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Abstract. An antimagic labeling of a digraph D with p vertices and q arcs is a

bijection f from the set of all arcs to the set of positive integers {1, 2, 3, ..., q} such

that all the p oriented vertex weights are distinct, where an oriented vertex weight

is the sum of the labels of all arcs entering that vertex minus the sum of the labels

of all arcs leaving it. A digraph D is called antimagic if it admits an antimagic

labeling. In this paper we investigate the existence of antimagic labelings of some

few families of digraphs using hooked Skolem sequences.

Key words and Phrases: Antimagic labeling, hooked Skolem sequence, symmetric

digraph.

Abstrak. Suatu pelabelan antimagic dari sebuah digraf D dengan p buah titik dan

q buah busur adalah suatu bijeksi f dari himpunan semua busur ke himpunan bi-

langan bulat positif {1, 2, 3, ..., q} sedemikian sehingga semua bobot titik berarah p

berbeda, dimana suatu bobot titik berarah adalah jumlahan label-label dari semua

busur yang menuju titik tersebut dikurangi jumlahan label-label dari semua busur

yang keluar dari titik tersebut. Sebuah digraf D dikatakan antimagic jika mempun-

yai pelabelan antimagic. Dalam paper ini kami menunjukkan keberadaan pelabelan

antimagic dari beberapa keluarga digraf menggunakan barisan Skolem terkait.

Kata kunci: Pelabelan antimagic, barisan Skolem terkait, digraf simetris.

1. Introduction

By graph G = (V,E) we mean a finite, undirected graph with neither loops
nor multiple edges. The order and size of G are denoted by n and m, respectively.
For graph theoretical terminology we refer to Chartrand and Lesniak [1].
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A digraph D consists of a finite nonempty set V of objects called vertices
and a set E of ordered pairs of distinct vertices. Each element of E is an arc
or a directed edge. If a digraph D has the property that for each pair u, v of
distinct vertices of D, at most one of (u, v) or (v, u) is an arc of D, then D is an
oriented graph. An oriented graph can also be obtained by assigning a direction
to (that is, orienting) each edge of a graph G. The digraph D is then referred
to as an orientation of G. A digraph H is called a subdigraph of a digraph D if
V (H) ⊆ V (D) and E(H) ⊆ E(D).

A digraph D is symmetric if whenever (u, v) is an arc of D, then (v, u) is an
arc of D as well.

The underlying graph of a digraph D is obtained by removing all directions
from the arcs of D and replacing any resulting pair of parallel edges by a single
edge. Equivalently, the underlying graph of a digraph D is obtained by replacing
each arc (u, v) or a pair (u, v), (v, u) of arcs by the edge uv. For any graph G the
digraph obtained by replacing every edge uv of G by a pair of symmetric arcs uv
and vu is denoted by S∗ and is called the symmetric digraph of G.

A labeling of a graph G is a mapping that assigns integers to the vertices or
edges or both, subject to certain conditions. The labeling is called a vertex labeling
or an edge labeling or a total labeling according to if as the domain of the mapping
is V or E or V ∪ E.

D. Hefetz, T. Mutze, and J. Schwartz [3] introduced the concept of antimagic
labeling of a digraph.

An antimagic labeling of a digraph D with p vertices and q arcs is a bijection
from the set of arcs of D to {1, 2, 3, ..., q} such that all p oriented vertex weights
are distinct, where an oriented vertex weight is the sum of the labels of all arcs
entering that vertex minus the sum of the labels of all arcs leaving it. A digraph D
is called antimagic if it admits an antimagic labeling. The oriented vertex weight
of a vertex v ∈ V (D) is denoted by w(v). An orientation D of a graph G is called
an antimagic orientation if the digraph D is antimagic.

D. Hefetz, T. Mutze, and J. Schwartz [3] proved that, for every orientation
of the following undirected graphs, stars Sn on n + 1 vertices for every n 6= 2,
wheels Wn on n + 1 vertices for every n ≥ 3 and cliques Kn on n vertices for
every n 6= 3, there exists an antimagic labeling. They also proved that, given
G = (V,E) a (2d + 1)-regular (not necessarily connected) undirected graph with
d ≥ 0, there exists an antimagic orientation of G. They posed the following problem
and conjecture.

Question 1.1. [3] Is every connected directed graph with at least 4 vertices an-
timagic?

Conjecture 1.2. [3] Every connected undirected graph admits an antimagic ori-
entation.

