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Abstract. In the present paper, we introduce the notion of (semi)hyperring (R,+, ·)
together with a suitable partial order ≤. This structure is called an ordered

(semi)hyperring. Also, we present several examples of ordered (semi)hyperrings

and prove some results in this respect. By using the notion of pseudo order on an

ordered (semi)hyperring (R,+, ·,≤), we obtain an ordered (semi)ring. Finally, we

study some properties of pseudoorder on an ordered (semi)hyperring.
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strongly regular relation, pseudoorder.

Abstrak. Dalam makalah ini diperkenalkan notasi dari (semi)hyperring (R,+, ·)
bersama dengan suatu suitable partial order ≤. Struktur ini disebut ordered

(semi)hyperring. Beberapa contoh dari ordered (semi)hyperring disajikan dan

dibuktikan. Dengan menggunakan notasi dari pseudoorder pad suatu ordered

(semi)hyperring (R,+, ·,≤), diperoleh suatu ordered (semi)ring. Beberapa sifat

dari pseudoorder pad suatu ordered (semi)hyperring.

Kata kunci: Algebraic hyperstructure, ordered (semi)hyperring, strongly regular

relation, pseudoorder.

1. Introduction

Similar to hypergroups, the hyperrings extend the classical notion of rings.
There exist different types of hyperrings. The more general structure that satisfies
the ring-like axioms is the hyperring in the general sense. De Salvo [11] studied
hyperrings in which the additions and the multiplications were hyperoperations;
also see [1, 9, 23, 27, 30]. We refer the reader to Davvaz and Leoreanu-Fotea [8]
for basic notions updated to 2007 of hyperring theory. Algebraic hyperstructures
are a suitable extension of classical algebraic structures. In a classical algebraic
structure, the composition of two elements is an element, while in an algebraic
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hyperstructure, the composition of two elements is a set. In 1934, the concept of
hyperstructure was first introduced by a French mathematician, Marty [20], at the
eighth Congress of Scandinavian Mathematicians where he defined hypergroups as
a generalization of groups. Several books have been written on this topic, for exam-
ple, see [4, 5, 8, 29]. Further introduction to semihypergroups and hypergroups can
be found in [4]. In [28], Vougiouklis introduced the concept of semihyperring, where
both the addition and multiplication are hyperoperation. Semihyperrings extend
the classical notion of semirings. There exist different types of semihyperrings. The
more general structure that satisfies the semiring-like axioms is the semihyperring
in the general sense.

Bakhshi and Borzooei [2] introduced the notion of ordered polygroups. Hei-
dari and Davvaz introduced and studied ordered semihypergroup in [15]. Chvalina
[6] and Hort [16] used ordered structures for the construction of hypergroups.
Chvalina [6] started the concept of ordered semihypergroups as a special class of
hypergroups in 1994. The concept of ordered semihypergroups is a generalization
of the concept of ordered semigroups. Several authors have recently studied differ-
ent aspects of ordered semihypergroups, for instance, Changphas and Davvaz [3],
Chvalina and Moucka [7], Davvaz et al. [10], Gu and Tang [14], Heidari and Davvaz
[15], Hoskova [17], Tang et al. [25], and many others. By an ordered semihyper-
group, we mean an algebraic hyperstructure (S, ◦,≤), which satisfies the following
conditions: (1) (S, ◦) is a semihypergroup together with a partial order ≤; (2) If
x, y and z are elements of S such that x ≤ y, then z ◦ x ≤ z ◦ y and x ◦ z ≤ y ◦ z.
Here, z ◦ x ≤ z ◦ y means for any a ∈ z ◦ x there exists b ∈ z ◦ y such that a ≤ b.
The case x ◦ z ≤ y ◦ z is defined similarly.

In this paper, we define the notion of ordered (semi)hyperrings and give some
examples. Moreover, we define pseudoorder on ordered (semi)hyperrings and also
a connection between ordered (semi)hyperrings and ordered (semi)rings has been
investigated.

2. Basic definitions and preliminaries

In this section, we recall some definitions and notations that will be used in
the sequel.

A mapping ◦ : S × S → P∗(S), where P∗(S) denotes the family of all non-
empty subsets of S, is called a hyperoperation on S. The couple (S, ◦) is called a
hypergroupoid. In the above definition, if A and B are two non-empty subsets of S
and x ∈ S, then we denote

A ◦B =
⋃
a∈A
b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

A hypergroupoid (S, ◦) is called a semihypergroup if for all x, y, z ∈ S, x ◦ (y ◦ z) =
(x ◦ y) ◦ z, which means that ⋃

u∈y◦z
x ◦ u =

⋃
v∈x◦y

v ◦ z.
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A hypergroupoid (S, ◦) is called a quasihypergroup if for all x ∈ S, we have
S ◦ x = x ◦ S = S. This condition is also called the reproduction axiom. A
hypergroupoid (S, ◦) which is both a semihypergroup and a quasihypergroup is
called a hypergroup.

A comprehensive review of hyperrings theory is covered in Davvaz and Vou-
giouklis [9], Spartalis [24], Vougiouklis [30] and in the book [8] written by Davvaz
and Leoreanu-Fotea. In the following, we consider one of the most general types of
hyperrings.

Definition 2.1. A triple (R,+, ·) is a (general) hyperring, if:

(1) (R,+) is a hypergroup;
(2) (R, ·) is a semihypergroup;
(3) The hyperoperation · is distributive with respect to the hyperoperation +,

i.e., for all a, b, c ∈ R, a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

In the following, we shall use the term of a hyperring, instead of the term
of a general hyperring, intending the above definition. A non-empty subset A of
R is called a subhyperring of (R,+, ·) if (A,+) is a subhypergroup of (R,+) and
A ·A ⊆ A. A subhyperring A of a hyperring R is a left hyperideal of R if r · a ⊆ A,
for all r ∈ R and a ∈ A. A right hyperideal of a hyperring R is defined in a similar
way. A subhyperring A is called a hyperideal if A is both left and right hyperideal.

