DECOMPOSITION OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS INTO COPIES OF P_{n}^{3} OR $S_{2}\left(P_{n}^{3}\right)$ AND HARMONIOUS LABELING OF $K_{2}+P_{n}$

P. Selvaraju ${ }^{1}$ and G. Sethuraman ${ }^{2}$
${ }^{1}$ Department of Mathematics, VEL TECH, Avadi, Chennai-600062, India, pselvar@yahoo.com
${ }^{2}$ Department of Mathematics, Anna University, Chennai-600025, Chennai, India, sethu@annauniv.edu

Abstract

In this paper, the graphs P_{n}^{3} and $S_{2}\left(P_{n}^{3}\right)$ are shown to admit an α valuation, where P_{n}^{3} is the graph obtained from the path P_{n} by joining all the pairs of vertices u, v of P_{n} with $d(u, v)=3$ and $S_{2}\left(P_{n}^{3}\right)$ is the graph obtained from P_{n}^{3} by merging the centre of the star $S_{n_{1}}$ and that of the star $S_{n_{2}}$ respectively at the two unique 2-degree vertex of $P_{n_{3}}$ (the origin and terminus of the path P_{n} contained in $\left.P_{n}^{3}\right)$. It follows from the significant theorems due to Rosa [1967] and EI-Zanati and Vanden Eynden [1996] that the complete graphs $K_{2 c q+1}$ or the complete bipartite graphs $K_{m q, n q}$ can be cyclically decomposed into the copies of P_{n}^{3} or copies of $S_{2}\left(P_{n}^{3}\right)$, where c, m, n are arbitrary positive integer and q denotes either $\left|E\left(P_{n}^{3}\right)\right|$ or $\left|E\left(S_{2}\left(P_{n}^{3}\right)\right)\right|$. Further, it is shown that join of complete graph K_{2} and path P_{n}, denoted $K_{2}+P_{n}$, for $n \geq 1$ is harmonious graph.

Key words: α-labeling, harmonious labeling, P_{n}^{3} graphs, join, path.

