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Abstract. The Hermite polynomial and Green function are used to construct

the identities related to majorization type inequalities for convex function. By

using Čebyšev functional the bounds for the new identities are found to develop the

Grüss and Ostrowski type inequalities. Further more exponential convexity together

with Cauchy means is presented for linear functionals associated with the obtained

inequalities.
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Abstrak. Polinom Hermite dan Fungsi Green digunakan untuk mengkonstruksi

identitas yang berkaitan dengan membuat majorisasi jenis pertidaksamaan untuk

Fungsi Konveks. Dengan menggunakan Fungsional Čebyšev, batas untuk identitas

baru yang ditemukan digunakan untuk dibangun jenis pertidaksamaan Grüss dan

Ostrowski. Selanjutnya Konveksitas Eksponensial dengan rata-rata Cauchy dis-

ajikan untuk fungsional-fungsional linear yang berasosiasi dengan pertidaksamaan

yang diperoleh.
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functional, n−exponentially convex function, mean value theorems, Stolarsky type

means.

2000 Mathematics Subject Classification: 26D15, 26D20, 26D99.

Received: 10-07-2015, revised: 19-11-2015, accepted: 19-11-2015.

1



2 M. Adil Khan et.al.

1. Introduction

For fixed m ≥ 2 let

x = (x1, ..., xm) , y = (y1, ..., ym)

denote two real m-tuples. Let

x[1] ≥ x[2] ≥ ... ≥ x[m], y[1] ≥ y[2] ≥ ... ≥ y[m],

x(1) ≤ x(2) ≤ ... ≤ x(m), y(1) ≤ y(2) ≤ ... ≤ y(m)

be their ordered components.

Definition 1.1. [21, p. 319] x is said to majorize y (or y is said to be majorized
by x), in symbol, x � y, if

l∑
i=1

y[i] ≤
l∑
i=1

x[i] (1)

holds for l = 1, 2, ...,m− 1 and

m∑
i=1

xi =

m∑
i=1

yi.

Note that (1) is equivalent to

m∑
i=m−l+1

y(i) ≤
m∑

i=m−l+1

x(i)

holds for l = 1, 2, ...,m− 1.

The following theorem is well-known as the majorization theorem given by Marshall
and Olkin [19, p. 14] (see also [21, p. 320]):

Theorem 1.2. Let x = (x1, ..., xm) ,y = (y1, ..., ym) be two m-tuples such that xi,
yi ∈ [α, β] (i = 1, ...,m). Then

m∑
i=1

φ (yi) ≤
m∑
i=1

φ (xi) (2)

holds for every continuous convex function φ : [α, β] → R if and only if x � y
holds.

The following theorem can be regarded as a weighted version of Theorem 1.2
and is proved by Fuchs in [14] ([19, p. 580], [21, p. 323]):

Theorem 1.3. Let x = (x1, ..., xm) ,y = (y1, ..., ym) be two decreasing real m-tuples
with xi, yi ∈ [α, β] (i = 1, ...,m) and w = (w1, w2, ..., wm) be a real m-tuple such
that

l∑
i=1

wi yi ≤
l∑
i=1

wi xi for l = 1, ...,m− 1, (3)
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and
m∑
i=1

wi yi =

m∑
i=1

wi xi. (4)

Then for every continuous convex function φ : [α, β]→ R, we have

m∑
i=1

wi φ (yi) ≤
m∑
i=1

wi φ (xi) . (5)

The following integral version of Theorem 1.3 is a simple consequence of Theorem
12.14 in [23] (see also [21, p.328]):

Theorem 1.4. Let x, y : [a, b]→ [α, β] be decreasing and w : [a, b]→ R be contin-
uous functions. If∫ ν

a

w(t) y(t) dt ≤
∫ ν

a

w(t)x(t) dt for every ν ∈ [a, b], (6)

and ∫ b

a

w(t) y(t) dt =

∫ b

a

w(t)x(t) dt (7)

hold, then for every continuous convex function φ : [α, β]→ R, we have∫ b

a

w(t)φ (y(t)) dt ≤
∫ b

a

w(t)φ (x(t)) dt. (8)

For other integral version and generalization of majorization theorem see [19,
p. 583], [1]-[8], [10, 17, 18, 20, 23].

Consider the Green function G defined on [α, β]× [α, β] by

G(t, s) =

{
(t−β)(s−α)

β−α , α ≤ s ≤ t;
(s−β)(t−α)

β−α , t ≤ s ≤ β.
(9)

The function G is convex in s, it is symmetric, so it is also convex in t. The function
G is continuous in s and continuous in t.

For any function φ : [α, β] → R, φ ∈ C2([α, β]), we can easily show by
integrating by parts that the following is valid

φ(x) =
β − x
β − α

φ(α) +
x− α
β − α

φ(β) +

∫ β

α

G(x, s)φ′′(s)ds, (10)

where the function G is defined as above in (9) ([26]).

Let −∞ < α < β < ∞ and α ≤ a1 < a2 · · · < ar ≤ β, (r ≥ 2) be the
given points. For φ ∈ Cn[α, β] a unique polynomial ρH(s) of degree (n− 1) exists
satisfying any of the following conditions:
Hermite conditions:

ρ
(i)
H (aj) = φ(i)(aj); 0 ≤ i ≤ kj , 1 ≤ j ≤ r,

r∑
j=1

kj + r = n. (H)
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It is of great interest to note that Hermite conditions include the following partic-
ular cases:
Type (m,n−m) conditions: (r = 2, 1 ≤ m ≤ n−1, k1 = m−1, k2 = n−m−1)

ρ
(i)
(m,n)(α) = φ(i)(α), 0 ≤ i ≤ m− 1,

ρ
(i)
(m,n)(β) = φ(i)(β), 0 ≤ i ≤ n−m− 1,

Two-point Taylor conditions: (n = 2m, r = 2, k1 = k2 = m− 1)

ρ
(i)
2T (α) = φ(i)(α), ρ

(i)
2T (β) = φ(i)(β), 0 ≤ i ≤ m− 1.

We have the following result from [9].

Theorem 1.5. Let −∞ < α < β < ∞ and α ≤ a1 < a2 · · · < ar ≤ β, (r ≥ 2) be
the given points, and φ ∈ Cn([α, β]). Then we have

φ(t) = ρH(t) +RH,n(φ, t) (11)

where ρH(t) is the Hermite interpolating polynomial, i.e.

ρH(t) =

r∑
j=1

kj∑
i=0

Hij(t)φ
(i)(aj);

the Hij are fundamental polynomials of the Hermite basis defined by

Hij(t) =
1

i!