The algebraic hypersystem (R,+, ·) is a semihyperring if addition and multi-
plication are both hyperoperations such that (R,+) and (R, ·) are semihypergroups
and the hyperoperation · is distributive with respect to the hyperoperation +, which
means that for all x, y, z ∈ R, we have x·(y+z) = x·y+x·z and (x+y)·z = x·z+y·z.
A non-empty subset A of R is called a subsemihyperring of R if for all x, y ∈ A,
we have x + y ⊆ A and x · y ⊆ A. A subsemihyperring A of R is said to be a
left hyperideal of R if r · x ⊆ A, for all r ∈ R and x ∈ A. A right hyperideal of a
semihyperring R is defined in a similar way. A subsemihyperring A of R which is
both a left and a right hyperideal of R is said to be a hyperideal of R.

Let (R,+, ·) and (T,+′, ·′) be two (semi)hyperrings. A mapping ϕ : R → T
is said to be a homomorphism if for all x, y ∈ R, ϕ(x + y) ⊆ ϕ(x) +′ ϕ(y)
and ϕ(x · y) ⊆ ϕ(x) ·′ ϕ(y). Also ϕ is called a good homomorphism if in the
previous conditions (1) and (2), the equality is valid. An isomorphism from R
into T is a bijective good homomophism. Let σ be an equivalence relation on a
(semi)hyperring (R,+, ·). We define the following hyperoperations on R/σ as fol-
lows: σ(x)⊕ σ(y) = {σ(z) | z ∈ x+ y} and σ(x)� σ(y) = {σ(z) | z ∈ x · y}. Then,
the relation σ is regular if and only if (R/σ,⊕,�) is a (semi)hyperring. Also, σ is
strongly regular if and only if (R/σ,⊕,�) is a (semi)ring.

A partial order is a relation ≤ on a non-empty set R which satisfies conditions
reflexivity, antisymmetry and transitivity. A relation ≤ on a non-empty set R is
called a preorder on R if it is reflexive and transitive. By an ordered semigroup, we
mean an algebraic structure (S, ·,≤), which satisfies the following properties: (1)
(S, ·) is a semigroup; (2) S is a partial ordered set by ≤; (3) a ≤ b implies a ·c ≤ b ·c
and c · a ≤ c · b for all a, b, c ∈ S. Vandiver [26] gave the first formal definition of
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a semiring in 1934. For an introduction to theory of semirings we refer the read-
ers to [13]. There are different definitions of a semiring. Throughout this paper,
a semiring will be defined as follows: A semiring (R,+, ·) is an algebraic system
together with two binary operations addition and multiplication denoted by + and
· respectively, satisfying the following conditions: (1) (R,+) is a (commutative)
semigroup; (2) (R, ·) is a semigroup; (3) multiplication is distributive from both
sides over addition. By zero of a semiring (R,+, ·) we mean an element 0 ∈ R such
that x+ 0 = 0 +x = x and x · 0 = 0 ·x = 0 for all x ∈ R. A semiring with zero and
a commutative semigroup (R,+) is called a hemiring. In 2011, the concept of an
ordered semiring was studied by Gan and Jiang [12]. A semiring (R,+, ·) is said
to be an ordered semiring if there exists a partial order relation ≤ on R such that
(1) If a ≤ b then a+ c ≤ b+ c and c+ a ≤ c+ b for all a, b, c ∈ R; (2) If a ≤ b then
a · c ≤ b · c and c · a ≤ c · b for all a, b, c ∈ R.

3. Ordered (semi)hyperrings

Let σ be an equivalence relation on a (semi)hyperring (R,+, ·). If A and
B are non-empty subsets of R, then AσB means that for all a ∈ A, there exists
b ∈ B such that aσb and for all b′ ∈ B, there exists a′ ∈ A such that a′σb′. Also,
AσB means that for all a ∈ A and for all b ∈ B, we have aσb. An equivalence
relation σ on R is said to be regular if for all a, b, x ∈ R, we have (i) aσb ⇒
(a+ x)σ(b+ x) and (x+ a)σ(x+ b); (ii) aσb⇒ (a · x)σ(b · x) and (x · a)σ(x · b). An
equivalence relation σ on R is said to be strongly regular if for all a, b, x ∈ R, we have
(i) aσb⇒ (a+x)σ(b+x) and (x+a)σ(x+b); (ii) aσb⇒ (a·x)σ(b·x) and (x·a)σ(x·b).

Regular and strongly regular relations are important in order to study the
quotient structures, as the following theorems show.

Theorem 3.1. Let (R,+, ·) be a (semi)hyperring and σ be an equivalence relation
on R. If we define the following hyperoperations on the set of all equivalence classes
with respect to σ, that is, R/σ = {σ(r) | r ∈ R}:

σ(x)⊕ σ(y) = {σ(z) | z ∈ x+ y},
σ(x)� σ(y) = {σ(z) | z ∈ x · y},

then σ is regular if and only if (R/σ,⊕,�) is a (semi)hyperring.

Theorem 3.2. An equivalence relation σ on a (semi)hyperring (R,+, ·) is strongly
regular if and only if (R/σ,⊕,�) is a (semi)ring.

Let ϕ be a good homomorphism from a (semi)hyperring (R,+, ·) to a (semi)-
hyperring (T,+′, ·′). Then, the relation σϕ = {(a, b) ∈ R × R | ϕ(a) = ϕ(b)} on R
is called the relation on R induced by ϕ.

Lemma 3.3. Let ϕ be a good homomorphism from a (semi)hyperring (R,+, ·) to a
(semi)hyperring (T,+′, ·′). Then, σϕ is a regular equivalence relation on (R,+, ·).

