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Abstract. In this paper, the graphs P2 and S2(P2) are shown to admit an a-
valuation, where P2 is the graph obtained from the path P, by joining all the pairs
of vertices u, v of P, with d(u,v) = 3 and S2(P3) is the graph obtained from P32 by
merging the centre of the star S,; and that of the star S», respectively at the two
unique 2-degree vertex of Py, (the origin and terminus of the path P, contained in
P32). Tt follows from the significant theorems due to Rosa [1967] and EI-Zanati and
Vanden Eynden [1996] that the complete graphs Kacq+1 or the complete bipartite
graphs Kmgq,nq can be cyclically decomposed into the copies of P2 or copies of
S2(P2), where ¢,m,n are arbitrary positive integer and ¢ denotes either |E(P32)]|
or |E(S2(P3))|. Further, it is shown that join of complete graph Ks and path P,
denoted Ko + Py, for n > 1 is harmonious graph.
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Abstrak. Pada paper ini, graf-graf P3 dan S»(P2) ditunjukkan mempunyai nilai-
a, dengan P2 adalah graf yang diperoleh dari lintasan P, dengan menghubungkan
semua pasangan titik u,v dari P, dengan d(u,v) = 3 dan S2(P?) adalah graf yang
diperoleh dari P23 dengan menggabungkan secara berurutan pusat dari bintang Sp,
dan dari bintang Sy, pada dua titik berderajat-2 tunggal dari P, (awal dan akhir
dari lintasan P, termuat di P3). Dengan mengikuti teorema-teorema yang terkenal
dari Rosa [1967] dan EI-Zanati dan Vanden Eynden [1996] bahwa graf-graf lengkap
Kocqe1 atau graf-graf bipartit lengkap Kimg,ng dapat didekomposisikan secara siklis
menjadi kopi-kopi dari P32 atau kopi-kopi S2(P2), dengan ¢, m,n adalah bilangan
bulat positif tertentu dan g menyatakan |E(P2)| atau |E(S2(P2))|. Lebih jauh,
ditunjukkan juga bahwa join dari graf lengkap Ko dan lintasan P, dinotasikan

dengan K2 + P, untuk n > 1 adalah graf harmonis.

Kata kunci: Pelabelan-a, pelabelan harmonis, graf-graf P,‘rf, join, lintasan.

1. Introduction

In [1964], Ringel [9] conjectured that the complete graph Ko,,11 can be de-
composed into 2m + lcopies of any Tree with m edges. In an attempt to solve the
Ringel conjecture, Rosa [1967] introduced hierarchy of labeling called p, o, 8 and
a-labeling. Later in [1972], Golomb [6] called S-labeling as Graceful and this term
is widely used. A function f is called a graceful labeling of a graph G with g edges
if f is an injection from the set of vertices of G to the set {0,1,2,-- , ¢} such that
when each edge uv is assigned the label |f(u) — f(v)|, the resulting edge labels are
distinct.

A stronger version of the graceful labeling is the a-labeling. A graceful label-
ing f of a graph G = (V, E) is said to be an a-valuation (interlaced or balanced)
if there exists a A such that f(u) < A < f(v) or f(v) < A < f(u) for every edge
wv € E(Q).

A graph which admits an «a-labeling is necessarily a bipartite graph. In his
classical paper Rosa [10] proved the significant theorem Theorem A: If a graph G
with ¢ edges admits a-labeling, then the complete graphs Ks.q41 can be cyclically
decomposed into 2c¢q + 1 copies of G, where c is an arbitrary positive number.

Later in 1996, EI-Zanati and Vanden Eynden [3] extended the cyclic de-
composition for the complete bipartite graphs and proved the following significant
theorem. Theorem B: If a graph G with ¢ edges admits an a-valuation, then the
complete bipartite graphs K4 ng can be cyclically decomposed into copies of G
where ¢ = |E(G)|. These two results motivate to construct graphs which would
admit an a-labeling. Many interesting families of graphs where proved to admit an
a-labeling [5]. In this paper we show that P3 and S3(P3) admit an a-valuation.
Here P32 is the graph obtained from the path P, by joining all the pairs of vertices
u,v of P, with d(u,v) = 3 and So(P2) is the graph obtained from P3 by merging
the center of the S, and that of star S,,, respectively at the two unique 2-degree
vertex of P2 (the origin and terminus of the path P, contained in P2 ).
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In [1980] Graham and Sloane [4] introduced harmonious labeling in connec-
tion with their study in error correcting codes. Recently, it is established that
recognizing a graph is harmonious is a NP-complete problem [7]. Thus it motivates
to construct graphs admitting harmonious labeling. Number of interesting results
where proved in this direction [1,2,4,5,6,8,11]. Here we show that join of K3 and
P,,, denoted K5 + P, is harmonious graph for all n > 1.