They observed that the answer to the Question 1.1 is “no”. Indeed, if G =
K1,2 or K3, then G admits an orientation that is not antimagic. Thus, not every
directed graph is antimagic. Also they answer to the Conjecture 1.2 is “yes” for
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few families of undirected connected graphs, but not for all connected graphs.
Therefore, the Conjecture 1.2 is still open.

In this paper we discuss the existence of antimagic labelings for digraphs and
we use the concept of hooked Skolem sequence.

Definition 1.3. [2, 4, 5, 6] A hooked Skolem sequence of order n is a sequence
S = (s1, s2, ..., s2n+1) satisfying the following conditions:

(1) For every t ∈ {1, 2, ..., n} there exist exactly two elements si, sj ∈ S such
that si = sj = t.

(2) If si = sj = t with i < j, then j − i = t.
(3) s2n = 0.

Hooked Skolem sequence can also be written as a collection of ordered pairs
{(ai, bi); 1 ≤ i ≤ n, bi − ai = i with

⋃n
i=1 (ai, bi) = {1, 2, 3, . . . , 2n − 1, 2n + 1}.

For example, when n = 2, the hooked Skolem sequence S = (1, 1, 2, 0, 2) can be
written as (1, 2), (3, 5), (0, 4). When n = 3, the hooked Skolem sequence S =
(1, 1, 2, 3, 2, 0, 3) can be written as (1, 2), (3, 5), (4, 7), (0, 6).

Theorem 1.4. [2, 4, 5, 6, 7] A hooked Skolem sequence of order n exists if and
only if n ≡ 2 or 3(mod 4).

We now describe a method for the construction of a hooked Skolem sequence
of order n > 2, where n ≡ 2 or 3(mod 4). We use the ordered pair notation for the
hooked Skolem sequence.

When n = 4s+ 2, s > 0 a hooked Skolem sequence of order n is given by



(r, 4s− r + 2), 1 ≤ r ≤ 2s,

(4s+ r + 3, 8s− r + 4), 1 ≤ r ≤ s− 1,

(5s+ r + 2, 7s− r + 3), 1 ≤ r ≤ s− 1,

(2s+ 1, 6s+ 2), (4s+ 2, 6s+ 3),

(4s+ 3, 8s+ 5), (7s+ 3, 7s+ 4).

When n = 4s− 1, s ≥ 1, a hooked Skolem sequence of order n is given by

(4s+ r, 8s− r − 2), 1 ≤ r ≤ 2s− 2,

(r, 4s− r − 1), 1 ≤ r ≤ s− 2

(s+ r + 1, 3s− r), 1 ≤ r ≤ s− 2,

(s− 1, 3s), (s, s+ 1), (2s, 4s− 1),

(2s+ 1, 6s− 1), (4s, 8s− 1).

When s = 1, skip the ordered pair (2s, 4s− 1).
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2. Main Results

In this section we prove that some families of digraphs are antimagic, using
the concept of hooked Skolem sequences. We use the ordered pair notation for
hooked Skolem sequences.

A non symmetric digraph G∗ is obtained from a symmetric digraph S∗ by
adding a new vertex v and an arc uv or vu, where u ∈ V (S∗).

Theorem 2.1. Let G =
k⋃
i=1

K1,αi
be the union of k stars, where αi ≥ 1, α1 ≤ α2 ≤

· · · ≤ αk and
k∑
i=1

αi ≡ 2 or 3(mod 4). Then G∗ is antimagic.

Proof. Let V (G∗) =
k⋃
j=1

{cj , vj1, v
j
2, . . . , v

j
αj
, v} and E(G∗) =

k⋃
j=1

{cjvj1, cjv
j
2,

. . . , cjv
j
αj
} ∪

k⋃
j=1

{vj1cj , v
j
2cj , . . . , v

j
αj
cj} ∪ {ckv}. Clearly, q = |E(G)| =

k∑
i=1

αi ≡ 2 or

3(mod 4) and |E(G∗)| = 2q + 1, q ≡ 2 or 3(mod 4). Hence, there exists a hooked
Skolem sequence S of order q (See Theorem 1.4). Let S = {(a1, b1), (a2, b2), . . . , (aq, bq),
(0, bq+1)}, where 1 ≤ ai ≤ 2q + 1, 1 ≤ bi ≤ 2q + 1 and bi − ai = i, where 1 ≤ i ≤ q.
Now define f∗ : E(G∗)→ {1, 2, . . . , 2q + 1} by

f∗(cjv
j
i ) = ai, for 1 ≤ j ≤ k, 1 ≤ i ≤ αj,

f∗(vji cj) = bi, for 1 ≤ j ≤ k, 1 ≤ i ≤ αj,

f∗(ckv) = 2q.