ω(t)

(t− aj)kj+1−i

kj−i∑
k=0

1

k!

dk

dtk

(
(t− aj)kj+1

ω(t)

)∣∣∣∣∣
t=aj

(t− aj)k, (12)

ω(t) =

r∏
j=1

(t− aj)kj+1
, (13)

and the remainder is given by

RH,n(φ, t) =

∫ β

α

GH,n(t, s)φ(n)(s)ds

where GH,n(t, s) is defined by

GH,n(t, s) =


l∑

j=1

kj∑
i=0

(aj−s)n−i−1

(n−i−1)! Hij(t); s ≤ t,

−
r∑

j=l+1

kj∑
i=0

(aj−s)n−i−1

(n−i−1)! Hij(t); s ≥ t,
(14)

for all al ≤ s ≤ al+1; l = 0, . . . , r with a0 = α and ar+1 = β.

Remark 1.1. In particular cases,

for type (m,n−m) conditions, from Theorem 1.5 we have

φ(t) = ρ(m,n)(t) +R(m,n)(φ, t) (15)
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where ρ(m,n)(t) is (m,n−m) interpolating polynomial, i.e

ρ(m,n)(t) =

m−1∑
i=0

τi(t)φ
i(α) +

n−m−1∑
i=0

ηi(t)φ
i(β),

with

τi(t) =
1

i!
(t− α)i

( t− β
α− β

)n−m m−1−i∑
k=0

(
n−m+ k − 1

k

)( t− α
β − α

)k
(16)

and

ηi(t) =
1

i!
(t− β)i

( t− α
β − α

)m n−m−1−i∑
k=0

(
m+ k − 1

k

)( t− β
α− β

)k
. (17)

and the remainder R(m,n)(φ, t) is given by

R(m,n)(φ, t) =

∫ β

α

G(m,n)(t, s)φ
(n)(s)ds

with

G(m,n)(t, s) =



m−1∑
j=0

[m−1−j∑
p=0

(
n−m+p−1

p

)(
t−α
β−α

)p]
×

(t−α)j(α−s)n−j−1

j!(n−j−1)!

(
β−t
β−α

)n−m
, α ≤ s ≤ t ≤ β,

−
n−m−1∑
i=0

[ n−m−i−1∑
q=0

(
m+q−1

q

)(
β−t
β−α

)q]
×

(t−β)i(β−s)n−i−1

i!(n−i−1)!

(
t−α
β−α

)m
, α ≤ t ≤ s ≤ β.

(18)

For Type Two-point Taylor conditions, from Theorem 1.5 we have

φ(t) = ρ2T (t) +R2T (φ, t) (19)

where ρ2T (t)is the two-point Taylor interpolating polynomial i.e,

ρ2T (t) =

m−1∑
i=0

m−1−i∑
k=0

(
m+ k − 1

k

)[ (t− α)i

i!

( t− β
α− β

)m( t− α
β − α

)k
φ(i)(α)

+
(t− β)i

i!

( t− α
β − α

)m( t− β
α− β

)k
φ(i)(β)

]
(20)

and the remainder R2T (φ, t) is given by

R2T (φ, t) =

∫ β

α

G2T (t, s)φ(n)(s)ds

with

G2T (t, s) =


(−1)m
(2m−1)!p

m(t, s)
m−1∑
j=0

(
m−1+j

j

)
(t− s)m−1−jqj(t, s), s ≤ t;

(−1)m
(2m−1)!q

m(t, s)
m−1∑
j=0

(
m−1+j

j

)
(s− t)m−1−jpj(t, s), s ≥ t;

(21)
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where p(t, s) = (s−α)(β−t)
β−α , q(t, s) = p(s, t),∀ t, s ∈ [α, β].

The following Lemma describes the positivity of Green’s function (14) see
(Beesack [11] and [Levin [24]).

Lemma 1.6. The Green’s function GH,n(t, s) has the following properties:

(i)
GH,n(t,s)
w(t) > 0, a1 ≤ t ≤ ar, a1 < s < ar;

(ii) GH,n(t, s) ≤ 1
(n−1)!(β−α) |w(t)|;

(iii)
∫ β
α
GH,n(t, s)ds = w(t)

n! .

In order to recall the definition of n−convex function, first we write the
definition of divided difference.

Definition 1.7. [21, p. 15] Let φ be a real-valued function defined on [α, β]. The
divided difference of order n of the function φ at distinct points [α, β] is defined
recursively by

φ[xi] = φ(xi), (i = 0, ..., n)

and

φ[x0, ..., xn] =
φ[x1, ..., xn]− φ[x0, ..., xn−1]

xn − x0
.

The value φ[x0, ..., xn] is independent of the order of the points x0, ..., xn.

The definition may be extended to include the case that some (or all) the
points coincide. Assuming that φ(j−1)(x) exists, we define

φ [x, ..., x]︸ ︷︷ ︸
j−times

=
φ(j−1)(x)

(j − 1)!
. (22)

Definition 1.8. [21, p. 15] A function φ : [α, β]→ R is said to be n-convex, n ≥ 0,
on [α, β] if and only if for all choices of (n + 1) distinct points x0, ..., xn ∈ [α, β],
the nth order divided difference is non negative that is

φ[x0, x1, ..., xn] ≥ 0.

Theorem 1.9. [21, p. 16] Let φ : [α, β] → R be a function such that φ(n) exists,
then φ is n-convex if and only if φ(n) ≥ 0.

We arrange the paper in this manner, in section 2, we use Hermite inter-
polating polynomial and Green function to establish identities for majorization
inequalities. We present generalized majorization inequalities and in particular we
discuss the results for (m,n−m) interpolating polynomial, two-point Taylor inter-
polating polynomial. In section 3, we give bounds for the identities related to the
generalizations of majorization inequalities by using Čebyšev functionals. We also
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give Grüss type inequalities and Ostrowski-type inequalities for these functionals.
In section 4, we present Lagrange and Cauchy type mean value theorems related
to the defined functionals and also give n-exponential convexity which leads to ex-
ponential convexity and then log-convexity. At the end, in section 5, we discuss
some families of functions which enable us to construct a large families of func-
tions that are exponentially convex and also give Stolarsky type means with their
monotonicity.

2. Generalization of Majorization Inequalities

We begin this section with the proof of some identities related to generaliza-
tions of majorization inequality.

Theorem 2.1. Let −∞ < α < β < ∞ and α ≤ a1 < a2 · · · < ar ≤ β, (r ≥ 2)
be the given points, and φ ∈ Cn([α, β]) and w = (w1, ..., wm), x = (x1, ..., xm) and
y = (y1, ..., ym) be m-tuples such that xl, yl ∈ [α, β], wl ∈ R (l = 1, ...,m). Also let
Hij , GH,n and G be as defined in (12), (14) and (9) respectively. Then

m∑
l=1

wl φ (xl)−
m∑
l=1

wl φ (yl) =
φ(β)− φ(α)

β − α

m∑
l=1

wl (xl − yl)

+

∫ β

α

[
m∑
l=1

wl (G(xl, t)−G(yl, t))

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt

+

∫ β

α

∫ β

α

[
m∑
l=1

wl (G(xl, t)−G(yl, t))

]
GH,n−2(t, s)φ(n)(s)dsdt.

