## DECOMPOSITION OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS INTO COPIES OF $P_n^3$ OR $S_2(P_n^3)$ AND HARMONIOUS LABELING OF $K_2 + P_n$

P. Selvaraju<sup>1</sup> and G. Sethuraman<sup>2</sup>

## <sup>1</sup>Department of Mathematics, VEL TECH, Avadi, Chennai-600062, India, pselvar@yahoo.com

<sup>2</sup>Department of Mathematics, Anna University, Chennai-600025, Chennai, India, sethu@annauniv.edu

Abstract. In this paper, the graphs  $P_n^3$  and  $S_2(P_n^3)$  are shown to admit an  $\alpha$ -valuation, where  $P_n^3$  is the graph obtained from the path  $P_n$  by joining all the pairs of vertices u, v of  $P_n$  with d(u, v) = 3 and  $S_2(P_n^3)$  is the graph obtained from  $P_n^3$  by merging the centre of the star  $S_{n_1}$  and that of the star  $S_{n_2}$  respectively at the two unique 2-degree vertex of  $P_{n_3}$  (the origin and terminus of the path  $P_n$  contained in  $P_n^3$ ). It follows from the significant theorems due to Rosa [1967] and EI-Zanati and Vanden Eynden [1996] that the complete graphs  $K_{2cq+1}$  or the complete bipartite graphs  $K_{mq,nq}$  can be cyclically decomposed into the copies of  $P_n^3$  or copies of  $S_2(P_n^3)$ , where c, m, n are arbitrary positive integer and q denotes either  $|E(P_n^3)|$  or  $|E(S_2(P_n^3))|$ . Further, it is shown that join of complete graph  $K_2$  and path  $P_n$ , denoted  $K_2 + P_n$ , for  $n \geq 1$  is harmonious graph.

Key words:  $\alpha$ -labeling, harmonious labeling,  $P_n^3$  graphs, join, path.

<sup>2000</sup> Mathematics Subject Classification: 05C78.

Received: 09-08-2011, revised: 09-09-2011, accepted: 04-12-2012.