A function f is called a harmonious if f is an injection from the set of vertices
of graph G to the group of integer modulo ¢, {0,1,2,---,q — 1}, such that when
each edge uv is assigned the label (f(u) + f(v)) (modg) the resulting edges labels
are distinct.

2. a-Valuation of the Graph P3 and the Graph S(P3)

Here, in this section we show that P3 and Sy(P3) admit an a-valuation. Let
v1,va, -+ v, be vertices of P3. Observe that in P32, each v;is adjacent to v;41 for
1 <7< n—1and it is also adjacent to v;43 for 1 < i <n — 3. It is clear that Pfl’
has n vertices and 2n — 4 edges. The graph P2 is given in Figure 1.

aee
LR R ]
¥ V3 V3 Va ¢ Va2 Yo Vo

FIGURE 1. The Graph P3.

Theorem 2.1 For n > 4, the graph P2 admits an a— valuation.
Proof. f:V(G) - {0,1,2,--- ,M} by

, — 1
! , for 1 <i<nandiodd
1—2 . .
flv) = M -3 2 ),forlgzgnlandzeven (2.1)
n—2

M-3

5 )—1—17 for i = n and even

Observe that the sequence f(v;), 1 < ¢ < n and ¢ even, form a monotonically
decreasing sequence.
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Further, when n is odd,

n—1

max{f(v;) | 1 <i<nwithiodd} = 5 and (2)
-1-2
min{f(v;) | 1 <i<n withieven } = M—3<n2>
_ 2n4<3n—9>
2
_ 4n—8-3n+9
B 2
n+1

Therefore, from equation (2.2) and (2.3), we have
min{f(v;) | 1 <¢ <n with 7 even } > max{f(v;) | 1 <i<n with i odd }. (2.4)

Also, when n is even,

-2
max{f(v;) | 1 <i<nwithiodd}) = = >
n
= —-1
2 (5)
and
i ; Sh g n—2
min{f(v;) | 1 <i<n withi even } = M_3( 5 )+1
= 2n—4_@+1
_ 4n—-8-3n+6+2
B 2
n
o2 (6)

Therefore, from equations (2.5) and (2.6), it follows

min{ f(v;) | 1 <i <n with ¢ even } = max{f(v;) | 1 <i<n withiodd } +1
(2.7)
Since f(v;),1 < ¢ < n, with ¢ odd, is a monotonically increasing sequence and
f(v;),1 < i < n with i even, is a monotonically decreasing sequence and from
equations (2.4) and (2.7), it follows f(v;),1 <14 < n are all distinct.

Let A be the set of edges v;v;41,1 <7 <n — 1 along the path and B be the
set of edges v;v;43,1 <i<n—3of G.

Observe from the definition of fthat when n is even, the member of A get the
values {M,M —1,M —4, M —5,M —8, M —9,--- ,4,3,1} and when n is odd, the
members of A get the values {M, M -1, M -4, M -5, M-8, M —9,--- ,6,5,2,1}.

Similarly, when n is even, the members of B get the values {M — 3, M — 2,
M—7,M —6,---,5,6,2} and when n is odd, the number of B get the values
{M-3,M-2M—-7M-—6,---,7,8,3,4}.
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Thus, it is clear that the edge values of all the edges of P2 are distinct and
range from 1 and M. Hence P3 is graceful.

From the definition of f, observe that in the above labeling, when n is even,
if we consider A = % — 1 then f(u) < X < f(v) for every edge uwv of P? and when
n is odd, if we consider A = 271 then f(u) < A < f(v) for every edge uv of Py.

Thus P3 admits an a-valuation.

Hence the theorem.

The following two corollaries are immediate consequence of Rosa’s theorem
(1967) and the theorem of El-Zanati and Vanden Eynden (1996) respectively.
Corollary 1. If a graph P23 with q edges has an «-valuation, then there exists
a cyclic decomposition of the edges of the complete graphs Kocqi1 into sub-graphs
isomorphic to P23, where ¢ is an arbitrary positive integer.

