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Abstract. In this paper we enumerate the parameter matrices of all perfect 3-

colorings of GP(5,2), GP(6,2), and GP(7,2) graphs.
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Abstrak. Pada paper ini ditentukan matrik parameter dari 3-pewarnaan sempurna

dari graf GP(5,2), GP(6,2), dan GP(7,2).

Kata kunci:pewarnaan sempurna, partisi equitable, generalisasi graf Petersen

1. INTRODUCTION

The concept of a perfect m-coloring plays an important role in graph theory,
algebraic combinatorics, and coding theory (completely regular codes). There is
another term for this concept in the literature as ”equitable partition” (see Godsil
[8]). The existence of completely regular codes in graphs is a historical problem in
mathematics. Completely regular codes are a generalization of perfect codes. In
1973, Delsarte conjectured the non-existence of nontrivial perfect codes in Johnson
graphs. Therefore, some effort has been done on enumerating the parameter matri-
ces of some Johnson graphs, including J(6, 3), J(7, 3), J(8, 3), J(8, 4), and J(v, 3)
(v odd) (see Avgustinovich and Mogilnykh [2, 3] and Gavrilyuk and Goryainov [7]).
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Fon-Der-Flass enumerated the parameter matrices of n-dimensional hypercube Qn

for n < 24. He also obtained some constructions and a necessary condition for
the existence of perfect 2-colorings of the n-dimensional cube with a given param-
eter matrix (see Fon-Der-Flass [4, 5, 6]). Also, there are more results obtained by
researchers on perfect colorings of graphs (see [1, 10, 11]).

In this article we enumerate the parameter matrices of all perfect 3-colorings
of GP (5, 2), GP (6, 2), and GP (7, 2) graphs.

2. Definition and Concepts

In this section, we give some basic definitions and concepts.

Definition 2.1. The generalized Petersen graph GP (n, k) has vertices, respectively,
edges given by

V (GP (n, k)) = {ai, bi : 0 ≤ i ≤ n− 1},
E(GP (n, k)) = {aiai+1, aibi, bibi+k : 0 ≤ i ≤ n− 1},

where the subscripts are expressed as integers modulo n (≥ 5), and k (≥ 1) is the
”skip”. Moreover, The distinct eigenvalues of GP(5,2) are 3, 1, and −2.

Definition 2.2. For a graph G and an integer m, a mapping T : V (G) →
{1, · · · ,m} is called a perfect m-coloring with matrix A = (aij)i,j∈{1,··· ,m}, if it
is surjective, and for all i, j, for every vertex of color i, the number of its neighbors
of color j is equal to aij. The matrix A is called the parameter matrix of a perfect
coloring. In the case m = 3, we call the first color white, the second color black,
and the third color red.

The next theorem is useful to enumerate parameter matrices.

Theorem 2.3 (Godsil and Gordon[9]). If T is a perfect coloring of a graph G in
m colors, then any eigenvalue of T is an eigenvalue of G.

3. MAIN RESULTS

In this section, we first present some results concerning necessary conditions
for the existence of perfect 3-colorings of the graph GP (n, k) with a given parameter

matrix A =

a b c
d e f
g h i

.
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The simplest necessary condition for the existence of a perfect 3-colorings of

a cubic connected graph with the matrix

a b c
d e f
g h i

 is,

a+ b+ c = d+ e+ f = g + h+ i = 3.

Also, it is clear that we cannot have b = c = 0, d = f = 0, or g = h = 0, since the
graph is connected. In addition, b = 0⇔ d = 0, c = 0⇔ g = 0, and f = 0⇔ h = 0.

By using the conditions above and an easy computation, it can be seen that
there are only 109 matrices that can be a parameter matrix corresponding to a
perfect 3-coloring in a cubic connected graph.

In this paper, we consider all perfect 3-colorings, up to renaming the colors;
i.e, we identify the perfect 3-coloring with the matricesa c b

g i h
d f e

 ,
e d f
b a c
h g i

 ,
e f d
h i g
b c a

 ,
 i h g
f e d
c b a

 ,
 i g h
c a b
f d e

 ,
obtained by switching the colors with the original coloring.