Proof. One can see that σϕ is an equivalence relation on R. Let a, b, x ∈ R be
such that aσϕb. Then ϕ(a) = ϕ(b) and so we have ϕ(a + x) = ϕ(a) +′ ϕ(x) =
ϕ(b) +′ ϕ(x) = ϕ(b + x). Now, for any u ∈ a + x there exists v ∈ b + x such
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that ϕ(u) = ϕ(v), i.e., uσϕv. Also, for any v′ ∈ b + x there exists u′ ∈ a + x
such that ϕ(u′) = ϕ(v′), i.e., u′σϕv

′. This implies that (a+ x)σϕ(b+ x). Similarly,
(x+a)σϕ(x+b), (a·x)σϕ(b·x) and (x·a)σϕ(x·b). Hence, σϕ is a regular equivalence
relation on (R,+, ·). �

One can easily prove the following theorems.

Theorem 3.4. (R/σϕ,⊕,�) is a (semi)hyperring.

Theorem 3.5. Let ϕ be a good homomorphism from a (semi)hyperring (R,+, ·) to
a (semi)hyperring (T,+′, ·′). Then, R/σϕ ∼= Imϕ.

Theorem 3.6. Let σ and θ be two regular equivalence relation on a (semi)hyperring
(R,+, ·) such that σ ⊆ θ. We define a relation θ/σ on R/σ as follows:

(σ(a), σ(b)) ∈ θ/σ ⇔ (a, b) ∈ θ.

Then,

(1) θ/σ is a regular equivalence relation on (R/σ,⊕,�).
(2) (R/σ)/(θ/σ) ∼= R/θ.

In the following, we introduce the concept of ordered (semi)hyperring and
give some examples that illustrate the significance of this hyperstructure.

Definition 3.7. An algebraic hypersructure (R,+, ·,≤) is called an ordered (semi)-
hyperring if (R,+, ·) is a (semi)hyperring with a partial order ≤ such that for all
a, b, and c in R:

(1) If a ≤ b, then a + c ≤ b + c, meaning that for any x ∈ a + c, there exists
y ∈ b+ c such that x ≤ y. The case c+ a ≤ c+ b is defined similarly.

(2) If a ≤ b and c ∈ R, then a · c ≤ b · c, meaning that for any x ∈ a · c, there
exists y ∈ b · c such that x ≤ y. The case c · a ≤ c · b is defined similarly.

Example 3.8. Every (semi)hyperring induces an ordered (semi)hyperring. Indeed:
Let (R,+, ·) be a (semi)hyperring. Define the order ≤R on R by ≤R:= {(x, y) | x =
y}. Then (R,+, ·,≤R) forms an ordered (semi)hyperring.

Example 3.9. Let R = {a, b} be a set with two hyperoperations + and · defined as
follows:

+ a b
a a {a, b}
b {a, b} {a, b}

· a b
a a {a, b}
b a {a, b}

Then, (R,+, ·) is a hyperring. We have (R,+, ·,≤) is an ordered hyperring where
the order relation ≤ is defined by:

≤:= {(a, a), (b, b), (a, b)}.

The covering relation and the figure of R are given by:

≺= {(a, b)}.
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ba

bb

Example 3.10. Let R = {a, b} be a set with two hyperoperations + and · defined
as follows:

+ a b
a a {a, b}
b b b

· a b
a a a
b a b

Then, (R,+, ·) is a semihyperring. We have (R,+, ·,≤) is an ordered semihyperring
where the order relation ≤ is defined by:

≤:= {(a, a), (b, b), (a, b)}.

The covering relation and the figure of R are given by:

≺= {(a, b)}.

ba

bb

Example 3.11. Let R = {0, a, b} be a set with two hyperoperations + and · defined
as follows:

+ 0 a b
0 0 a b
a a {a, b} R
b b R {a, b}

· 0 a b
0 0 0 0
a 0 R R
b 0 R R

Then, (R,+, ·) is a hyperring. We have (R,+, ·,≤) is an ordered hyperring where
the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (0, a), (0, b), (a, b)}.

The covering relation and the figure of R are given by:

≺= {(0, a), (a, b)}.
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b0

ba

bb

Example 3.12. Let R = {a, b, c, d} be a set with two hyperoperations + and ·
defined as follows:

+ a b c d
a a {a, b} {c, d} {c, d}
b {a, b} {a, b} {c, d} {c, d}
c {c, d} {c, d} {a, b} {a, b}
d {c, d} {c, d} {a, b} {a, b}

· a b c d
a {a, b} {a, b} {a, b} {a, b}
b {a, b} {a, b} {a, b} {a, b}
c {a, b} {a, b} {c, d} {c, d}
d {a, b} {a, b} {c, d} {c, d}

Then, (R,+, ·) is a hyperring [8]. We have (R,+, ·,≤) is an ordered hyperring
where the order relation ≤ is defined by:

≤:= {(a, a), (b, b), (c, c), (d, d), (a, b), (c, d)}.
The covering relation and the figure of R are given by:

≺= {(a, b), (c, d)}.

b
c

b
a

bdbb

Example 3.13. Let R = {0, a, b, c, d} be a set with the following hyperoperations:

+ 0 a b c d
0 0 a b c d
a a {0, a} b c d
b b b {0, a} d c
c c c d {0, a} b
d d d c b {0, a}

and
· 0 a b c d
0 0 0 0 0 0
a 0 {0, a} {0, a} {0, a} {0, a}
b 0 {0, a} {0, a} {0, a} {0, a}
c 0 {0, a} {0, a} {0, a} {0, a}
d 0 {0, a} {0, a} {0, a} {0, a}
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Then, (R,+, ·) is a hyperring [31]. We have (R,+, ·,≤) is an ordered hyperring
where the order relation ≤ is defined by:

≤:= {(0, 0), (0, a), (a, a), (b, b), (c, c), (d, d)}.