Corollary 2. If a graph P2 with q edges has an a-valuation, then there exists a
decomposition of the edges of the complete bipartite graphs K,,qnq into subgraphs
isomorphic to P23, where m and n are arbitrary positive integers.

Mlustrative example of labeling given in the proof of Theorem 1 are given in
Figures 2,3.

FIGURE 2. a-valuation of P3.

14

FIGURE 3. a-valuation of P3.

Let So(P2) denote the graph obtained from P3 by attaching the centre of the
stars Sn1 and Sn2 at end the vertices v; and v,, of P3.

As in the last theorem we assume that vy, ve,- -+, v, be the vertices of P3.
Let vi,1,v1,2, - s V1n, be the ni pendant vertices of the star Sn1 attached at vq of
(P,?L’) and let vy, 1,2, - s Un,n, be the no pendent vertices of star Sn2 attached at
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vy, of (P3). Tt is clear that So(P2) has n + ny + ng vertices and 2n +ny +ng — 4
edges.

Theorem 2.2. For n > 4, the graph So(P2), admits an a— valuation.

Proof. For n > 4, let G be the graph So(P3). Let M = |E(G)| = 2n+ny +ng — 4.
Define f: V(G) — {0,1,2,--- , M} by

flor))=M—(j—1), for 1 <j<m (2.8)
p— 1
! , if 1 <i <n with i odd
1—2 . cy
fuy) = (M —n1)—3 5 >, If1<i<n-—1withieven (2.9)
-2
(M —nq)-—3 n >+1, if i = n and even
n—1

3 + j, for 1 < j < ny when n is odd
flong) =4 n22 ‘ . (2.10)
+ 7, for 1 < j < ny when n is even.

From the above definition of f, observe that the sequence f(v1;), 1 < j < my
and f(v;), 1 < ¢ < n when i is even, form monotonically decreasing sequence
and the sequence f(v;), 1 < i < n when ¢ is odd and f(v,;), 1 < j < ng, form
monotonically increasing sequence.

Further, when n is odd

max({f(v;) |1 <i<nandiodd }U{f(vn,;)|1<j<no})= n2+anl (2.11)

n+1

min({f(v1;) |1 <j<m}U{f(v;) |1 <i<nandieven})=ny+ 5

(2.12)
Therefore, from equations (2.11) and (2.12), it follows

min({f(v1,;) |1 <j<ni}U{f(v;) | 1<i<nandieven })
=max({f(vi) |1 <i<nandiodd }U{f(vn;)|1<j<no})+1. (13)
When n is even,

max({f(v;) | 1 <j<mnandiodd }U{f(vn;)|1<j<no})= ng—l—g—l (2.14)

min({f(v1;) | 1 <j<ni}U{f(v;) |1 <i<nandieven})=ny+ g (2.15)
Therefore, from the equations (2.14) and (2.15), it follows:
min({f(v1;) |1 <j<n}U{f(v;) |1 <i<nandieven })
=max({f(v;) | 1 <i<mnandioddand f(v,;)|1<j<no})+1.  (16)
Since the sequences f(v1,;),1 < j < ny and f(v;),1 < i < n with ¢ even, form a
monotonically decreasing sequence and the sequences f(v;),1 < i < n with 7 odd
and f(v,;),1 < j < ng, form a monotonically increasing sequence and from the

equations (2.13) and (2.16), it follows f(v1,;),1 < j < nq, f(vi), 1 <i < n, f(vn;),
1 < 5 < ng, are all distinct.
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Let A be the set of edges in S, and B be the set of edges v;v;+1,1 <i <n-—1
along the path C be the set of edges v;v;43,1 <7 <n—3and D be the set of edges
nS,, .

Observe from the definition of f that the members of A get the value { M, M —
1,M—2,--- ,M —(ny —1)}. The members of B get the value {M —ny, M —n; —
IL,M—ny—4,M—ny—5,M—n; —8,M —ny1—9,--+ ,na+4,n2+3,n5+ 1} when
n is even and when n is odd, the members of B get the value {M —ny, M —n; —
1,M—n1 —4,M—TL1 —5,"' ,n2+2,n2+1}.

