact solution of example 4.1 for α = 1
and N = 10.
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Figure 2. Numerical and exact solution of example 4.2 for α = 1
and N = 3.

+0.1837
t2

Γ(3)
+ 4.6131

t
5
2

Γ(3.5)
− 9.6736

t3

Γ(4)
+

+21.8928
t
7
2

Γ(4.5)
− 24.2722

t4

Γ(5)
+ 16.2662

t
9
2

Γ(5.5)
.

In figure 2 we can see the numerical and exact solutions of example 4.2 for
α = 1 with N = 3; Moreover, figure 3 shows the results for α = 0.5 with N = 9 in
example 4.2.

Example 4.3. In this example, we consider a fractional system with three equa-
tions,

Dα
t x(t) =

 −1 0 0
2 1 −9
3 6 1

x(t); 0 ≤ t ≤ 1; 0 < α ≤ 1;x(0) =

 −3
5
0

 . (42)
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Figure 3. Numerical and exact solution of example 4.2 for α =
0.5 and N = 9.
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Figure 4. Numerical and exact solution of example 4.3 for α =
0.975 and N = 5.

The general solution of this system according to theorems 2.7 and 2.8 is given by

x(t) = c1u1Eα(λ1t
α) + c2u2Eα(λ2t

α) + c3u3Eα(λ3t
α), (43)

where c1, c2, c3 are constants, λ1, λ2, λ3 are eigenvalues, and u1, u2, u3 are the cor-
responding eigenvectors of A.
In the figures 4 and 5 the numerical and exact solutions of x(t) for α = 0.975 are
shown for N = 5 and N = 15, respectively. From figure 4 we can see that the
numerical solution with N = 5 is not a mismatch with the exact solution, but from
figure 5 we can see that the numerical solution is in very good agreement with the
exact solution for N = 15. Moreover, the errors of numerical solutions for different
N are shown in table 1. From table 1 we can see that the numerical solutions are
more and more close to the exact solution when the value of N becomes large.

Example 4.4. Consider example 4.3 with t ∈ [0, 3], N = 16 and divide [0, 3] to
subintervals [0, 1], [1, 2], [2, 3]. Now we solve it with algorithms 3.1 and 3.2, and
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Figure 5. Numerical and exact solution of example 4.3 for α =
0.975 and N = 15.

Table 1. Error of approximated solution in example 4.3

N error at t = 1
4 error at t = 2

4 error at t = 3
4

4 1.0966 1.6726 2.2574
8 0.0352 0.0366 0.0488
16 1.5671e-07 4.4075e-07 0.0016
32 4.1904e-12 3.8083e-07 0.0016

Table 2. Error of approximated solution in example 4.4 at t = b
by algorithm 3.2 and algorithm 3.4.

subinterval [0, 1] [1, 2] [2, 3] [0, 3]
algorithm 3.2 3.2 3.2 3.4

error at time b 9.1359e-07 6.7420e-05 0.0014 690.6396

compare the results. The numerical results will presented in table 2. From table 2
we see that if we use algorithm 3.2, the error at time t = 3 is 690.6396 which is
unacceptable, but with dividing interval [0, 3] into three intervals [0, 1], [1, 2], [2, 3]
and use algorithm 3.4, the error at time t = 1, 2 and 3 is 9.1359e− 07, 6.7420e− 05
and 0.0014, respectively. This example confirms Lemma 3.2, and so we see that
algorithm 3.4 is useful.

In figure 6 we can see the numerical and exact solutions of example 4.4 with
N = 16 by algorithm 3.2. Figures 7, 8, and 9 show the numerical and exact
solutions of example 4.4 with N = 16 by algorithm 3.4.
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Figure 6. Numerical and exact solution of example 4.4 on [0, 3]
by algorithm 3.2.

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

6

8

10

12

time

x
1
(t

),
x

2
(t

),
x

3
(t

)

 

 exact solution of x
1
(t)

exact solution of x
2
(t)

exact solution of x
3
(t)

numerical solution of  x
1
(t)

numerical solution of  x
2
(t)

numerical solution of  x
3
(t)

Figure 7. Numerical and exact solution of example 4.4 on [0, 1]
by algorithm 3.4.

5. Conclusions

The fractional order linear system plays an important role in physics, chem-
ical mixing, chaos theory, and biological systems. In this paper we presented a
collocation method to solve fractional order linear system with initial conditions.
These methods approximate the numeric solution of fractional order linear system
through taking the truncated Taylor expansions of the vector function’s solution
in the fractional order linear system and then substituting their matrix forms into
the system. This method transforms fractional linear system into an algebraic
equation. Examples show that the Taylor collocation method has been successfully
applied to find the approximate solutions of the fractional linear system. Numerical
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Figure 8. Numerical and exact solution of example 4.4 on [1, 2]
by algorithm 3.4.
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Figure 9. Numerical and exact solution of example 4.4 on [2, 3]
by algorithm 3.4.

results show that this method is extremely effective and practical for this sort of
approximate solutions. This method will be applicable in large domains as well.
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