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Abstract. A graph is called edge-transitive if its automorphism group acts transi-

tively on its edge set and a regular cover of a connected graph is called dihedral if

its transformation group is dihedral. In this paper, the authors classify all dihedral

coverings of the Heawood graph whose fibre-preserving automorphism subgroups

act edge-transitively.
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Abstrak. Suatu graf disebut transitif sisi jika grup automorfisma graf tersebut

beraksi secara transitif pada himpunan sisinya. Suatu regular cover dari graf ter-

hubung disebut dihedral jika grup transformasinya adalah dihedral. Dalam paper

ini, penulis mengklasifikasikan semua dihedral covering dari graf Heawood yang sub-

grup automorfisma fibre-preserving-nya beraksi secara transitif sisi.

Kata kunci: regular covering, graf transitif sisi, graf Heawood

1. INTRODUCTION

Throughout this paper, we consider finite connected graphs without loops or
multiple edges. For a graph X, each edge X gives rise to a pair of opposite arcs
and we denote by V (X), E(X), A(X) and Aut(X) the vertex set, the edge set, the
arc set and the full automorphism group of X, respectively. The neighbourhood
of a vertex v ∈ V (X), denoted by N(v), is the set of vertices adjacent to v in X.
Let a group G act on a set Ω, and let α ∈ Ω. We denote by Gα the stabilizer of α
in G, that is the subgroup of G fixing α. The group G is said to be semiregular if
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Gα = 1 for each α ∈ Ω, and regular if G is semiregular and transitive on Ω.
Let N be a subgroup of Aut(X) such that N is intransitive on V (X). The quotient
graph X/N induced by N is defined as the graph for which the Σ set of N -orbits
in V (X) is the vertex set of X/N and B,C ∈ Σ are adjacent if and only if there
exists u ∈ B and v ∈ C such that uv ∈ E(X).

A graph X̃ is called a covering of a graph X with a projection ρ : X̃ → X,

if ρ is a surjection from V (X̃) to V (X) such that ρ|N
X̃
(ṽ) : NX̃(ṽ) → NX(v) is

a bijection for any vertex v ∈ V (X) and ṽ ∈ ρ−1(v). The graph X̃ is called the

covering graph and X is the base graph. A covering X̃ of X with a projection ρ
is said to be regular (or K- covering) if there is a semiregular subgroup K of the

automorphism group Aut(X̃) such that the graph X is isomorphic to the quotient

graph X̃/K, say by h, and the quotient map X̃ → X̃/K is the composition ρh
of ρ and h ( for the purpose of this paper, all functions are composed from left

to right). If K is cyclic, elementary abelian or dihedral, then X̃ is called a cyclic,

elementary abelian or dihedral covering of X, and if X̃ is connected, K becomes
the covering transformation group. The fibre of an edge or a vertex is its preimage

under ρ. An automorphism of X̃ is said to be fibre-preserving if it maps a fibre to a
fibre, while every covering transformation maps each fibre on to itself. All of such
fibre-preserving automorphisms form a group called fibre-preserving group.

An s-arc in a graph X is an ordered (s + 1)-tuple (v0, v1, . . . , vs) of vertices
of X such that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 6= vi+1 for 1 ≤ i < s;
in other words, it is a directed walk of length s which never includes a backtrack-
ing. A graph X is said to be s-arc-transitive if Aut(X) acts transitively on the
set of s-arcs in X. In particular, 0-arc-transitive means vertex-transitive, and 1-
arc-transitive means arc-transitive or symmetric. An s-arc-transitive graph is said
to be s-transitive if it is not (s + 1)-arc-transitive. A symmetric graph X is said
to be s-regular if for any two s-arcs in X, there is a unique automorphism of X
mapping one to the other. In other words, the automorphism group Aut(X) acts
freely and transitively (i.e. regularly) on the set of s-arcs in X. A subgroup of the
automorphism group of a graph X is said to be s-regular if it acts regularly on the
set of s-arcs of X.

Regular coverings of a graph have received considerable attention. For exam-
ple, for a graph X which is the complete graph K4, the complete bipartite graph
K3,3, hypercube Q3 or Petersen graph O3, the s-regular cyclic or elementary abelian
coverings of X, whose fibre-preserving groups are arc-transitive, classified for each
1 6 s 6 5 in [5, 6, 7, 8, 10]. As an application of these classifications, all s-regular
cubic graphs of order 4p, 4p2, 6p, 6p2, 8p, 8p2, 10p and 10p2 constructed for each
1 6 s 6 5 and each prime p in [1, 5, 6, 8]. In [14], it was shown that all cubic
graphs admitting a solvable edge-transitive group of automorphisms arise as regu-
lar covers of one of the following basic graphs: the complete graph K4, the dipole
Dip3 with two vertices and three parallel edges, the complete bipartite graph K3,3,
the Pappus graph of order 18, and the Gray graph of order 54. In this paper all
dihedral coverings of the Heawood graph, whose fibre- preserving automorphism
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subgroups act arc-transitively are determined.