The covering relation and the figure of R are given by:

≺= {(0, a)}.

b
b

b
c

b
db

0

ba

Example 3.14. Let R = {a, b, c, d, e} be a set with the following hyperoperations:

+ a b c d e
a a {b, c} {b, c} d e
b {b, c} d d e a
c {b, c} d d e a
d d e e a {b, c}
e e a a {b, c} d

and

· a b c d e
a a a a a a
b a {b, c} {b, c} d e
c a {b, c} {b, c} d e
d a d d a d
e a e e d {b, c}

Then, (R,+, ·) is a commutative hyperring [8]. We have (R,+, ·,≤) is an ordered
hyperring where the order relation ≤ is defined by:

≤:= {(a, a), (b, b), (c, c), (d, d), (e, e), (b, c)}.

The covering relation and the figure of R are given by:

≺= {(b, c)}.

b
a

b
d

b
eb

b

bc
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Example 3.15. Let R = {a, b, c, d, e, f, g} be a set with the hyperaddition + defined
as follows:

+ a b c d e f g
a {a, b} {a, b} c d e f g
b {a, b} {a, b} c d e f g
c c c {a, b} f g d e
d d d g {a, b} f e c
e e e f g {a, b} c d
f f f e c e g {a, b}
g g g d e c {a, b} f

we define a hyperoperation · as follows:

x · y = {a, b},∀x, y ∈ R.

Then, (R,+, ·) is a hyperring [21]. We have (R,+, ·,≤) is an ordered hyperring
where the order relation ≤ is defined by:

≤ := {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g), (a, b)}.
The covering relation and the figure of R are given by:

≺ = {(a, b)}.

b
c

b
d

b
e

b
f

b
gb

a

bb

Proposition 3.16. Let (R,+, ·,≤R) and (T,+′, ·′,≤T ) be two ordered (semi)hyper-
rings. Then, R× T is an ordered (semi)hyperring where for all (s1, t1) and (s2, t2)
in R× T we define

(1) (s1, t1) ] (s2, t2) = {(x, y) | x ∈ s1 + s2, y ∈ t1 +′ t2},
(2) (s1, t1)⊗ (s2, t2) = {(x, y) | x ∈ s1 · s2, y ∈ t1 ·′ t2},
(3) (s1, t1) � (s2, t2) if and only if s1 ≤R s2 and t1 ≤T t2.

Proof. The proof is straightforward. �

In the following theorem, for all x ∈ R, the class of x is denoted by x and
defined by x = {y | xσy}. The quotient of R with respect to σ is denoted by R/σ
and defined by R/σ = {x | x ∈ R}.

Theorem 3.17. Let (R,+, ·,≤) be a partially preordered (semi)hyperring and σ
be a strongly regular relation on R. Then, (R/σ,⊕,�,�) is a partially preordered
(semi)ring with respect to the following hyperoperations on the quotient set R/σ as
follows:

a⊕ b = {c | c ∈ a+ b},
a� b = {c | c ∈ a · b},
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where for all a, b ∈ R/σ the preorder relation � is defined by:

a � b⇔ ∀a1 ∈ a∃b1 ∈ b such that a1 ≤ b1.

Proof. σ is a strongly regular relation on R. Hence, by Theorem 3.2, (R/σ,⊕,�) is
a (semi)ring. First, we show that the binary relation � is a partial preorder relation
on R/σ. Since a ≤ a, so a � a for every a ∈ R/σ. Thus � is reflexive. Now, let
a � b and b � a. Take any a1 ∈ a; then there exists b1 ∈ b such that a1 ≤ b1. For
this b1 ∈ b there exists c1 ∈ c such that b1 ≤ c1. Hence for every a1 ∈ a there exists
some c1 ∈ c such that a1 ≤ c1. This implies that a � c. So we have shown that �
is transitive.

The ⊕, � hyperoperations are compatible with the � preorder. To see this,
suppose that a, b, x ∈ R/σ, a � b. If u = x ⊕ a, then for every u1 ∈ u there exist
x1 ∈ x and a1 ∈ a such that u1 ∈ x1 + a1. Since a1 ∈ a � b there exists b1 ∈ b such
that a1 ≤ b1. Hence x1 + a1 ≤ x1 + b1. Thus there exists v1 ∈ x1 + b1 such that
u1 ≤ v1. Therefore, u = u1 � v1 = x⊕ b. If s = x� a, then for every s1 ∈ s there
exist x1 ∈ x and a1 ∈ a such that s1 ∈ x1 · a1. Since a1 ∈ a � b there exists b1 ∈ b
such that a1 ≤ b1. Hence x1 · a1 ≤ x1 · b1. Thus there exists t1 ∈ x1 · b1 such that
s1 ≤ t1. Therefore, s = s1 � t1 = x � b. Therefore, (R/σ,⊕,�,�) is a partially
preordered (semi)ring. �

Definition 3.18. Let (R,+, ·,≤) be an ordered hyperring. A non-empty subset I
of R is called a hyperideal of R if it satisfies the following conditions:

(1) (I,+) is a subhypergroup of (R,+);
(2) (I ·R) ∪ (R · I) ⊆ I;
(3) When x ∈ I and y ∈ R such that y ≤ x, imply that y ∈ I.

Example 3.19. In Example 3.14, {a, d} is a hyperideal of R.

In the theory of hyperrings, fundamental relations make a connection between
hyperrings and ordinary rings. The relation γ∗ is the smallest strongly regular
relation and it is called the fundamental relation on the hyperring (R,+, ·). In
order to see which elements are in the equivalence relation γ∗, we denote the set
of all finite hypersums of finite hyperproducts of elements of (R,+, ·) by U and we
have xγy ⇔ ∃u ∈ U such that {x, y} ⊂ u.

Definition 3.20. [29, 30] Let (R,+, ·) be a hyperring. We define the relation γ
as follows: xγy ⇔ ∃n ∈ N,∃ki ∈ N,∃(xi1, · · · , xiki) ∈ Rki , 1 ≤ i ≤ n, such that

{x, y} ⊆
∑n
i=1

(∏ki
j=1 xij

)
. The relation γ is reflexive and symmetric. Let γ∗ be

the transitive closure of γ.