(23)

Proof. Use (10) in
∑m
l=1 wl φ (xl)−

∑m
l=1 wl φ (yl) we have

m∑
l=1

wl φ (xl)−
m∑
l=1

wl φ (yl)

=
φ(β)− φ(α)

β − α

m∑
l=1

wl (xl − yl) +

∫ β

α

[
m∑
l=1

wlG(xl, t)−
m∑
l=1

wlG(yl, t)

]
φ′′(t)dt.

(24)

By Theorem 1.5, φ′′(t) can be expressed as

φ′′(t) =

r∑
j=1

kj∑
i=0

Hij(t)φ
(i+2)(aj) +

∫ β

α

GH,n−2(t, s)φ(n)(s)ds. (25)

Using (25) in (24) we get (23). �



8 M. Adil Khan et.al.

Integral version of the above theorem can be stated as:

Theorem 2.2. Let −∞ < α < β < ∞ and α ≤ a1 < a2 · · · < ar ≤ β, (r ≥ 2)
be the given points, φ ∈ Cn([α, β]) and x, y : [a, b] → [α, β], w : [a, b] → R be
continuous functions. Also let Hij , GH,n and G be as defined in (12), (14) and (9)
respectively. Then∫ b

a

w(τ)φ(x(τ))dτ −
∫ b

a

w(τ)φ(y(τ))dτ =
φ(β)− φ(α)

β − α

∫ b

a

w(τ)(x(τ)− y(τ))dτ

+

∫ β

α

[∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt

+

∫ β

α

∫ β

α

[∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ

]
GH,n−2(t, s)φ(n)(s)dsdt.

(26)

Theorem 2.3. Let −∞ < α = a1 < a2 · · · < ar = β < ∞, (r ≥ 2) be the given
points, w = (w1, ..., wm), x = (x1, ..., xm) and y = (y1, ..., ym) be m-tuples such
that xl, yl ∈ [α, β], wl ∈ R (l = 1, ...,m) and Hij, G be as defined in (12) and (9)
respectively. Let φ : [α, β]→ R be n−convex and

m∑
l=1

wl (G(xl, t)−G(yl, t)) ≥ 0, t ∈ [α, β]. (27)

Consider the inequality
m∑
l=1

wl φ (xl)−
m∑
l=1

wl φ (yl) ≥
φ(β)− φ(α)

β − α

m∑
l=1

wl (xl − yl)

+

∫ β

α

[
m∑
l=1

wl (G(xl, t)−G(yl, t))

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt. (28)

(i) If kj is odd for each j = 2, .., r, then the inequality (28) holds.
(ii) If kj is odd for each j = 2, .., r−1 and kr is even, then the reverse inequality

in (28) holds.

Proof. (i) Since the function φ is n−convex, therefore without loss of generality
we can assume that φ is n−times differentiable and φ(n) ≥ 0 see [21, p. 16
and p. 293]. Also as it is given that kj is odd for each j = 2, .., r, therefore
we have ω(t) ≥ 0 and by using Lemma 1.6(i) we have GH,n−2(t, s) ≥ 0.
Hence, we can apply Theorem 2.1 to obtain (28).

(ii) If kr is even then (t − ar)kr+1 ≤ 0 for any t ∈ [α, β]. Also clearly (t −
a1)k1+1 ≥ 0 for any t ∈ [α, β] and

∏r−1
j=2(t − aj)kj+1 ≥ 0 for t ∈ [α, β] if

kj is odd for each j = 2, .., r − 1, therefore combining all these we have
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ω(t) =
∏r
j=1(t− aj)kj+1 ≤ 0 for any t ∈ [α, β] and by using Lemma 1.6(i)

we have GH,n−2(t, s) ≤ 0. Hence, we can apply Theorem 2.1 to obtain
reverse inequality in (28).

�

Integral version of the above theorem can be stated as:

Theorem 2.4. Let −∞ < α = a1 < a2 · · · < ar = β <∞, (r ≥ 2) be given points
and x, y : [a, b] → [α, β], w : [a, b] → R be continuous functions and Hij and G be
as defined in (12) and (9) respectively. Let φ : [α, β]→ R be n−convex and∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ ≥ 0, t ∈ [α, β]. (29)

Consider the inequality∫ b

a

w(τ)φ(x(τ))dτ −
∫ b

a

w(τ)φ(y(τ))dτ ≥ φ(β)− φ(α)

β − α

∫ b

a

w(τ)(x(τ)− y(τ))dτ

+

∫ β

α

[∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt.

(30)

(i) If kj is odd for each j = 2, .., r, then the inequality (30) holds.
(ii) If kj is odd for each j = 2, .., r−1 and kr is even, then the reverse inequality

in (30) holds.

By using type (m,n−m) conditions we can give the following result.

Corollary 2.5. Let [α, β] be an interval and w = (w1, ..., wp), x = (x1, ..., xp) and
y = (y1, ..., yp) be p-tuples such that xl, yl ∈ [α, β], wl ∈ R (l = 1, ..., p). Let G
be the green function as defined in (9) and τi, ηi be as defined in (16) and (17)
respectively. Let φ : [α, β] → R be n−convex and the inequality (27) holds for
p-tuples. Consider the inequality

p∑
l=1

wl φ (xl)−
p∑
l=1

wl φ (yl)

≥ φ(β)− φ(α)

β − α

p∑
l=1

wl (xl − yl)

+

∫ β

α

[
p∑
l=1

wl (G(xl, t)−G(yl, t))

]
(
m−1∑
i=0

τi(t)φ
(i+2)(α) +

n−m−1∑
i=0

ηi(t)φ
(i+2)(β)

)
dt. (31)

(i) If n−m is even, then the inequality (31) holds.
(ii) If n−m is odd, then the reverse inequality in (31) holds.
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By using Two-point Taylor conditions we can give the following result.

Corollary 2.6. Let [α, β] be an interval, w = (w1, ..., wp), x = (x1, ..., xp) and
y = (y1, ..., yp) be p-tuples such that xl, yl ∈ [α, β], wl ∈ R (l = 1, ..., p) and G
be the green function as defined in (9). Let φ : [α, β] → R be n−convex and the
inequality (27) holds for p-tuples. Consider the inequality

p∑
l=1

wl φ (xl)−
p∑
l=1

wl φ (yl)

≥ φ(β)− φ(α)

β − α

p∑
l=1

wl (xl − yl) +

∫ β

α

[
p∑
l=1

wl (G(xl, t)−G(yl, t))

]
[
m−1∑
i=0

m−1−i∑
k=0

(
m+ k − 1

k

)[ (t− α)i

i!