Also, by using this condition and some computation, it is clear that we should
consider 22 out of 109 matrices. These matrices are listed below.1 1 1

1 1 1
1 1 1

,

0 3 0
1 0 2
0 1 2

,

0 3 0
1 0 2
2 0 1

,

0 3 0
2 0 1
0 1 2

,

0 3 0
2 0 1
0 2 1

,

0 3 0
1 1 1
0 1 2

,

0 3 0
1 1 1
0 2 1

,

0 3 0
1 0 2
0 3 0

,

0 3 0
1 1 1
0 3 0

,

1 2 0
1 1 1
0 1 2

,

1 2 0
1 1 1
0 2 1

,

1 2 0
1 0 2
0 1 2

,

1 2 0
1 0 2
0 2 1

,

1 2 0
2 0 1
0 1 2

,

2 1 0
1 1 1
0 1 2

,

2 1 0
1 0 2
0 1 2

,

0 1 2
1 1 1
1 1 1

,

0 1 2
1 1 1
1 2 0

,

0 1 2
1 1 1
2 1 0

,

0 1 2
1 0 2
1 2 0

,

0 1 2
2 0 1
1 2 0

,

1 1 1
2 0 1
2 1 0


The next proposition gives a formula for calculating the number of white,

black and red vertices, in a perfect 3-coloring.
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Proposition 3.1. Let T be a perfect 3-coloring of a graph G with the matrix

A =

a b c
d e f
g h i

.

(1) If b, c, f 6= 0, then

|W | = |V (G)|
b

d
+ 1 +

c

g

, |B| = |V (G)|
d

b
+ 1 +

f

h

, |R| = |V (G)|
h

f
+ 1 +

g

c

.

(2) If b = 0, then

|W | = |V (G)|
c

g
+ 1 +

ch

fg

, |B| = |V (G)|
f

h
+ 1 +

fg

ch

, |R| = |V (G)|
h

f
+ 1 +

g

c

.

(3) If c = 0, then

|W | = |V (G)|
b

d
+ 1 +

bf

dh

, |B| = |V (G)|
d

b
+ 1 +

f

h

, |R| = |V (G)|
h

f
+ 1 +

dh

bf

.

(4) If f = 0, then

|W | = |V (G)|
b

d
+ 1 +

c

g

, |B| = |V (G)|
d

b
+ 1 +

cd

bg

, |R| = |V (G)|
g

c
+ 1 +

bg

cd

.

Proof. (1): Consider the 3-partite graph obtained by removing the edges uv such
that u and v are the same color. By counting the number of edges between parts,
we can easily obtain |W |b = |B|d, |W |c = |R|g, and |B|f = |R|h. Now, we can
conclude the desired result from |W |+ |B|+ |R| = |V (G)|.
The proof of (2), (3), (4) is similar to (1). �

The next theorem can be useful to find the eigenvalues of a parameter matrix.

Theorem 3.2. If A =

a b c
d e f
g h i

 be a parameter matrix of a k-regular graph,

then the eigenvalues of A are

λ1,2 =
trA− k

2
±

√(
trA− k

2

)2

− detA

k
, λ3 = k.

Proof. By using the condition a+ b+ c = d+e+f = g+h+ i = k, it is clear that
one of the eigenvalues is k. Therefore detA = kλ1λ2. From λ2 = trA− λ1 − k, we
get

detA = kλ1(trA− λ1 − k) = −kλ21 + k(trA− k)λ1.
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By solving the equation λ2 + (k − trA)λ+
detA

k
= 0, we obtain

λ1,2 =
trA− k

2
±

√(
trA− k

2

)2

.− detA

k

�

The parameter matrices of GP(5,2) are enumerated in the next theorem.

Theorem 3.3. The graph GP (5, 2) has perfect 3-colorings only with the matrices0 3 0
1 0 2
0 1 2

 and

1 2 0
1 0 2
0 2 1

.

Proof. As the graph GP (5, 2) has 10 vertices, by using Proposition 3.1, it can
be seen that the graph GP (5, 2) can have perfect 3-coloring only with the matrices
below. 0 3 0

1 1 1
0 3 0

,

0 3 0
1 0 2
0 1 2

,

1 2 0
1 1 1
0 1 2

,

1 2 0
1 0 2
0 2 1

.

By using Theorem 2.3 and 3.2, it can be seen that there are no perfect 3-colorings

with the matrices

0 3 0
1 1 1
0 3 0

 and

1 2 0
1 1 1
0 1 2

.

Now, consider the mapping T : Gp(5, 2)→ {1, 2, 3} by T (a0) = 1, T (a1) = T (a4) =
T (b0) = 2, and T (a2) = T (a3) = T (b1) = T (b2) = T (b3) = T (b4) = 3. It is easliy

seen that this mapping is a perfect 3-coloring with the matrix

0 3 0
1 0 2
0 1 2

.

