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Abstract. Let (M, F') be a compact Finsler manifold. Studying the eigenvalues and
eigenfunctions for the linear and nonlinear geometric operators is a known problem.
In this paper we will consider the eigenvalue problem for the p-laplace operator for
Sasakian metric acting on the space of functions on SM. We find the first variation
formula for the eigenvalues of p-Laplacian on SM evolving by the Ricci flow on M

and give some examples.
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Abstrak. Misalkan (M, F') adalah suatu manifold Finsler kompak. Sejauh ini telah
dipelajari fungsi eigen dan nilai eigen untuk operator-operator geometri linier dan
non linier. Dalam paper ini kami akan memperhatikan masalah nilai eigen untuk
operator p-Laplace untuk metrik Sasakian yang berlaku pada ruang fungsi di SM.
Kami memperoleh rumus variasi pertama dan memberikan beberapa contoh untuk

nilai eigen dari p-Laplacian pada SM yang melibatkan aliran Ricci pada M .

Kata kunci: aliran Ricci, manifold Finsler, operator p-Laplace

1. INTRODUCTION

For a compact Finsler manifold (M, F'), studying the eigenvalues of geometric
operators plays a powerful role in geometric analysis. In the classical theory of the
Laplace or p-Laplace equation several main parts of mathematics are joined in a
fruitful way: Calculus of Variation, Partial Differential Equation, Potential Theory,
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Analytic Function. Recently, there are many mathematicians who have investigated
properties of the eigenvalues of p-Laplacian on Finsler manifolds and Riemannian
manifolds to estimate the spectrum in terms of the other geometric quantities of
the manifold. (see [3, 4, 9, 11, 18, 20]).

Also, geometric flows have been a topic of active research interest in math-
ematics and other sciences (see [5, 8, 10, 12, 13, 15, 16]). Hamilton’s Ricci flow
( 6]) is the best known example of a geometric evolution equation. The Ricci flow
is related to dynamical systems in the infinite-dimensional space of all metrics on
a given manifold. One of the aims of such flows is to obtain metrics with special
properties. Special cases arise when the metric is invariant under a group of trans-
formations and this property is preserved by the flow.

Let M be a manifold with a Finsler metric go (or Fp), the family g(¢) (or F;) of
Finsler metrics on M is called an un-normalized Ricci flow when it satisfies the
equations

logF'
9 g‘;’ = —Ric, (1)
with the initial condition
F0)=F
or equivalently satisfies the equations
09i; .
S = —2Ricy, 9(0) = go (2)

where Ric is the Ricci tensor of g(t), Ric;j = (3F?Ric),,;. In fact Ricci flow is a
system of partial differential equations of parabolic type which was introduced by
Hamilton on Riemannian manifolds for the first time in 1982 and Bao (see [2, 17])
studied Ricci flow equation in Finsler manifold. The Ricci flow has been proved to
be a very useful tool to improve metrics in Finsler geometry, when M is compact.
One often considers the normalized Ricci flow

dlogF . 1 .
A = F S T — Ricdv, F(0) = Fp.
ot e UOZ(SM) SM ean, (0) 0 (3)
or
891-7» . 2 .
: —9Ric - g = 4
ot Rici vol(SM) SMRlCd”g”’ 9(0) = go @)

Under this normalized flow, the volume of the solution metrics remains constant in
time. Short time exitance and uniqueness for solution to the Ricci flow on [0,T)
have been shown by Hamilton in [5] and by DeTurk in [7] for Riemannian manifolds
and by the authors in [1] for important Berwald manifolds.
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2. PRELIMINARIES

Let M be an n-dimensional C*° manifold. For a point z € M, denote by
T, M the tangent space at x € M,and by TM = Uyep T, M the tangent bundle of
M. Any element of TM has the form (z,y), where z € M and y € T,,M.

Definition 2.1. A Finsler metric on a manifold M is a function F : T My — [0, 00)
which has the following properties:

(i): F(z,ay) = aF(x,y), Ya > 0;

(ii): F(z,y) is C*> on TMy ;

(iii): For any non-zero tangent vectory € T, M, the associated quadratic form
Gy TeM x Ty M — R on T'M is an inner product, where

1 62
gy (u,v) = 3 Dedr [F? (z,y + su+rv)]

s=r=0

The pair (M, F) is called a Finsler manifold.

Let us denote by S, M the set consisting of all rays [y] := {\y|A > 0}, where
y € T, My. The Sphere bundle of M, i.e. SM, is the union of S, M’s :

SM =US, M

SM has a natural (2n— 1)-dimensional manifold structure. We denote the elements

of SM by (z,[y]) where y € T,,My. If there is not any confusion we write (z,y) for
1 _9*F?