( t− β
α− β

)m( t− α
β − α

)k
φ(i+2)(α)

+
(t− β)i

i!

( t− α
β − α

)m( t− β
α− β

)k
φ(i+2)(β)

]]
dt. (32)

(i) If m is even, then the inequality (32) holds.
(ii) If m is odd, then the reverse inequality in (32) holds.

Remark 2.1. Similarly we can give integral version of Corollaries 2.5,2.6.

The following generalization of majorization theorem is valid.

Theorem 2.7. Let −∞ < α = a1 < a2 · · · < ar = β < ∞, (r ≥ 2) be the given
points, x = (x1, ..., xm) and y = (y1, ..., ym) be m-tuples such that y ≺ x with xl,
yl ∈ [α, β] (l = 1, ...,m). Let Hij be as defined in (12) and φ : [α, β] → R be
n−convex. Consider

m∑
l=1

φ (xl)−
m∑
l=1

φ (yl)

≥
∫ β

α

[
m∑
l=1

(G(xl, t)−G(yl, t))

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt. (33)

(i) If kj is odd for each j = 2, .., r, then the inequality (33) holds.
(ii) If kj is odd for each j = 2, .., r−1 and kr is even, then the reverse inequality

in (33) holds.

If the inequality (reverse inequality) in (33) holds and the function F (.) =
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(.) is non negative ( non positive), then the right hand side of
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(33) will be non negative (non positive) that is the inequality (reverse inequality)
in (2) will holds.

Proof. (i) Since the function G is convex and y ≺ x therefore by Theorem 1.2,
the inequality (27) holds for wl = 1. Hence by Theorem 2.3(i) the inequality (33)
holds. Also if the function F is convex then by using F in (2) instead of φ we get
that the right hand side of (33) is non negative.

Similarly we can prove part (ii). �

In the following theorem we give generalization of Fuch’s majorization theo-
rem.

Theorem 2.8. Let −∞ < α = a1 < a2 · · · < ar = β < ∞, (r ≥ 2) be the
given points, x = (x1, ..., xm) and y = (y1, ..., ym) be decreasing m-tuples and w =
(w1, ..., wm) be any m-tuple with xl, yl ∈ [α, β], wl ∈ R (l = 1, ...,m) which satisfy
(3) and (4). Let Hij be as defined in (12) and φ : [α, β]→ R be n−convex, then

m∑
l=1

wlφ (xl)−
m∑
l=1

wlφ (yl)

≥
∫ β

α

[
m∑
l=1

wl (G(xl, t)−G(yl, t))

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt. (34)

(i) If kj is odd for each j = 2, .., r, then the inequality (34) holds.
(ii) If kj is odd for each j = 2, .., r−1 and kr is even, then the reverse inequality

in (34) holds.

If the inequality (reverse inequality) in (34) holds and the function F (.) =
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(.) is non negative (non postive), then the right hand side of

(34) will be non negative (non positive) that is the inequality (reverse inequality)
in (5) will hold.

Proof. Similar to the proof of Theorem 2.7. �

In the following theorem we give generalized majorization integral inequality.

Theorem 2.9. Let −∞ < α = a1 < a2 · · · < ar = β < ∞, (r ≥ 2) be the given
points, and x, y : [a, b] → [α, β] be decreasing and w : [a, b] → R be continuous
functions such that (6) and (7) hold. Also let Hij be as defined in (12) and φ :
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[α, β]→ R be n−convex and consider the inequlity∫ b

a

w(τ)φ(x(τ))dτ −
∫ b

a

w(τ)φ(y(τ))dτ

≥
∫ β

α

[∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt.

(35)

(i) If kj is odd for each j = 2, .., r, then the inequality (35) holds.
(ii) If kj is odd for each j = 2, .., r−1 and kr is even, then the reverse inequality

in (35) holds.

If the inequality (reverse inequality) in (35) holds and the function

F (.) =

r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(.)

is non negative (non positive), then the right hand side of (35) will be non negative
(non positive) that is the inequality (reverse inequality) in (8) will hold.

By using type (m,n−m) conditions we can give generalization of majorization
inequality for majorized tuples:

Corollary 2.10. Let [α, β] be an interval, x = (x1, ..., xp) and y = (y1, ..., yp) be
any p-tuple such that y ≺ x with xl, yl ∈ [α, β] (l = 1, ..., p). Let τi and ηi be as
defined in (16) and (17) respectively and φ : [α, β]→ R be n−convex. Consider

p∑
l=1

φ (xl)−
p∑
l=1

φ (yl)

≥
∫ β

α

[
p∑
l=1

(G(xl, t)−G(yl, t))

](
m−1∑
i=0

τi(t)φ
(i+2)(α) +

n−m−1∑
i=0

ηi(t)φ
(i+2)(β)

)
dt.

(36)

(i) If n−m is even, then the inequality (36) holds.
(ii) If n−m is odd, then the reverse inequality in (36) holds.

If the inequality (reverse inequality) in (36) holds and the function

F (.) =

m−1∑
i=0

φ(i+2)(α)τi(.) +

n−m−1∑
i=0

φ(i+2)(β)ηi(.)

is non negative (non positive), then the right hand side of (36) will be non negative
(non positive) that is the inequality (reverse inequality) in (2) will hold.

By using Two-point Taylor conditions we can give generalization of majoriza-
tion inequality for majorized tuples:
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Corollary 2.11. Let [α, β] be an interval and x = (x1, ..., xp), y = (y1, ..., yp) be
decreasing p-tuples such that y ≺ x with xl, yl ∈ [α, β] (l = 1, ..., p). Let φ : [α, β]→
R be n−convex. Consider

p∑
l=1

φ (xl)−
p∑
l=1

φ (yl) ≥
∫ β

α

[
p∑
l=1

(G(xl, t)−G(yl, t))

]
F (t)dt, (37)

where F (t) =

m−1∑
i=0

m−1−i∑
k=0

(
m+ k − 1

k

)[
(t− α)i

i!

( t− β
α− β

)m( t− α
β − α

)k
φ(i+2)(α)

+
(t− β)i

i!

( t− α
β − α

)m( t− β
α− β

)k
φ(i+2)(β)

]
.

(i) If m is even, then the inequality (37) holds.
(ii) If m is odd, then the reverse inequality in (37) holds.

If the inequality (reverse inequality) in (37) holds and the function F (.) is non
negative (non positive), then the right hand side of (37) will be non negative (non
positive) that is the inequality (reverse inequality) in (2) will hold.

By using type (m,n − m) conditions we can give the following weighted
majorization inequality.