In [29, 30] it was proved that

Theorem 3.21. Let (R,+, ·) be a hyperring. Then,

(1) γ∗ is a strongly regular relation both on (R,+) and (R, ·).
(2) The quotient R/γ∗ is a ring.
(3) The relation γ∗ is the smallest equivalence relation on R such that the

quotient R/γ∗ is a ring. R/γ∗ is called the fundamental ring.
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4. Pseudoorder in ordered (semi)hyperrings

In [18], Kehayopulu and Tsingelis gave the example of an ordered semigroup
(S, ·,≤) and a congruence σ on S such that the relation � on S/σ, denoted by

�:= {(σ(a), σ(b)) ∈ S/σ × S/σ | ∃x ∈ σ(a),∃y ∈ σ(b) such that (x, y) ∈≤},

is not an order relation on S/σ, in general. Let (R,+, ·) be a semihyperring and σ an
equivalence relation on R. We define the following hyperoperations on the quotient
set R/σ: σ(x) ⊕ σ(y) = {σ(z) | z ∈ x + y} and σ(x) � σ(y) = {σ(z) | z ∈ x · y}.
It is well known that σ is a strongly regular relation if and only if (R/σ,⊕,�) is
a semiring. Now, the following question is natural: If (R,+, ·,≤) is an ordered
semihyperring and σ is a strongly regular relation on R, then is the set R/σ an
ordered semiring? A probable order on R/σ could be the relation � on R/σ defined
by means of the order ≤ on R, that is,

�:= {(σ(a), σ(b)) ∈ R/σ ×R/σ | ∃x ∈ σ(a),∃y ∈ σ(b) such that (x, y) ∈≤}.

But this relation is not an order, in general. It is enough we consider the following
example.

Example 4.1. Let R = {a, b, c, d, e} be a set with two hyperoperations + and ·
defined as follows:

+ a b c d e
a {b, c} {b, d} {b, d} {b, d} {b, d}
b {b, d} {b, d} {b, d} {b, d} {b, d}
c {b, d} {b, d} {b, d} {b, d} {b, d}
d {b, d} {b, d} {b, d} {b, d} {b, d}
e {b, d} {b, d} {b, d} {b, d} {b, d}

and

· a b c d e
a {b, d} {b, d} {b, d} {b, d} {b, d}
b {b, d} {b, d} {b, d} {b, d} {b, d}
c {b, d} {b, d} {b, d} {b, d} {b, d}
d {b, d} {b, d} {b, d} {b, d} {b, d}
e {b, d} {b, d} {b, d} {b, d} {b, d}

Then, (R,+, ·) is a semihyperring. We have (R,+, ·,≤) is an ordered semihyperring
where the order relation ≤ is defined by:

≤:= {(a, a), (b, b), (b, e), (c, c), (c, d), (d, d), (e, e)}.

The covering relation and the figure of R are given by:

≺= {(b, e), (c, d)}.
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Let σ be a strongly regular relation on R defined as follows:

σ := {(a, a), (b, b), (b, d), (c, c), (c, e), (d, b), (d, d), (e, c), (e, e)}.
Let � be an order on R/σ defined by means of the order ≤ on R, that is,

�:= {(σ(a), σ(b)) | ∃x ∈ σ(a),∃y ∈ σ(b) such that (x, y) ∈≤}.
We have σ(b) = {b, d} and σ(c) = {c, e}. Also,

σ(b) � σ(c) since b ∈ σ(b), e ∈ σ(c), (b, e) ∈≤,

σ(c) � σ(b) since c ∈ σ(c), d ∈ σ(b), (c, d) ∈≤ .
Since σ(b) 6= σ(c), it follows that � is not an order relation on R/σ.

The following question arises:

Question. Let (R,+, ·,≤) be an ordered (semi)hyperring. Is there a strongly reg-
ular relation σ on R for which R/σ is an ordered (semi)ring?

Our main aim in the following is reply to the above question. This leads us
to the concept of pseudoorders of ordered (semi)hyperrings.

Davvaz et al. [10], investigated the relationship between ordered semihy-
pergroups and ordered semigroups by using pseudoorders. In case of ordered
semigroups, pseudoorders play the role of congruences of semigroups. The con-
cept of pseudoorder on an ordered semigroup (S, ·,≤) was introduced and studied
by Kehayopula and Tsingelis [18, 19]. Now, we extend this notion for ordered
(semi)hyperrings. We continue this section with the following definition.

Definition 4.2. Let (R,+, ·,≤) be an ordered (semi)hyperring. A relation σ on R
is called pseudoorder if for all a, b, c ∈ R, we have

(1) ≤⊆ σ,
(2) aσb and bσc imply aσc,
(3) aσb implies a+ cσb+ c and c+ aσc+ b,
(4) aσb implies a · cσb · c and c · aσc · b.

Lemma 4.3. Let {σi | i ∈ Ω} be a set of pseudoorders on an ordered (semi)hyperring
(R,+, ·,≤). Then, σ =

⋂
i∈Ω

σi is a pseudoorder on (R,+, ·,≤).

Proof. Obviously, ≤⊆ σ and σ is transitive. Now, let aσb and c ∈ R. Then aσib
for all i ∈ Ω. Since each σi is a pseudoorder on R, by conditions (3) and (4) of
Definition 4.2, we conclude that

a+ cσib+ c,
c+ aσic+ b,
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a · cσib · c,
c · aσic · b.

Hence, for every u ∈ a + c and v ∈ b + c, we have uσiv for all i ∈ Ω. So, we have
uσv. This implies that a+ cσb+ c. Similarly, we obtain c+ aσc+ b, a · cσb · c and
c · aσc · b. Thus, σ is a pseudoorder on R. �

Definition 4.4. Let Θ = {θi | i ∈ Ω} be a family of pseudoorders on an ordered
(semi)hyperring (R,+, ·,≤). We say that Θ separates the elements of R if for each
x, y ∈ R, (x, y) /∈≤, there exists θi ∈ Θ such that (x, y) /∈ θi.