2. PRELIMINARIES

We start with some notational conventions used throughout this paper. Let n
be a positive integer. Denote by Z∗

n the multiplicative group consisting of numbers
coprime to n. For two groups M and N , N oM denotes a semidirect product of
N by M . For an abelian group H, the generalized dihedral group Dih(H) is the
semidirect product H o Z2, where the unique involution in Z2 maps each element
of H to its inverse. In particular, Dih(Zn) is the dihedral group D2n of order 2n.
For a subgroup H of a group G, denote by CG(H) the centralizer of H in G and
by NG(H) the normalizer of H in G. It is easy to see that CG(H) is normal in
NG(H).

Proposition 2.1. [12] The quotient group NG(H)/CG(H) is isomorphic to a sub-
group of the automorphism group Aut(H) of H.

Let X be a cubic graph and let G 6 Aut(X) act transitively on the edges
of X. Let N be a normal subgroup of G. The quotient graph XN of X relative
to N is defined as the graph with vertices the orbits of N in V (X) and with two
orbits adjacent if there is an edge in X between the vertices lying in those two
orbits. Below we introduce two propositions, of which the first is a special case of
[13, Theorem 9].

Proposition 2.2. Let X be a cubic graph and let G 6 Aut(X) be transitive on
E(X) and V (X). Then G is an s-arc-regular subgroup of Aut(X) for some integer
s. If N�G has more than two orbits in V (X), then N is semiregular on V (X), XN

is a cubic symmetric graph with G/N as an s-arc-regular group of automorphisms,
and X is an N -cover of XN .

Given a finite group G and an inverse closed subset S ⊆ G−{1}, the Cayley
graph Cay(G,S) on G relative to S is defined to have vertex set G and edge set
{{g, sg} | g ∈ G, s ∈ S}. It is known that Cay(G,S) is connected if and only if
S generates G. Given g ∈ G, define the permutation R(g) on G by x 7−→ xg,
x ∈ G. Then R(G) = {R(g)|g ∈ G}, called the right regular representation of
G, is a permutation group isomorphic to G, which acts regularly on G. Thus the
Cayley graph Cay(G,S) is vertex-transitive. A Cayley graph Cay(G,S) is said
to be normal if R(G) is normal in Aut(Cay(G,S)). It is easy to see that the
group Aut(G,S) = {a ∈ Aut(G)|Sa = S} is a sub group of Aut(Cay(G,S))1, the
stabilizer of the vertex 1 in Aut(Cay(G,S)). Godsil [11, Corollary 2.3] proved the
following proposition (see also Xu [16, Proposition 1.5]).

Proposition 2.3. Cay(G,S) is normal if and only if Aut(Cay(G,S))1 = Aut(G,S).
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Let m and k be positive integers. Let Dih(Zmk × Zm) = 〈a, b, c
∣∣ a2 =

bmk = cm = 1, aba = b−1, aca = c−1, bc = cb〉. Assume that λ = 0 for k = 1 and
λ2 + λ+ 1 ≡ 0 (mod k) for k > 1. Define

DC(m, k, λ) = Cay(Dih(Zmk × Zm), a, ab, ab−λc). (1)

By [15, Theorem 1] or [3, 9], we have the following proposition.

Proposition 2.4. Let k > 1 be an odd integer and m a positive integer. Then
every connected cubic symmetric Cayley graph on Dih(Zmk×Zm) is isomorphic to
some DC(m, k, λ). Furthermore,
(1) DC(3, 1, 0) is the 3-arc-regular Pappus graph;
(2) DC(1, 7, 2) ∼= DC(1, 7, 4) is the 4-arc-regular Heawood graph;
(3) DC(m, 1, 0) and DC(m, 3, 1) (m > 1) are 2-arc-regular and normal;
(4) If k > 3 and (m, k) 6= (1, 7), then the graphs DC(m, k, λ) are normal and
1-arc-regular, and for any two distinct values λ1 and λ2 satisfying the equation
x2 + x+ 1 = 0 in Zk, DC(m, k, λ1) ∼= DC(m, k, λ2) if and only if λ1λ2 ≡ 1 (mod
k).