Corollary 2.12. Let [α, β] be an interval and x = (x1, ..., xp) and y = (y1, ..., yp) be
decreasing p-tuples and w = (w1, ..., wp) be any p-tuple such that xl, yl ∈ [α, β], wl ∈
R (l = 1, ..., p) which satisfy (3) and (4). Let τi and ηi be as defined in (16) and
(17) respectively and let φ : [α, β]→ R be n−convex. Consider the inequality

p∑
l=1

wl φ (xl)−
p∑
l=1

wl φ (yl)

≥
∫ β

α

[
p∑
l=1

wl (G(xl, t)−G(yl, t))

]
(
m−1∑
i=0

τi(t)φ
(i+2)(α) +

n−m−1∑
i=0

ηi(t)φ
(i+2)(β)

)
dt.

(38)

(i) If n−m is even, then the inequality (38) holds.
(ii) If n−m is odd, then the reverse inequality in (38) holds.

If the inequality (reverse inequality) in (38) holds and the function

F (.) =

m−1∑
i=0

φ(i+2)(α)τi(.) +

n−m−1∑
i=0

φ(i+2)(β)ηi(.)

is non negative (non positive), then the right hand side of (38) will be non negative
(non positive) that is the inequality (reverse inequality) in (5) will hold.
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By using Two-point Taylor conditions we can give the following weighted
majorization inequality.

Corollary 2.13. Let [α, β] be an interval and x = (x1, ..., xp), y = (y1, ..., yp) be
decreasing p-tuples such that xl, yl ∈ [α, β], wl ∈ R (l = 1, ..., p) which satisfy (3)
and (4) and let φ : [α, β]→ R be n−convex. Consider the inequality

p∑
l=1

wl φ (xl)−
p∑
l=1

wl φ (yl) ≥
∫ β

α

[
p∑
l=1

wl (G(xl, t)−G(yl, t))

]
F (t)dt, (39)

where F (t) =

m−1∑
i=0

m−1−i∑
k=0

(
m+ k − 1

k

)[
(t− α)i

i!

( t− β
α− β

)m( t− α
β − α

)k
φ(i+2)(α)

+
(t− β)i

i!

( t− α
β − α

)m( t− β
α− β

)k
φ(i+2)(β)

]
.

(i) If m is even, then the inequality (39) holds.
(ii) If m is odd, then the reverse inequality in (39) holds.

If the inequality (reverse inequality) in (39) holds and the function F (.) is non
negative (non positive), then the right hand side of (39) will be non negative (non
positive) that is the inequality (reverse inequality) in (5) will hold.

The integral version of the above Corollaries can be stated as:

Corollary 2.14. Let [α, β] be an interval and x, y : [a, b] → [α, β] be decreasing
and w : [a, b]→ R be continuous function such that (6), (7) hold. Let τi and ηi be
as defined in (16) and (17) respectively and φ : [α, β]→ R be n−convex. Consider∫ b

a

w(τ)φ(x(τ))dτ −
∫ b

a

w(τ)φ(y(τ))dτ

≥
∫ β

α

[∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ

]
(
m−1∑
i=0

τi(t)φ
(i+2)(α) +

n−m−1∑
i=0

ηi(t)φ
(i+2)(β)

)
dt.

(40)

(i) If n−m is even, then the inequality (40) holds.
(ii) If n−m is odd, then the reverse inequality in (40) holds.

If the inequality (reverse inequality) in (40) holds and the function

F (.) =

m−1∑
i=0

φ(i+2)(α)τi(.) +

n−m−1∑
i=0

φ(i+2)(β)ηi(.)

is non negative (non positive), then the right hand side of (40) will be non negative
(non positive) that is the inequality (reverse inequality) in (8) will hold.
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Corollary 2.15. Let [α, β] be an interval and x, y : [a, b]→ [α, β] be decreasing and
w : [a, b]→ R be continuous functions such that (6) and (7) hold. Let φ : [α, β]→ R
be n−convex. Consider the inequality∫ b

a

w(τ)φ(x(τ))dτ −
∫ b

a

w(τ)φ(y(τ))dτ

≥
∫ β

α

[∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ

]
F (t)dt, (41)

where F (t) =

m−1∑
i=0

m−1−i∑
k=0

(
m+ k − 1

k

)[
(t− α)i

i!

( t− β
α− β

)m( t− α
β − α

)k
φ(i+2)(α)

+
(t− β)i

i!

( t− α
β − α

)m( t− β
α− β

)k
φ(i+2)(β)

]
.

(i) If m is even, then the inequality (41) holds.
(ii) If m is odd, then the reverse inequality in (41) holds.

If the inequality (reverse inequality) in (41) holds and the function F (.) is non
negative (non positive), then the right hand side of (41) will be non negative (non
positive) that is the inequality (reverse inequality) in (8) will hold.

3. Bounds for Identities Related to Generalizations of Majorization
Inequality

For two Lebesgue integrable functions f, h : [α, β] → R we consider the
Čebyšev functional

Λ(f, h) =
1

β − α

∫ β

α

f(t)h(t)dt− 1

β − α

∫ β

α

f(t)dt · 1

β − α

∫ β

α

h(t)dt.

In [13] the authors proved the following theorems:

Theorem 3.1. Let f : [α, β]→ R be a Lebesgue integrable function and h : [α, β]→
R be an absolutely continuous function with (· − α)(β − ·)[h′]2 ∈ L[α, β]. Then we
have the inequality

|Λ(f, h)| ≤ 1√
2

[Λ(f, f)]
1
2

1√
β − α

(∫ β

α

(x− α)(β − x)[h′(x)]2dx

) 1
2

. (42)

The constant 1√
2

in (42) is the best possible.
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Theorem 3.2. Assume that h : [α, β] → R is monotonic nondecreasing on [α, β]
and f : [α, β] → R is absolutely continuous with f ′ ∈ L∞[α, β]. Then we have the
inequality

|Λ(f, h)| ≤ 1

2(β − α)
‖f ′‖∞

∫ β

α

(x− α)(β − x)dh(x). (43)

The constant 1
2 in (43) is the best possible.

In the sequel we use the above theorems to obtain generalizations of the
results proved in the previous section.

For m-tuples w = (w1, ..., wm), x = (x1, ..., xm) and y = (y1, ..., ym) with xl,
yl ∈ [α, β], wl ∈ R (l = 1, ...,m) and the Green functions G and GH,n be as defined
in (9) and (14) respectively, denote

L(s) =

∫ β

α

[
m∑
l=1

wl (G(xl, t)−G(yl, t))

]
GH,n−2(t, s)dt, s ∈ [α, β], (44)

similarly for continuous functions x, y : [a, b]→ [α, β], w : [a, b]→ R and the Green
function G and GH,n be as defined in (9) and (14) respectively, denote

J(s) =

∫ β

α

[∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ

]
GH,n−2(t, s)dt, s ∈ [α, β].