Lemma 4.5. Let Θ = {θi | i ∈ Ω} be a family of pseudoorders on an ordered
(semi)hyperring (R,+, ·,≤). If Θ separates the elements of R, then ≤=

⋂
i∈Ω

θi.

Conversely, if
⋂
i∈Ω

θi ⊆≤, then Θ separates the elements of R.

Proof. The proof is similar to the proof of Lemma 3 in [18]. �

In the following, by using the notion of pseudoorder, we obtain an ordered
semiring from an ordered semihyperring.

Theorem 4.6. Let (R,+, ·,≤) be an ordered semihyperring and σ a pseudoorder
on R. Then, there exists a strongly regular equivalence relation σ∗ = {(a, b) ∈
R×R | aσb and bσa} on R such that (R/σ∗,⊕,�,�) is an ordered semiring, where
�:= {(σ∗(x), σ∗(y)) ∈ R/σ∗×R/σ∗ | ∃a ∈ σ∗(x),∃b ∈ σ∗(y) such that (a, b) ∈ σ}.

Proof. Suppose that σ∗ is the relation on R defined as follows:

σ∗ = {(a, b) ∈ R×R | aσb and bσa}.

First, we show that σ∗ is a strongly regular relation on (R,+) and (R, ·). Since
(a, a) ∈≤ and ≤⊆ σ, we have aσa. So, aσ∗a. If (a, b) ∈ σ∗, then aσb and bσa.
Hence, (b, a) ∈ σ∗. If (a, b) ∈ σ∗ and (b, c) ∈ σ∗, then aσb, bσa, bσc and cσb.
Hence, aσc and cσa, which imply that (a, c) ∈ σ∗. Thus σ∗ is an equivalence
relation. Now, let aσ∗b and c ∈ R. Then aσb and bσa. Since σ is a pseudoorder on
R, by conditions (3) and (4) of Definition 4.2, we conclude that

a+ cσb+ c, c+ aσc+ b,
b+ cσa+ c, c+ bσc+ a,

a · cσb · c, c · aσc · b,
b · cσa · c, c · bσc · a.

Hence, for every x ∈ a + c and y ∈ b + c, we have xσy and yσx which imply that

xσ∗y. So, a+cσ∗b+c. Similarly, we have c+aσ∗c+b. Thus, σ∗ is a strongly regular
relation on (R,+). Clearly, σ∗ is a strongly regular relation on (R, ·). Hence, by
Theorem 3.2, R/σ∗ with the following operations is a semiring:

σ∗(x)⊕ σ∗(y) = σ∗(z), for every z ∈ x+ y;

σ∗(x)� σ∗(y) = σ∗(w), for every w ∈ x · y.
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Now, we define a relation � on R/σ∗ as follows:

�:= {(σ∗(x), σ∗(y)) ∈ R/σ∗ ×R/σ∗ | ∃a ∈ σ∗(x),∃b ∈ σ∗(y) such that (a, b) ∈ σ}.
We show that

σ∗(x) � σ∗(y)⇔ xσy.

Let σ∗(x) � σ∗(y). We show that for every a ∈ σ∗(x) and b ∈ σ∗(y), aσb. Since
σ∗(x) � σ∗(y), there exist x′ ∈ σ∗(x) and y′ ∈ σ∗(y) such that x′σy′. Since
a ∈ σ∗(x) and x′ ∈ σ∗(x), we obtain aσ∗x′, and so aσx′ and x′σa. Since b ∈ σ∗(y)
and y′ ∈ σ∗(y), we obtain bσ∗y′, and so bσy′ and y′σb. Now, we have aσx′, x′σy′

and y′σb, which imply that aσb. Since x ∈ σ∗(x) and y ∈ σ∗(y), we conclude that
xσy. Conversely, let xσy. Since x ∈ σ∗(x) and y ∈ σ∗(y), we obtain σ∗(x) � σ∗(y).

Finally, we prove that (R/σ∗,⊕,�,�) is an ordered semiring. Suppose that
σ∗(x) ∈ R/σ∗, where x ∈ R. Then, (x, x) ∈≤⊆ σ. Hence, σ∗(x) � σ∗(x). Let
σ∗(x) � σ∗(y) and σ∗(y) � σ∗(x). Then, xσy and yσx. Thus, xσ∗y, which means
that σ∗(x) = σ∗(y). Now, let σ∗(x) � σ∗(y) and σ∗(y) � σ∗(z). Then, xσy and
yσz. So, we have xσz. This implies that σ∗(x) � σ∗(z). Hence � is an order on
R/σ∗.

Now, let σ∗(x) � σ∗(y) and σ∗(z) ∈ R/σ∗. Then xσy and z ∈ R. By
conditions (3) and (4) of Definition 4.2, we have x+ zσy+ z, z+xσz+ y, x · zσy · z
and z · xσz · y. So, for all a ∈ x + z and b ∈ y + z, we have aσb. This implies
that σ∗(a) � σ∗(b). Hence, σ∗(x) ⊕ σ∗(z) � σ∗(y) ⊕ σ∗(z). Similarly, we get
σ∗(z) ⊕ σ∗(x) � σ∗(z) ⊕ σ∗(y). Also, for all a ∈ x · z and b ∈ y · z, we have aσb.
This implies that σ∗(a) � σ∗(b). Hence, σ∗(x)� σ∗(z) � σ∗(y)� σ∗(z). Similarly,
we get σ∗(z)� σ∗(x) � σ∗(z)� σ∗(y). Hence, the theorem is proved. �

Analogous to the proof of Theorem 4.6, we have the following result.

Theorem 4.7. Let (R,+, ·,≤) be an ordered hyperring and σ be a pseudoorder on
R. Then, there exists a strongly regular relation σ∗ on R such that R/σ∗ is an
ordered ring.