Then

w(c1) =
α1(α1 + 1)

2
,

w(cj) = (α1 + α2 + · · ·+ αj−1)αj +
αj(αj + 1)

2
, if 2 ≤ j ≤ k − 1 and 1 ≤ i ≤ αj ,

w(ck) = (α1 + α2 + · · ·+ αk−1)αk +
αk(αk + 1)

2
− 2q,

w(v1i ) = −i, 1 ≤ i ≤ α1.

Let x =

k∑
j=2

αj−1.

w(vjx+i) = −

 k∑
j=2

αj−1 + i

 , 2 ≤ j ≤ k and 1 ≤ i ≤ αj ,

w(v) = 2q.

Clearly, all the oriented vertex weights are distinct and hence, f∗ is an antimagic
labeling of G∗.
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Example 2.2. Let G = K1,4 ∪ K1,6, so that α1 = 4 and α2 = 6. Clearly,
α1 + α2 ≡ 2(mod 4). A hooked Skolem sequence of order 10 (in ordered pair no-
tation) is given by S = {(17, 18), (4, 6), (13, 16), (3, 7), (10, 15), (2, 8), (12, 19), (1, 9),
(5, 14), (11, 21), (0, 20)}. The corresponding antimagic labeling of the symmetric
digraph G∗ is given in Figure 1.

10

−1 −2 −3 −4

17 18 4
6

13
16

3

7

25

−5 −6 −7 −8 −9 −10 20

10 15
2

8
12

19
1

9

5

14

11

21

20

Figure 1. An antimagic labeling of (K1,4 ∪K1,6)∗.

Theorem 2.3. Let G = Kr,s be the complete bipartite graph and rs ≡ 2 or
3(mod 4). Then G∗ is antimagic.

Proof. Let X(G∗) = {u1, u2, . . . , us} and Y (G∗) = {v1, v2, . . . , vs, v} be

the bipartition of G∗. Then E(G∗) =
r⋃
i=1

{uiv1, uiv2, . . . , uivs} ∪
r⋃
i=1

{v1ui, v2ui, . . . ,

vsui} ∪ {urv}. Clearly, q = |E(G)| = rs ≡ 2 or 3(mod 4) and |E(G∗)| = 2q + 1.
Hence, there exists a hooked Skolem sequence S of order q and let S = {(a1, b1),
(a2, b2), . . . , (aq, bq), (0, bq+1)}, where 1 ≤ ai ≤ 2q+1, 1 ≤ bi ≤ 2q+1 and bi−ai = i.
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Now we define f∗ : E(G∗)→ {1, 2, . . . , 2q + 1} by

f∗(uivj) = a(i−1)s+j ,

f∗(vjui) = b(i−1)s+j ,

f∗(usv) = rs.

Since b(i−1)s+j − a(i−1)s+j = (i − 1)s + j, 1 ≤ i ≤ r and 1 ≤ j ≤ s, it follows

that w(ui) = (i − 1)s2 + s(s+1)
2 , 1 ≤ i ≤ r − 1, w(ur) = (r − 1)s2 + s(s+1)

2 − 2rs,

w(v) = 2rs and w(vj) = −
[
rj + rs(r−1)

2

]
. Clearly, all the oriented vertex weights

are distinct and hence, f∗ is an antimagic labeling of G∗.

Example 2.4. Let G = K2,3. Clearly, q = 6. A hooked Skolem sequence of order
6 (in ordered pair notation) is given by S = {(10, 11), (2, 4), (6, 9), (1, 5), (3, 8),
(7, 13), (0, 12)}. The corresponding antimagic labeling of the digraph G∗ is given in
Figure 2.

6

−5 −7 −9 12

3

10
11

2 4
6

9

1
5

38
7

13
12

Figure 2. An antimagic labeling of K∗
2,3.

Theorem 2.5. Let G = Cp be the cycle of order p, where p ≡ 2 or 3(mod 4). Then
G∗ is antimagic.

Proof. Let V (G∗) = {u1, u2, . . . , up, v} and E(G∗) = {u1u2, u2u3, . . . , upu1}
∪ {u2u1, u3u2, . . . , u1up} ∪ {upv}. Since q = p ≡ 2 or 3(mod 4), there exists a
hooked Skolem sequence S of order q. Let S = {(a1, b1), . . . , (aq, bq), (0, bq+1)},
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where 1 ≤ ai ≤ 2q + 1, 1 ≤ bi ≤ 2q + 1 and bi − ai = i, 1 ≤ i ≤ q. We consider two
cases.