The members of C' get the value {M —ny —3,M —ny —2, M —nq —7,
M—ny1—6,--- ,ny+5,n2+6,n5+2} when n is even and when n is odd, the members
of C' get the value {M —n3, M —n1 —2, M —ny —7,M —n; —6,--- ;na+3,n2+4}.
The members of D get the value {"'2"1 , ”7*'3 y %271} when n is odd and
when n is even, the members of D get the value {232 | ndd ... nd2ne} Thyg
it is clear that the edge values of all the edges of P3 are distinct and range from 1
to M.

Hence So(P2) is graceful.

We consider A\ = n or "T_l according as n is even or odd. Then by the

definition of f, it is clear that f(u) < A < f(v) for every edge uv of Sa(P3).

Thus, the graph Sy(P3) is graceful and admits an a-valuation. Hence, the
theorem.

The following corollary is an immediate consequence of Rosa’s theorem.
Corollary 3. There exists a cyclic decomposition of the complete graphs Kocqt1
into subgraphs isomorphic to So(P2), where c is an arbitrary positive integer.

Due to the theorem if El-Zanati and Vanden Eynden (1996) we have the
following corollary.

Corollary 4. There exists a partition of the complete bipartite graphs Kp,q ng into
subgraphs isomorphic to Sa(P3), where m and n are arbitrary positive integers.

Illustrative example of labeling given in the Proof of Theorem 2 are shown in
Figures 4,5,6.

FIGURE 4. The Graph Ss (P2).
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FIGURE 6. a-valuation of Sy (Fj).

3. Harmonious Labeling of Ky, + P, for n > 1

In this section it is shown that join of complete graph K, and path P,,
denoted K5 + P,, is harmonious for all n.
Theorem 3.1 Join of Ky + P, is harmonious, for n > 1.
Proof: For n > 1, let G be a graph K5 + P,. Let u; and us be the vertices of Ks
and vy, v, - , v, be the vertices of P,. Then G has |E(G)| = M = 3n edges. We
define vertex labeling f in two cases depends on n is odd or even.
Case (i) n is odd

Define f(u;) = 0
f('LLQ) = M -1
flo;)) = 3i—2,1<i<n.

Then, it is clear that the vertex labeling f(u;),7 = 1,2 and f(v;),1 < i < n are
distinct.
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Further,
flugug) = 3n-—1,
f(ulvi) = 32_27 1< Sn,
flugu;)) = 3i—3, 1<i<mn
fwwir1) = 6i—1(mod M), 1<i<n-—1.
That is
f(vivi+1) = 60—1, 1<+ < \f;J,
F(vvipr) = (60— 1)(mod M), {ZJ Fl1<i<n-—1,

= Gi-ni= | "5 i< |25

_ 6({(n21)J+j)_1’ lgjgvn;)J’

(ngl)J’

= 3n—06j —4(mod M), 1§j§\‘

= 6j—4,1<j< {("_1)]

Observe that,
flugug) = {3n-—1}
< {1,4,7,10,- - ,3n — 2},
{flugv;) |1 <i<n} = {0,3,6,9,---,3n—3},

—~
=
S
&
—
IN
IS
AN
3
()
Il

and
(o) | 1<i<n—1} = {(6i—1)[1<i<n—1},

= {(6i-1)[1<i<(n-1)/2tU{(6i—1)[1<i<(n—1)/2}

= {6i-1)|1<i<(n—-1)/2U{6(((n—-1)/2)+j)—-1[1<j<(n-1)/2}
= {6i-1)|1<i<(n—-1)/2U{8n+6j—-4|1+j<(n—1)/2}

= {6i-1)|1<i<(n—-1)/2}U{(6j—4) [1<j<(n—1)/2}

= {5,11,17,-- ,3n —4}U{2,8,14,--- .30 — 7}
= {2,5,8,11,14,-- ,3n —7,3n — 4}.

From the above sets of the edge values, it follows that edge labeling of each edge is
distinct and edge values ranges from 0 to M — 1.

Case (ii), n is even
Case(ii)(a) n is even and n =4k,n > 1
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Define
f(u1) 0,
fluz) = M-1,
flo) = 3(i-1)+1, 1<i<2%k-1,
fo) = 6(i—k)+1, 2k<i<3k—1,
flus) = 3(n—1)+1,
fwi)) = 3n—2(:—-3k)—1)+1, 3k +1 <1< 4k.
It is clear that the vertex labeling f(v;) are distinct, forl < i < n.
Further,
flugug) = M —1,
flugvy)) = 3@ —1)+1, 1<i<2k-1
fluv) = 3(2(i — ))+1 2k<i<3k+1
fluivsy) = 3(n—1)+
furvspsi) = 3(n72171)+1 1<i<k
flugv)) = 3(i—1), 1<i<2k—1,
flugvy) = 3(2(i — k)), 2k <i <3k —1,
fluguzr) = 3(n—1)
flugv;)) = 3(n—2(i—3k)—1), 3k+1<i<4k
and
Ffwiviz1)) = @BGE-1D+1)+Bi+1), 1<i<2k—2,

f(/l)Qkfl/UQk:)
f(vivigr)

f('UBk—h 'UBk)

f(vsk, v3k41)

f(vivigr)