Next, consider the mapping T : Gp(5, 2)→ {1, 2, 3} by T (a0) = T (b0) = 1, T (a1) =
T (a4) = T (b2) = T (b3) = 2, and T (a2) = T (a3) = T (b1) = T (b4) = 3. It can be

easily seen that this mapping is a perfect 3-coloring with the matrix

1 2 0
1 0 2
0 2 1

. �

Now, we present a useful lemma in order to enumerate the parameter matrices of
GP (n, 2), especially GP (6, 2) and GP (7, 2).

Lemma 3.4. There are no perfect 3-colorings of GP (n, 2) with the matrices1 2 0
2 0 1
0 1 2

 ,
2 1 0

1 1 1
0 1 2

 ,
0 3 0

1 0 2
0 2 1

 ,
0 3 0

1 1 1
0 1 2

 ,
1 2 0

1 0 2
0 1 2

 .
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Proof. We give the proof only for the matrix

1 2 0
2 0 1
0 1 2

; the other cases are

similar. Suppose, contrary to our claim, there is a perfect 3-coloring of GP (n, 2)

with the matrix

1 2 0
2 0 1
0 1 2

, say T . Let T (a0) = 1. First, take T (b0) = 1. Hence,

T (a1) = T (b2) = 2 and, in consequence, T (a2) = 1. Then T (a3) = 1 and T (b1) = 3.
From T (a3) = T (a2) = 1, we conclude that T (b2) = T (b3) = T (a4) = 2. As
T (b2) = 2 and T (b0) = T (a2) = 1, we get T (b4) = 3 which is a contradiction of
T (a4) = T (b2) = 2. Now, suppose that T (b0) = 2 and, by symmetry, T (a1) = 1.
Hence, T (b1) = T (a2) = 2. From T (a2) = T (b0) = 2, we conclude that T (b2) = 1
and, in consequence, T (a3) = T (a4) = T (b3) = 3. As T (a2) = T (b0) = 2 and
T (b2) = 1, we get T (b4) = 1 which is a contradiction of T (a4) = 3. �

Now, we finish this paper by enumerating the parameter matrices of GP (6, 2)
and GP (7, 2).

Theorem 3.5. The graph GP (6, 2) has perfect 3-colorings only with the matrices0 1 2
1 1 1
2 1 0

 and

1 1 1
1 1 1
1 1 1

.

Proof. As the graph GP (6, 2) has 12 vertices, by using Proposition 3.1, it can
be seen that the graph GP (6, 2) can have perfect 3-coloring only with the matrices
below. 1 2 0

2 0 1
0 1 2

,

2 1 0
1 1 1
0 1 2

,

0 1 2
1 1 1
2 1 0

,

1 1 1
1 1 1
1 1 1

.

By using Lemma 3.4, it can be seen that there are no perfect 3-colorings with the

matrices

1 2 0
2 0 1
0 1 2

 and

2 1 0
1 1 1
0 1 2

.

Now, consider the mapping T : Gp(6, 2) → {1, 2, 3} by T (a2) = T (a5) = T (b2) =
T (b5) = 1, T (a1) = T (a4) = T (b1) = T (b4) = 2, and T (a0) = T (a3) = T (b0) =
T (b3) = 3. It is easliy seen that this mapping is a perfect 3-coloring with the matrix1 1 1

1 1 1
1 1 1

.

Next, consider the mapping T : Gp(6, 2) → {1, 2, 3} by T (a0) = T (a3) = T (b2) =
T (b4) = 1, T (a1) = T (a4) = T (b1) = T (b4) = 2, and T (a2) = T (a4) = T (b0) =
T (b3) = 3. It can be easily seen that this mapping is a perfect 3-coloring with the

matrix

0 1 2
1 1 1
2 1 0

. �
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Theorem 3.6. The graph GP (7, 2) has no perfect 3-colorings.

Proof. As the graph GP (7, 2) has 14 vertices, by using Proposition 3.1, it can
be seen that the graph GP (7, 2) can have perfect 3-coloring only with the matrices
below. 0 3 0

1 0 2
0 2 1

,

0 3 0
1 1 1
0 1 2

,

1 2 0
1 0 2
0 1 2

.

By using Lemma 3.4, it can be seen that there are no perfect 3-colorings with the
above matrices which is our claim. �
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