(45)
Consider the Čebyšev functionals Λ(L,L), Λ(J, J) are given by:

Λ(L,L) =
1

β − α

∫ β

α

L2(s)ds−

(
1

β − α

∫ β

α

L(s)ds

)2

, (46)

Λ(J, J) =
1

β − α

∫ β

α

J2(s)ds−

(
1

β − α

∫ β

α

J(s)ds

)2

. (47)

Theorem 3.3. Let −∞ < α < β < ∞ and α ≤ a1 < a2 · · · < ar ≤ β, (r ≥ 2) be
the given points, and φ ∈ Cn([α, β]) such that (· − α)(β − ·)[φ(n+1)]2 ∈ L[α, β] and
w = (w1, ..., wm), x = (x1, ..., xm) and y = (y1, ..., ym) be m-tuples such that xl, yl
∈ [α, β], wl ∈ R (l = 1, ...,m). Also let Hij be the fundamental polynomials of the
Hermite basis and the functions G and L be defined by (9) and (44) respectively.
Then

m∑
l=1

wl φ (xl)−
m∑
l=1

wl φ (yl) =
φ(β)− φ(α)

β − α

m∑
l=1

wl (xl − yl)

+

∫ β

α

[
m∑
l=1

wl (G(xl, t)−G(yl, t))

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt

+
φ(n−1)(β)− φ(n−1)(α)

β − α

∫ β

α

L(s)ds+ κ(φ;α, β). (48)
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where the remainder κ(φ;α, β) satisfies the estimation

|κ(φ;α, β)| ≤
√
β − α√

2
[Λ(L,L)]

1
2

∣∣∣∣∣
∫ β

α

(s− α)(β − s)[φ(n+1)(s)]2ds

∣∣∣∣∣
1
2

. (49)

Proof. The proof is similar to the proof of Theorem 15 in [5]. �

The integral version of the above theorem can be stated as:

Theorem 3.4. Let −∞ < α < β < ∞ and α ≤ a1 < a2 · · · < ar ≤ β, (r ≥ 2)
be the given points, and φ ∈ Cn([α, β]) such that (· − α)(β − ·)[φ(n+1)]2 ∈ L[α, β]
and x, y : [a, b]→ [α, β], w : [a, b]→ R be continuous functions. Also let Hij be the
fundamental polynomials of the Hermite basis and the functions G and J be defined
by (9) and (45) respectively. Then∫ b

a

w(τ)φ(x(τ))dτ −
∫ b

a

w(τ)φ(y(τ))dτ =
φ(β)− φ(α)

β − α

∫ b

a

w(τ)(x(τ)− y(τ))dτ

+

∫ β

α

[∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt

+
φ(n−1)(β)− φ(n−1)(α)

β − α

∫ β

α

J(s)ds+ κ̃(φ;α, β). (50)

where the remainder κ̃(φ;α, β) satisfies the estimation

|κ̃(φ;α, β)| ≤
√
β − α√

2
[Λ(J, J)]

1
2

∣∣∣∣∣
∫ β

α

(s− α)(β − s)[φ(n+1)(s)]2ds

∣∣∣∣∣
1
2

. (51)

Using Theorem 3.2 we obtain the following Grüss type inequalities.

Theorem 3.5. Let −∞ < α < β < ∞ and α ≤ a1 < a2 · · · < ar ≤ β, (r ≥ 2)
be the given points, and φ ∈ Cn([α, β]) such that φ(n) is monotonic non decreasing
on [α, β] and let L be defined by (44). Then the representation (48) holds and the
remainder κ(φ;α, β) satisfies the bound

|κ(φ;α, β)| ≤ ‖L′‖∞
{
φ(n−1)(β) + φ(n−1)(α)

2
− φ(n−2)(β)− φ(n−2)(α)

β − α

}
. (52)

Proof. The proof is similar to the proof of Theorem 17 in [5]. �

Integral case of the above theorem can be given:

Theorem 3.6. Let −∞ < α < β < ∞ and α ≤ a1 < a2 · · · < ar ≤ β, (r ≥ 2)
be the given points, and φ ∈ Cn([α, β]) such that φ(n) is monotonic non decreasing
on [α, β] and let x, y : [a, b] → [α, β], w : [a, b] → R be continuous functions and
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the functions G and J be defined by (9) and (45) respectively. Then we have the
representation (50) and the remainder κ̃(φ;α, β) satisfies the bound

|κ̃(φ;α, β)| ≤ ‖J′‖∞
{
φ(n−1)(β) + φ(n−1)(α)

2
− φ(n−2)(β)− φ(n−2)(α)

β − α

}
. (53)

We present the Ostrowski-type inequalities related to generalizations of ma-
jorization inequality.

Theorem 3.7. Suppose that all assumptions of Theorem 2.1 hold. Assume (p, q)

is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p+ 1/q = 1. Let
∣∣φ(n)∣∣p :

[α, β]→ R be an R-integrable function for some n ∈ N. Then we have:

∣∣∣∣∣
m∑
l=1

wl φ (xl)−
m∑
l=1

wl φ (yl)−
φ(β)− φ(α)

β − α

m∑
l=1

wl (xl − yl)

−
∫ β

α

[
m∑
l=1

wl (G(xl, t)−G(yl, t))

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt

∣∣∣∣∣∣
≤
∥∥∥φ(n)∥∥∥

p
‖L‖q , (54)

where L is defined in (44).

The constant on the right-hand side of (54) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.

Proof. The proof is similar to the proof of Theorem 19 in [5]. �

Integral version of the above theorem can be given as:

Theorem 3.8. Suppose that all assumptions of Theorem 2.2 hold. Assume (p, q)

is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p+ 1/q = 1. Let
∣∣φ(n)∣∣p :

[α, β]→ R be an R-integrable function for some n ∈ N. Then we have:

∣∣∣∣∣
∫ b

a

w(τ)φ(x(τ))dτ −
∫ b

a

w(τ)φ(y(τ))dτ − φ(β)− φ(α)

β − α

∫ b

a

w(τ)(x(τ)− y(τ))dτ

−
∫ β

α

[∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt

∣∣∣∣∣∣
≤
∥∥∥φ(n)∥∥∥

p
‖J‖q , (55)

where J is defined in (45).

The constant on the right-hand side of (55) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.
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4. n−Exponential Convexity and Exponential Convexity

We begin this section by giving some definitions and notions which are used
frequently in the results. For more details see e.g. [12], [15] and [22].

Definition 4.1. A function φ : I → R is n-exponentially convex in the Jensen
sense on I if

n∑
i,j=1

ξiξj φ

(
xi + xj

2

)
≥ 0,

hold for all choices ξ1, . . . , ξn ∈ R and all choices x1, . . . , xn ∈ I. A function
φ : I → R is n-exponentially convex if it is n-exponentially convex in the Jensen
sense and continuous on I.

Definition 4.2. A function φ : I → R is exponentially convex in the Jensen sense
on I if it is n-exponentially convex in the Jensen sense for all n ∈ N.

A function φ : I → R is exponentially convex if it is exponentially convex in
the Jensen sense and continuous.