3(2i—1)+2, 1<i<2k—2

3(4k — 2) + 2

(3(2i — k) +1+3(2(i + 1) — k) + 1)(mod M), 2k <i < 3k — 2,
(3(2(2i — 2k 4+ 1) 4+ 2))(mod M), 2k < i < 3k — 2,

(3(2(3k + 1 — k)) + 1 + 3n — 2)(mod M),

(12k — 6 + 1 — 2 + 3n)(mod M),
(3(n — 3) + 2)(mod M),
(3n —2+3n — 6 — 2)(mod M),

(3n — 2+ 3n — 8)(mod M)

(6n — 10)(mod M),

(3n — 10)

3(n—4)+2

(3(n —4(i —3k) —4) + 2)(mod M), 3k +1 <i <4k —1.

Similarly it follows that edge labeling are distinct and edge value ranges from 0 to

M —1.

Case (ii) (b) n is even and n = 4k + 2,k > 1.
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M-1

3(i—1)+1, 1<i< 2k,

3206 —k)—1)+1, 2k+1<i<3k+1,
3(n—2)+1,

(3(2(k — 1)) + 1)(mod M), 3k +3 <i < 4k +2.

It is clear that the vertex labeling f(v;) are distinct for 1 < i < n.

Further, observe that

fuiug)
(ulvl)
f(urvy)
f(u1v3gy2)
J(u1v;)

)

f(u2v;
f(UZUi)

f(U2U3k+2)

f(uav;)

and
f(vivigr)

f(U2kU2k+1)
f(vivigr)
f(U3k+1U3k+2)
f(v3k42v3K43)

f(UiUiJrl)

M—-1

3(i—1)+1, 1 <i<2k

326 —k)—1)+1, 2k+1<i<3k+1,
3(n—2)+1,

(3(2k — i) + 1)(mod M), 3k +3 <i <4k +2

M—1+3(-1)+1,
3(i—1), 1<i< 2k,

32 —k)—1), 2k+1<i<3k+1
3(n—2),

3(2(k —i))(mod M), 3k +3 <i<4k+2
B(i—1)+ (3i+ 1)),

6i — 1,

32i—1)+2, 1<i<2k—1,

3(2k — 1) +1+3(2(k+1) — 1) + 1 = 3(4k) + 2

6(i— k) —2+6(i+1—k)—2,

(3(4(i — k) + 2)(mod M), 2k +1 <i < 3k,
(3(2(3k+1—k)+1)+3n—5)(mod M),
12k — 1,

(B3n—5+4+6(k—1i)+ 1)(mod M)

(3n — 16)(mod M),

6k — 6i+ 1 + 6k — 6i — 6+ 1(mod M)
12k — 12i — 4(mod M)

12k + 6 — 12i — 4 — 6(mod M),

—12i — 10(mod M),

—(12i + 10)(mod M), 3k +3 < i < 4k + 1.

119
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FIGURE 7. Harmonious labeling of Ko + Py.

F1GURE 8. Harmonious labeling of Ky + Ps.

It follows that edge labelings are distinct and edge values ranges from 0 to
M — 1. When n = 2,G is K4, which is harmonious.
Hence G is harmonious.

Ilustrative example of labeling given in the proof of Theorem 3 are given in
Figures 7,8,9.
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FIGURE 9. Harmonious labeling of K5 + Pig.

4. Discussion

In our paper we have shown that P3 and S3(P2) admit an a-valuation. We

believe that it is possible to prove that P! and Sa(P}), for ¢, 2 <t < n — 2 admit
an a-valuation. Thus, we end this paper with the following conjecture.

Conjecture: P! and S3(P!) admit an a-valuation for ¢, 2 <t <n — 2.

Acknowledgement: The authors would like to thank the referee for their valuable
comments and suggestions for improving the presentation of this paper.
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