Example 4.8. Let R = {a, b, c, d, e} be a set with two hyperoperations + and ·
defined as follows:

+ a b c d e
a {b, c} {b, d} {b, d} {b, d} e
b {b, d} {b, d} {b, d} {b, d} e
c {b, d} {b, d} {b, d} {b, d} e
d {b, d} {b, d} {b, d} {b, d} e
e {b, d} {b, d} {b, d} {b, d} e

and
· a b c d e
a {b, d} {b, d} {b, d} {b, d} {b, d}
b {b, d} {b, d} {b, d} {b, d} {b, d}
c {b, d} {b, d} {b, d} {b, d} {b, d}
d {b, d} {b, d} {b, d} {b, d} {b, d}
e {b, d} {b, d} {b, d} {b, d} {b, d}
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Then, (R,+, ·) is a semihyperring [22]. We consider the ordered semihyperring
(R,+, ·,≤), where the order ≤ is defined by:

≤:= {(a, a), (b, b), (c, c), (d, d), (e, e), (c, b), (d, b), (e, b)}.

The covering relation and the figure of R are given by:

≺= {(c, b), (d, b), (e, b)}.

b
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�
�

@
@
@
bb b
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Let σ be pseudoorder on R define as follows:

σ = {(a, a), (b, b), (c, c), (d, d), (e, e), (b, c), (c, b),
(b, d), (d, b), (b, e), (e, b), (c, d), (d, c), (c, e),
(e, c), (d, e), (e, d), (a, b), (a, c), (a, d), (a, e)}.

Then, by the definition of ρ∗, we get

σ∗ = {(a, a), (b, b), (c, c), (d, d), (e, e), (b, c), (c, b),
(b, d), (d, b), (b, e), (e, b), (c, d), (d, c), (c, e),
(e, c), (d, e), (e, d)}.

Hence, R/σ∗ = {u1, u2}, where u1 = {a} and u2 = {b, c, d, e}. Now, (R/σ∗,⊕,�,�
) is an ordered semiring, where ⊕ and � are defined in the following tables:

⊕ u1 u2

u1 u2 u2

u2 u2 u2

� u1 u2

u1 u2 u2

u2 u2 u2

and �= {(u1, u1), (u1, u2), (u2, u2)}.

Example 4.9. Suppose that R = {a, b, c, d}. We consider the ordered semihyper-
ring (R,+, ·,≤), where the operations + and · are defined by the following tables:

+ a b c d
a a b c d
b b b c d
c c c c d
d d d d d

· a b c d
a a a a a
b a b b b
c a b b b
d a b b b

and the order ≤ is defined by:

≤ := {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d),
(b, c), (b, d), (c, d)}.

The covering relation and the figure of R are given by:

≺= {(a, b), (b, c), (c, d)}.
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Let σ be pseudoorder on R define as follows:

σ = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (a, c),
(c, a), (b, c), (c, b), (a, d), (b, d), (c, d)}.

Then, by the definition of σ∗, we get

σ∗ = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (a, c),
(c, a), (b, c), (c, b)}.

Hence, R/σ∗ = {u1, u2}, where u1 = {a, b, c} and u2 = {d}. Now, (R/σ∗,⊕,�,�)
is an ordered semiring, where ⊕ and � are defined in the following tables:

⊕ u1 u2

u1 u1 u2

u2 u2 u2

� u1 u2

u1 u1 u1

u2 u1 u1

and �= {(u1, u1), (u1, u2), (u2, u2)}.

Definition 4.10. Let (R,+, ·,≤R) and (T,+′, ·′,≤T ) be two ordered (semi)hyper-
rings. The map ϕ : R → T is called a homomorphism if for all x, y ∈ R, the
following conditions hold:

(1) ϕ(x+ y) ⊆ ϕ(x) +′ ϕ(y),
(2) ϕ(x · y) ⊆ ϕ(x) ·′ ϕ(y),
(3) ϕ is isotone, that is, x ≤R y implies ϕ(x) ≤T ϕ(y).

Also, ϕ is called a good homomorphism if in the previous conditions (1) and
(2), the equality is valid. An isomorphism from R into T is a bijective good homo-
morphism. Note that if (R,+, ·,≤R) and (T,+′, ·′,≤T ) are two ordered (semi)rings,
then the notions of homomorphism and good homomorphisms coincide.

Theorem 4.11. Let (R,+, ·,≤R) and (T,+′, ·′,≤T ) be two ordered (semi)rings and
ϕ : R→ T a homomorphism. The relation σ on R defined by σ := {(x, y) | ϕ(x) ≤T
ϕ(y)} is a pseudoorder on R.

Proof. Suppose that (x, y) ∈≤R. Since ϕ is a homomorphism, it follows that
ϕ(x) ≤T ϕ(y). This means that (x, y) ∈ σ. So, we have ≤R⊆ σ. Let (x, y) ∈ σ and
(y, z) ∈ σ. Then, we have ϕ(x) ≤T ϕ(y) and ϕ(y) ≤T ϕ(z). Since ≤T is transitive,
we have ϕ(x) ≤T ϕ(z). This implies that (x, z) ∈ σ.
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Now, let (x, y) ∈ σ and z ∈ R. Then ϕ(x) ≤T ϕ(y). Since ϕ is a homomor-
phism and T an ordered (semi)ring, we have

ϕ(x+ z) = ϕ(x) +′ ϕ(z) ≤T ϕ(y) +′ ϕ(z) = ϕ(y + z),

ϕ(x · z) = ϕ(x) ·′ ϕ(z) ≤T ϕ(y) ·′ ϕ(z) = ϕ(y · z).

So, (x+ z, y+ z) ∈ σ and (x · z, y · z) ∈ σ. Similarly, we have (z+ x, z+ y) ∈ σ and
(z · x, z · y) ∈ σ. Therefore, σ is a pseudoorder on R. �

Corollary 4.12. σϕ = σ∗.

Proof. We have

(x, y) ∈ σϕ ⇔ ϕ(x) = ϕ(y)
⇔ ϕ(x) ≤T ϕ(y) and ϕ(y) ≤T ϕ(x)
⇔ (x, y) ∈ σ and (y, x) ∈ σ
⇔ (x, y) ∈ σ∗.