Proposition 2.5. Let n > 3 be an integer. Then there exists a solution λ ∈ Zn of
the equation

x2 + x+ 1 = 0 (2)

if and only if n = 3tpk11 . . . pks , where t 6 1, s > 1 and pis are distinct primes
such that pi ≡ 1 (mod 3). Furthermore, if Equation (2) has a solution in Zn, then
it has exactly 2s solutions.

Let p be a prime congruent to 1 modulo 3. By Proposition 2.5, Equation (2)
has exactly two solutions in Zp which are just the two elements of Z∗

p of order 3.
Combining this fact with Proposition 2.4, we know that DC(1, p, λ) is independent
of the choice of λ. Thus, we shall denote this graph by DC2p.

3. Dihedral covers of the Heawood graph

In [7], Feng and Kwak classified all dihedral covers of K4, whose fiber pre-
serving groups are edge-transitive. The main purpose of this section is to generalize
this result to the Heawood graph. We first prove the following lemmas.

Lemma 3.1. Let X be a connected cubic graph, and let H 6 Aut(X) be abelian
and act semiregularly on V (X). If H has two orbits each of which contains no
edges of X, then X is isomorphic to a Cayley graph on Dih(H).
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Proof Let 4 = {4(h) | h ∈ H} and 4́ = {4́(h) | h ∈ H} be the two orbits

of H in V (X). One may assume that the actions of H on 4 and 4́ are just by

right multiplication, that is, 4(h)g = 4(hg) and 4́(h)g = 4́(hg) for any h, g ∈ H.

By assumption, there are no edges in 4 and 4́, implying that X is bipartite.

Let the neighbors of 4(1) be 4́(h1), 4́(h2) and 4́(h3), where h1, h2, h3 ∈ H.

Since H is abelian, for any h ∈ H, the neighbors of 4(h) are 4́(hh1), 4́(hh2)

and 4́(hh3), and the neighbors of 4́(h) are 4(hh−1
1 ),4(hh−1

2 ) and 4(hh−1
3 ). It

is easy to see that the map α defined by 4(h) 7−→ 4́(h−1), 4́(h) 7−→ 4(h−1)

for any h ∈ H, is an automorphism of X of order 2. For any h́, h ∈ H, one has

4(h́)αhα = 4(h́h−1) = 4(h́)h
−1

and 4́(h́)αhα = 4́(h́h−1) = 4́(h́)h
−1

, implying
that hα = h−1. It follows that 〈H,α〉 ∼= Dih(H) acts regularly on V (X), and hence
X is isomorphic to a Cayley graph on Dih(H). �

Lemma 3.2. Let G 6 Aut(DC14) act edge-transitively on DC14. Then G contains
a subgroup acting regularly on the edges (not arcs) of DC14.

Proof We know that DC14 is the Heawood graph with automorphism group
PGL(2, 7). SinceG is edge-transitive onDC14, G ∼= Z7, Z3, PSL(2, 7) or PGL(2, 7).
Thus, G has a subgroup N ∼= Z7 o Z3 acting regularly on the edges of DC14. �

By Propositions 2.4, 2.5 it is easy to see that the graph DC(2, p, λ) is inde-
pendent of the choice of λ. For the convenience of statement, we denote this graph
by DC8p.

The main purpose of this paper is to prove the following theorem.

Theorem 3.3. Let X be the Heawood graph. Let n > 1 be an integer. Then X̃ is
a connected edge-transitive D2n-cover of X if and only if is isomorphic to DC56.

Proof First, we show the sufficiency. By Equation (1), DC56 = Cay(G, {a, ab,ab−λc}),
whereG = 〈a, b, c

∣∣ a2 = b14 = c2 = 1, aba = b−1, ac = ca, bc = cb〉 and λ2+λ+1 ≡ 0
(mod 7) . From Proposition 2.4, it follows that R(G)�Aut(DC56). It is easy to see
that N = 〈R(bp), R(c)〉 ∼= D4 is the maximal normal 2-subgroup of R(G). So, N is
characteristic in R(G) and hence it is normal in Aut(DC56). Clearly, N has more
than two orbits in V (DC56). By Proposition 2.2, the quotient graph (DC56)N of
DC56 relative to N is a cubic symmetric graph of order 14, and DC56 is an N -cover
of (DC56)N . We know (DC56)N is a cubic symmetric graph of order 14 and by
[2], (DC56)N ∼= DC14. We note that, DC14 is the Heawood graph (the only cubic
symmetric graph of order 14). Thus, DC56 is a D4-cover of DC14.