Proposition 4.3. If φ : I → R is an n-exponentially convex in the Jensen sense,

then the matrix
[
φ
(
xi+xj

2

) ]m
i,j=1

is a positive semi-definite matrix for all m ∈
N,m ≤ n. Particularly,

det

[
φ

(
xi + xj

2

)]m
i,j=1

≥ 0,

for all m ∈ N, m = 1, 2, ..., n.

Remark 4.1. It is known that φ : I → R+ is a log-convex in the Jensen sense if
and only if

α2φ(x) + 2αβφ

(
x+ y

2

)
+ β2φ(y) ≥ 0,

holds for every α, β ∈ R and x, y ∈ I. It follows that a positive function is log-
convex in the Jensen sense if and only if it is 2-exponentially convex in the Jensen
sense.

A positive function is log-convex if and only if it is 2-exponentially convex.

Motivated by inequalities (28) and (30), under the assumptions of Theo-
rems 2.3 and 2.4 we define the following linear functionals:

zH1 (φ) =

m∑
l=1

wl φ (xl)−
m∑
l=1

wl φ (yl)−
φ(β)− φ(α)

β − α

m∑
l=1

wl (xl − yl)

−
∫ β

α

[
m∑
l=1

wl (G(xl, t)−G(yl, t))

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt.(56)
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zH2 (φ) =

∫ b

a

w(τ)φ(x(τ))dτ −
∫ b

a

w(τ)φ(y(τ))dτ

−φ(β)− φ(α)

β − α

∫ b

a

w(τ)(x(τ)− y(τ))dτ

−
∫ β

α

[∫ b

a

w(τ) (G(x(τ), t)−G(y(τ), t)) dτ

]
r∑
j=1

kj∑
i=0

φ(i+2)(aj)Hij(t)dt. (57)

Remark 4.2. Under the assumptions of Theorems 2.3 and 2.4, it holds zHi (φ) ≥ 0,
i = 1, 2, for all n−convex functions φ.

Lagrange and Cauchy type mean value theorems related to defined functionals
are given in the following theorems.

Theorem 4.4. Let φ : [α, β]→ R be such that φ ∈ Cn[α, β]. If the inequalities in
(27) (i = 1) and (29) (i = 2) hold, then there exist ξi ∈ [α, β] such that

zHi (φ) = φ(n)(ξi)zHi (ϕ), i = 1, 2, (58)

where ϕ(x) = xn

n! and zHi , i = 1, 2 are defined by (56) and(57).

Proof. Similar to the proof of Theorem 4.1 in [16]. �

Theorem 4.5. Let φ, ψ : [α, β]→ R be such that φ, ψ ∈ Cn[α, β]. If the inequalities
in (27) (i = 1), (29) (i = 2), hold, then there exist ξi ∈ [α, β] such that

zHi (φ)

zHi (ψ)
=
φ(n)(ξi)

ψ(n)(ξi)
, i = 1, 2, (59)

provided that the denominators are non-zero and zHi , i = 1, 2, are defined by (56)
and(57).

Proof. Similar to the proof of Theorem 4.2 in [16]. �

Now we will produce n−exponentially and exponentially convex functions
applying defined functionals. We use an idea from [22]. In the sequel J will be
interval in R.

Theorem 4.6. Let Ω = {φt : t ∈ J}, where J is an interval in R, be a family of
functions defined on an interval [α, β] such that the function t 7→ [x0, . . . , xn;φt] is
n−exponentially convex in the Jensen sense on J for every (n+1) mutually different
points x0, . . . , xn ∈ [α, β]. Then for the linear functionals zHi (φt) (i = 1, 2) as
defined by (56) and (57), the following statements hold:

(i) The function t → zHi (φt) is n-exponentially convex in the Jensen sense
on J and the matrix [zHi (φ tj+tl

2

)]mj,l=1 is a positive semi-definite for all

m ∈ N,m ≤ n, t1, .., tm ∈ J . Particularly,

det[zHi (φ tj+tl
2

)]mj,l=1 ≥ 0 for all m ∈ N, m = 1, 2, ..., n.
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(ii) If the function t → zHi (φt) is continuous on J , then it is n-exponentially
convex on J .

Proof. The proof is similar to the proof of Theorem 23 in [5]. �

The following corollary is an immediate consequence of the above theorem.

Corollary 4.7. Let Ω = {φt : t ∈ J}, where J is an interval in R, be a family of
functions defined on an interval [α, β] such that the function t 7→ [x0, . . . , xn;φt] is
exponentially convex in the Jensen sense on J for every (n+ 1) mutually different
points x0, . . . , xn ∈ [α, β]. Then for the linear functionals zHi (φt) (i = 1, 2) as
defined by (56) and (57), the following statements hold:

(i) The function t → zHi (φt) is exponentially convex in the Jensen sense on
J and the matrix [zHi (φ tj+tl

2

)]mj,l=1 is a positive semi-definite for all m ∈
N,m ≤ n, t1, .., tm ∈ J . Particularly,

det[zHi (φ tj+tl
2

)]mj,l=1 ≥ 0 for all m ∈ N, m = 1, 2, ..., n.

(ii) If the function t → zHi (φt) is continuous on J , then it is exponentially
convex on J .

Corollary 4.8. Let Ω = {φt : t ∈ J}, where J is an interval in R, be a family of
functions defined on an interval [α, β] such that the function t 7→ [x0, . . . , xn;φt] is
2-exponentially convex in the Jensen sense on J for every (n+1) mutually different
points x0, . . . , xn ∈ [α, β]. Let zHi , i = 1, 2 be linear functionals defined by (56)
and (57). Then the following statements hold:

(i) If the function t 7→ zHi (φt) is continuous on J , then it is 2-exponentially
convex function on J . If t 7→ zHi (φt) is additionally strictly positive, then
it is also log-convex on J . Furthermore, the following inequality holds true:

[zHi (φs)]
t−r ≤

[
zHi (φr)

]t−s [zHi (φt)
]s−r

, i = 1, 2,

for every choice r, s, t ∈ J , such that r < s < t.
(ii) If the function t 7→ zHi (φt) is strictly positive and differentiable on J, then

for every p, q, u, v ∈ J , such that p ≤ u and q ≤ v, we have

µp,q(zHi ,Ω) ≤ µu,v(zHi ,Ω), (60)

where

µp,q(zHi ,Ω) =


(

zH
i (φp)

zH
i (φq)

) 1
p−q

, p 6= q,

exp

(
d
dpz

H
i (φp)

zH
i (φp)

)
, p = q,

(61)

for φp, φq ∈ Ω.