�

Corollary 4.13. Let (R,+, ·,≤R) and (T,+′, ·′,≤T ) be two ordered (semi)rings
and ϕ : R→ T be a homomorphism. Then, R/kerϕ ∼= Imϕ.

Let (R,+, ·,≤R) be an ordered (semi)hyperring, σ, θ be pseudoorders on R
such that σ ⊆ θ. We define a relation θ/σ on R/σ∗ as follows:

θ/σ := {(σ∗(a), σ∗(b)) ∈ R/σ∗ ×R/σ∗|∃x ∈ σ∗(a),∃y ∈ σ∗(b) such that (x, y) ∈ θ}.
Then, we can see that

(σ∗(a), σ∗(b)) ∈ θ/σ ⇔ (a, b) ∈ θ.

In the following theorem, we denote by �σ the relation � on R/σ∗ defined
in Theorem 4.6.

Theorem 4.14. Let (R,+, ·,≤R) be an ordered (semi)hyperring, σ, θ be pseudo-
orders on R such that σ ⊆ θ. Then,

(1) θ/σ is a pseudoorder on R/σ∗.
(2) (R/σ∗)/(θ/σ)∗ ∼= R/θ∗.

Proof. (1) If (σ∗(a), σ∗(b)) ∈�σ, then (a, b) ∈ σ. So, (a, b) ∈ θ which implies that
(σ∗(a), σ∗(b)) ∈ θ/σ. Thus, �σ⊆ θ/σ. Let (σ∗(a), σ∗(b)) ∈ θ/σ and (σ∗(b), σ∗(c)) ∈
θ/σ. Then (a, b) ∈ θ and (b, c) ∈ θ. Hence, (a, c) ∈ θ and so (σ∗(a), σ∗(c)) ∈ θ/σ.
Now, let (σ∗(a), σ∗(b)) ∈ θ/σ and σ∗(c) ∈ R/σ∗. Then, (a, b) ∈ θ. Since θ is a

pseudoorder on R, we obtain a + cθb + c, c + aθc + b, a · cθb · c and c · aθc · b.
Hence, for all x ∈ a+ c and for all y ∈ b+ c, we have (x, y) ∈ θ. This implies that
(σ∗(x), σ∗(y)) ∈ θ/σ. Also, for all x′ ∈ a ·c and for all y′ ∈ b ·c, we have (x′, y′) ∈ θ.
This implies that (σ∗(x′), σ∗(y′)) ∈ θ/σ. Since σ∗ is a strongly regular relation onR,
σ∗(x) = σ∗(a)⊕ σ∗(c), σ∗(y) = σ∗(b)⊕ σ∗(c), σ∗(x′) = σ∗(a)� σ∗(c) and σ∗(y′) =
σ∗(b) � σ∗(c). So, we obtain (σ∗(a) ⊕ σ∗(c), σ∗(b) ⊕ σ∗(c)) ∈ θ/σ and (σ∗(a) �
σ∗(c), σ∗(b)�σ∗(c)) ∈ θ/σ. Similarly, we obtain (σ∗(c)⊕σ∗(a), σ∗(c)⊕σ∗(b)) ∈ θ/σ
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and (σ∗(c)�σ∗(a), σ∗(c)�σ∗(b)) ∈ θ/σ. Therefore, θ/σ is a pseudoorder on R/σ∗.
(2) We define the map ψ : R/σ∗ → R/θ∗ by ψ(σ∗(a)) = θ∗(a). If σ∗(a) =

σ∗(b), then (a, b) ∈ σ∗. Hence, by the definition of σ∗, (a, b) ∈ σ ⊆ θ and (b, a) ∈
σ ⊆ θ. This implies that (a, b) ∈ θ∗ and so θ∗(a) = θ∗(b). Thus, ψ is well defined.
For all σ∗(x), σ∗(y) ∈ R/σ∗, we have

σ∗(x)⊕ σ∗(y) = σ∗(z), for all z ∈ x+ y,
θ∗(x) ] θ∗(y) = θ∗(z), for all z ∈ x+ y,
σ∗(x)� σ∗(y) = σ∗(z), for all z ∈ x · y,
θ∗(x)⊗ θ∗(y) = θ∗(z), for all z ∈ x · y.

Thus,
ψ(σ∗(x)⊕ σ∗(y)) = ψ(σ∗(z)), for all z ∈ x+ y

= θ∗(z), for all z ∈ x+ y
= θ∗(x) ] θ∗(y)
= ψ(σ∗(x)) ] ψ(σ∗(y)),

and
ψ(σ∗(x)� σ∗(y)) = ψ(σ∗(z)), for all z ∈ x · y

= θ∗(z), for all z ∈ x · y
= θ∗(x)⊗ θ∗(y)
= ψ(σ∗(x))⊗ ψ(σ∗(y)),

and if σ∗(x) �σ σ∗(y), then (x, y) ∈ σ. So, (x, y) ∈ θ and this implies that
θ∗(x) �θ θ∗(y). Therefore, ψ is a homomorphism. It is easy to see that ψ is onto,
since

Imψ = {ψ(σ∗(x)) | x ∈ R} = {θ∗(x) | x ∈ R} = R/θ∗.

So, by Corollary 4.13, we obtain

(R/σ∗)/kerψ ∼= Imψ = R/θ∗.

Suppose that

k := {(σ∗(x), σ∗(y)) | ψ(σ∗(x)) �θ ψ(σ∗(y))}
Then,

(σ∗(x), σ∗(y)) ∈ k ⇔ ψ(σ∗(x)) �θ ψ(σ∗(y))
⇔ θ∗(x) �θ θ∗(y)
⇔ (x, y) ∈ θ
⇔ (σ∗(x), σ∗(y)) ∈ θ/σ.

Hence, k = θ/σ and by Corollary 4.12, we have k∗ = (θ/σ)∗ = kerψ. �
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