For the necessity, let X̃ be a connected edge-transitive D2n-cover of the Hea-
wood graph and n > 1 an integer. Let K = D2n and let F be the fibre-preserving
group. Then K � F . Since F is edge-transitive on X̃, F/K is an edge-transitive
group of automorphisms of X.

Assume n = 2. Then K ∼= D4. By Lemma 3.2, F/K contains a subgroup
M/K(∼= Z7 o Z3) acting regularly on the edges of X. Let C = CM (K). Then
K 6 C and by Proposition 2.1, M/CAut(K) ∼= GL(2, 3). Since M/K ∼= Z7 o Z3,
one has 7 | |C/K|. Let N/K 6 M/K such that N/K ∼= Z7. Then N/K is the
normal Sylow 7-subgroup of M/K. Since 7 | |C/K|, it follows that N/K 6 C/K,
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and hence N ∼= Z14 × Z2. Clearly, N acts semiregularly on V (X̃) with two orbits.

Since M is edge-transitive on X̃, the normality of N in M implies that each orbit
of N contains no edges of X̃. By Lemma 3.1, X is isomorphic to a Cayley graph
on Dih(Z14 × Z2), and by Proposition 2.4, X̃ ∼= DC(2, 7, λ) = DC56.

Assume n > 2. Recall that K = D2n. Let N be the cyclic subgroup of K
of order n. Since n > 2, N is characteristic in K. Then N � F because K � F .
By Proposition 2.2, the quotient graph XN of X̃ relative to N is a connected cubic
edge-transitive graph of order 28 with F/N as an edge-transitive group of auto-
morphisms. By [4], every connected cubic edge-transitive graph of order 28 is also
arc-transitive. Then, XN is the 3-arc-regular Coxeter graph of order 28, which
is non-bipartite by [2]. It follows that F/N is also arc-transitive one XN . Since

Aut(X̃N ) ∼= PGL(2, 7), one has F/N ∼= PSL(2, 7) or PGL(2, 7). However, since
K � F , K/N ∼= Z2 is a normal subgroup of F/N , a contradiction.

REFERENCES

[1] Alaeiyan M., and Onagh B. N., Cubic edge-transitive graphs of order 4p2., Acta Math. Univ.

Comenianae., 78(2) (2009), 183-186
[2] Conder M., and Dobcsanyi P., Trivalent symmetric graphs on up to 768 vertices., J. Combin.

Math. Combin. Comput., 40 (2002), 41-63.

[3] Du S. F., Feng Y. Q., Kwak J. H., and Xu M. Y., Cubic Cayley graphs on dihe dral groups.,
Mathematical Analysis and Applications, edited by S. Nanda, GP Raja Sekhar, Narosa Pub-

lishing House, New Delhi, (2004), 224-235.

[4] Du S. F., and Xu M. Y., A classification of semisymmetric graphs of order 2pq., Commun.
Algebra., 28(6) (2000), 2685-2715.

[5] Feng Y. Q., and Kwak J. H., Cubic symmetric graphs of order a small number times a prime

or a prime square., J. Comb. Theory B., 97(4) (2007), 627-646.
[6] Feng Y., and Kwak J. H., Classifying cubic symmetric graphs of order 10p or 10p2., Sci.

China. Ser A., 49(3) (2006), 300-319.

[7] Feng Y., and Kwak J. H., s-Regular dihedral coverings of the complete graph of order 4.,
Chinese Ann. Math., 25(01) (2004), 57-64.

[8] Feng Y. Q., Kwak J. H., and Wang K., Classifying cubic symmetric graphs of order 8p or
8p2., Eur. J. Combin., 26(7) (2005), 1033-1052.

[9] Feng Y. Q., Kwak J. H., and Xu M. Y., s-Regular cubic Cayley graphs on abelian or dihedral

groups, Research Report , Institute of Math., Peking Univ., 53 (2000),.
[10] Feng Y. Q, and Wang K., s-Regular cyclic coverings of the three-dimensional hypercube Q3.,

Eur. J. Combin., 24(6) (2003), 719-731.

[11] Godsil C. D., On the full automorphism group of a graph., Combinatorica, 1(3) (1981),
243-256.

[12] Huppert B., Eudliche Gruppen I, Springer-Verlag, Berlin, 1967.

[13] Lorimer P., Vertex-transitive graphs: symmetric graphs of prime valency., J. Graph Theory,
8(1) (1984), 55-68.
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