Proof. The proof is similar to the proof of Corollary 2 in [5]. �
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Remark 4.3. Note that the results from Theorem 4.6, Corollary 4.7 and Corollary
4.8 still hold when two of the points x0, ..., xl ∈ [α, β] coincide, say x1 = x0, for a
family of differentiable functions φt such that the function t 7→ [x0, ..., xl;φt] is an n-
exponentially convex in the Jensen sense (exponentially convex in the Jensen sense,
log-convex in the Jensen sense), and furthermore, they still hold when all (l + 1)
points coincide for a family of l differentiable functions with the same property.
The proofs are obtained by (22) and suitable characterization of convexity.

5. Examples

In this section, we present some families of functions which fulfil the condi-
tions of Theorem 4.6, Corollary 4.7 and Corollary 4.8. This enables us to construct
a large families of functions which are exponentially convex. Explicit form of these
functions are obtained after we calculate explicit action of functionals on a given
family.

Example 5.1. Let us consider a family of functions

Ω1 = {φt : R→ R : t ∈ R}
defined by

φt(x) =

{
etx

tn , t 6= 0,
xn

n! , t = 0.

Since dnφt

dxn (x) = etx > 0, the function φt is n-convex on R for every t ∈ R and

t 7→ dnφt

dxn (x) is exponentially convex by definition. Using analogous arguing as
in the proof of Theorem 4.6 we also have that t 7→ [x0, . . . , xn;φt] is exponentially
convex (and so exponentially convex in the Jensen sense). Now, using Corollary 4.7
we conclude that t 7→ zHi (φt), i = 1, 2, are exponentially convex in the Jensen sense.
It is easy to verify that this mapping is continuous (although the mapping t 7→ φt is
not continuous for t = 0), so it is exponentially convex. For this family of functions,
µp,q(zHi ,Ω1), i = 1, 2, from (61), becomes

µp,q(zHi ,Ω1) =


(

zH
i (φp)

zH
i (φq)

) 1
p−q

, p 6= q,

exp
(

zH
i (id·φp)

zH
i (φp)

− n
p

)
, p = q 6= 0,

exp
(

1
n+1

zH
i (id·φ0)

zH
i (φ0)

)
, p = q = 0,

where id is the identity function. By Corollary 4.8, µp,q(zHi ,Ω1) is a monotonic
function in parameters p and q.

Since (
dnφp

dxn

dnφq

dxn

) 1
p−q

(log x) = x,

using Theorem 4.5 it follows that:

Mp,q(zHi ,Ω1) = log µp,q(zHi ,Ω1), i = 1, 2
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satisfies
α ≤Mp,q(zHi ,Ω1) ≤ β, i = 1, 2.

So, Mp,q(zHi ,Ω1) is a monotonic mean.

Example 5.2. Let us consider a family of functions

Ω2 = {gt : (0,∞)→ R : t ∈ R}
defined by

gt(x) =

{
xt

t(t−1)···(t−n+1) , t /∈ {0, 1, . . . , n− 1},
xj log x

(−1)n−1−jj!(n−1−j)! , t = j ∈ {0, 1, . . . , n− 1}.

Since dngt
dxn (x) = xt−n > 0, the function gt is n−convex for x > 0 and t 7→ dngt

dxn (x)
is exponentially convex by definition. Arguing as in Example 5.1 we get that the
mappings t 7→ zHi (gt), i = 1, 2 are exponentially convex. Hence, for this family of
functions µp,q(zHi ,Ω2), i = 1, 2, from (61), is equal to

µp,q(zH
i ,Ω2) =



(
zH

i (gp)

zH
i (gq)

) 1
p−q

, p 6= q,

exp

(
(−1)n−1(n− 1)!

zH
i (g0gp)

zH
i (gp)

+
n−1∑
k=0

1
k−p

)
, p = q /∈ {0, 1, . . . , n− 1},

exp

(−1)n−1(n− 1)!
zH

i (g0gp)

2zH
i (gp)

+
n−1∑
k=0
k 6=p

1
k−p

 , p = q ∈ {0, 1, . . . , n− 1}.

Again, using Theorem 4.5 we conclude that

α ≤
(
zHi (gp)

zHi (gq)

) 1
p−q

≤ β, i = 1, 2. (62)

So, µp,q(zHi ,Ω2), i = 1, 2 is a mean and by (60) it is monotonic.

Example 5.3. Let

Ω3 = {ζt : (0,∞)→ (0,∞) : t ∈ (0,∞)}
be a family of functions defined by

ζt(x) =


t−x

(lnt)n , t 6= 1;

xn

n! , t = 1.

Since dnζt
dxn (x) = t−x is the Laplace transform of a non-negative function (see [25])

it is exponentially convex. Obviously ζt are n-convex functions for every t > 0.
For this family of functions, µt,q

(
zHi ,Ω3

)
, i = 1, 2, in this case [α, β] ⊆ R+, from

(61) becomes

µt,q
(
zHi ,Ω3

)
=


(

zH
i (ζt)

zH
i (ζq)

) 1
t−q

, t 6= q;

exp
(
−zH

i (id.ζt)

tzH
i (ζt)

− n
t lnt

)
, t = q 6= 1;

exp
(
− 1
n+1

zH
i (id.ζ1)

zH
i (ζ1)

)
, t = q = 1.
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This is monotonous function in parameters t and q by (60).
Using Theorem 4.5 it follows that

Mt,q

(
zHi ,Ω3

)
= −L(t, q)lnµt,q

(
zHi ,Ω3

)
, i = 1, 2.

satisfy

α ≤Mt,q

(
zHi ,Ω3

)
≤ β, i = 1, 2.

This shows that Mt,q

(
zHi ,Ω3

)
is mean for i = 1, 2. Because of the above inequality

(60), this mean is also monotonic. L(t, q) is logarithmic mean defined by

L(t, q) =


t−q

log t−log q , t 6= q;

t, t = q.

Example 5.4. Let

Ω4 = {γt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

be a family of functions defined by

γt(x) =
e−x
√
t

tn
.

Since dnγt
dxn (x) = e−x

√
t is the Laplace transform of a non-negative function (see

[25]) it is exponentially convex. Obviously γt are n-convex function for every t > 0.
For this family of functions, µt,q

(
zHi ,Ω4

)
, i = 1, 2, in this case for [α, β] ∈ R+,

from (61) becomes

µt,q
(
zHi ,Ω4

)
=


(

zH
i (γt)

zH
i (γq)

) 1
t−q

, t 6= q;

exp
(
− zH

i (id.γt)

2
√
tzH

i (γt)
− n

t

)
, t = q.

This is monotonous function in parameters t and q by (60).
Using Theorem 4.5 it follows that

Mt,q

(
zHi ,Ω4

)
= −

(√
t+
√
q
)
lnµt,q

(
zHi ,Ω4

)
, i = 1, 2

satisfy

α ≤Mt,q

(
zHi ,Ω4

)
≤ β, i = 1, 2.

This shows that Mt,q

(
zHi ,Ω4

)
is mean for i = 1, 2. Because of the above inequality

(60), this mean is also monotonic.
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