Case 1. q ≡ 2(mod 4).

Define f∗ : E(G∗)→ {1, 2, . . . , 2q + 1} as follows:

f(uiui+1) =

{
b2i−1, if i is odd, 1 ≤ i ≤ p

2

a2i−1, if i is even, 2 ≤ i ≤ p
2

f(ui+1ui) =

{
a2i−1, if i is odd, 1 ≤ i ≤ p

2

b2i−1, if i is even, 2 ≤ i ≤ p
2

f(u p
2+i

u p
2+i+1) =

{
ap+2−2i, if i is odd, 1 ≤ i ≤ p

2 − 1

bp+2−2i, if i is even, 2 ≤ i ≤ p
2 − 1

f(u p
2+i+1u p

2+i
) =

{
bp+2−2i, if i is odd, 1 ≤ i ≤ p

2 − 1

ap+2−2i, if i is even, 2 ≤ i ≤ p
2 − 1

f(upu1) = a2, f(u1up) = b2, f(upv) = 2p.

Then

w(ui+1) =

{
4i, if i is odd, 1 ≤ i ≤ p

2 − 1

−4i, if i is even, 2 ≤ i ≤ p
2 − 1

w(u p
2+i

) =


2p− 1, if i = 1

2p+ 6− 4i, if i is odd, 3 ≤ i ≤ p
2 − 1

− (2p+ 6− 4i) , if i is even, 2 ≤ i ≤ p
2 − 1

w(u1) = −3, w(up) = −2p+ 6.

Clearly, all the oriented vertex weights are distinct.

Case 2. q ≡ 3(mod 4).

f(uiui+1) =

{
b2i−1, if i is odd, 1 ≤ i ≤ p+1

2

a2i−1, if i is even, 2 ≤ i ≤ p+1
2

f(ui+1ui) =

{
a2i−1, if i is odd, 1 ≤ i ≤ p+1

2

b2i−1, if i is even, 2 ≤ i ≤ p+1
2

f(u p+1
2 +iu p+1

2 +i+1) =

{
bp+1−2i, if i is odd, 1 ≤ i ≤ p+1

2 − 2

ap+1−2i, if i is even, 2 ≤ i ≤ p+1
2 − 2

f(u p+1
2 +i+1u p+1

2 +i) =

{
ap+1−2i, if i is odd, 1 ≤ i ≤ p+1

2 − 2

bp+1−2i, if i is even, 2 ≤ i ≤ p+1
2 − 2

f(upu1) = a2, f(u1up) = b2, f(upv) = 2p.
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Then

w(ui+1) =

{
4i, if i is odd, 1 ≤ i ≤ p+1

2 − 2

−4i, if i is even, 2 ≤ i ≤ p+1
2 − 2

w(u p+1
2 +i) =


−(2p− 1), if i = 1

−(2p+ 4− 4i), if i is odd, 3 ≤ i ≤ p+1
2 − 2

2p+ 4− 4i, if i is even, 2 ≤ i ≤ p+1
2 − 2

w(u1) = −3, w(up) = −(2p+ 6).

Clearly, all the oriented vertex weights are distinct and hence, f∗ is an an-
timagic labeling of G∗.

Example 2.6. Let G = C10 and C11. A hooked Skolem sequence of order 10 (in
ordered pair notation) is given by S = {(17, 18), (4, 6), (13, 16), (3, 7), (10, 15), (2, 8),
(12, 19), (1, 9), (5, 14), (11, 21), (0, 20)}, and a hooked Skolem sequence of order 11
(in order pair notation) is given by S = {(3, 4), (16, 18), (5, 8), (15, 19), (6, 11), (14, 20),
(2, 9), (13, 21), (1, 10), (7, 17), (12, 23), (0, 22)}. The corresponding antimagic label-
ing of the digraph G∗ is given in Figure 3 and 4, respectively.

−3 4 −8 12 −16

−14 −10 14 −18 19
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7
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Figure 3. An antimagic labeling of C∗
10.
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Figure 4. An antimagic labeling of C∗
11.

3. Conclusion and Scope

In this paper we have discussed the existence of antimagic labelings of di-
graphs. In particular, if G∗ is a digraph associated with an undirected graph G,
we have used the concept of hooked Skolem sequences to prove the existence of
antimagic labelings of G∗ for several classes of graphs. This proof technique can
be used to prove the existence of antimagic labelings of G∗ for other families of
graphs.
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