(z,[y]). In a local coordinate system (z7,y’) we have g;;(z,y) = 2 3y0y7 (@) and

(") := (gi;)'. The geodesics of F' are characterized locally by

R . dx
E2 4 oGi(e, ) =
¥TE + 2G* (x, dt) 0
where
i L (.09 0Ogjx| ; &
(A } 9 It 7 )
G =719 { Bk ol (VY (5)

Definition 2.2. The coefficients of the Riemann curvature R, = Ridz® ® % are
given by

oG" Al CL - 0%GH 0G" 0GI

Oxk 8:6J8yky + Oyioyk  Oyi Oyk (6)

. ORE. OR? . 92R? 92 R’
7 1 i _ k 7 1 L
and Rjk T3 (6y’“ oy )’ jkl "7 3 <8y-76y" Oyioyk |

Rik =

The Ricci scalar function of F is given by Ric := £z R!. A companion of the
Ricci scalar is the Ricci tensor

1
Ric;; = <2F2’Ric> : (7)

yiyl
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Definition 2.3. A Finsler metric is said to be an Einstain metric if the Ricci
scalar function is a function of x alone,equivalently Ric;; = R(x)g;; (see [14, 19]).

Definition 2.4. Let (M, F) be a Finsler manifold, the Sasakian metric g of g on
T My is defined as

~ ; ; Syt oyl

g = gidz' @ d’ + gy g ® % (8)
then g is a Riemannian metric on T My and {6;, %} 15 a coordinate base on

TMy, where 52 = 525 — GiW and {dx", %% 8} s the dual of (%, F i

8y’ = dy' + G'da?.

where

REMARK. The Levi-Civita connection V on T My with respect to the Sasakian
metric g is locally expressed as follows:

V% Ayt CZJ@ k glh( G k)9 Sk
0 v 0 k )
Vagy = Figt it gmRh
- vayl (5JUJ +G”8 k’
where
ok — } #n09i g 1 kh(59hi Ognj 591']') Ko 9G%
11799 oyh’ "2 dxd  dxt Sxh T Oyl
and
k_‘SGf_&G? [ii]_ ki [ii]_ ki
U ggd dat’ “eat dwdt T T WU oyk teait gyt T T gyk

Lemma 2.5. For a Sasakian metric g and any f: TM — R, there exists a unique
vector field Y € X(T'M) such that

g(Y, X) = df (X), VX € X(TM) (10)

where 5 5
X = X16 - +X2F8 -

and Xt, X& are C* function on TM. Here we take Y =0 if df = 0.

Denote the vector field Y in (10 ) by Vf. We call Vf the gradient of f and
define the divergence div X as follows:

divX = trVX
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Definition 2.6. According to the above definition, the gradient of a function f is

Gpogidf o i 9 0

- — + F? - —
oxt dd i oyt Oyl

(11)

therefore, the norm of Vf with respect to the Riemannian metric § is given
by
508 3 o 00 OF

e e i Of
VI =9(ViV) =g dxt 9 Oyt Oy

(12)

Definition 2.7. Let M be a compact Finsler manifold. The Laplace operator of f
on T'M is defined as follows:

Af _ ij( aZ.f _ %87]0 _Qr 82f _ (s 82f TS aZf )
= 9 \oriawi T Bri oyr T dxidyr ¢ Oy I 9y oy
e PF I | R 1
bp2_ZJ 4 J(ck 4 ZREYZL _ polipk 2L
ik OF ij of
- Fy ]CikjaTJk — F2gY gin (G}, _th)glkw-

Definition 2.8. Let M be a compact Finsler manifold. The p-Laplace operator of
f:SM — R, f € WHP(SM) for 1 < p < oo is defined as follows:

Dpf = div([VFP2VS) (14)
= [VIPPAS+ (0= 2)IV P (Hessf)(VE V)
where
(Hessf)(X,Y) = V(VH(X,Y)=Y(X.f) = (VyX).f, X,Y €X(SM)
and in local coordinate, we have:
(Hessf)(0:,0;) = 0:0; f — T} 0k f.

NoTE. If f is a function of x alone, or suppose that is the lifting of f : M — R

then
> f e Of )

Oxt0xI i Ok (15)

Af=gY <
where ffj is christoffel symbol of V.

2.1. Eigenvalues of the p-Laplacian.

Definition 2.9. Let (M™, F) be a compact Finsler manifold and f : SM — R. We
say that X is an eigenvalue of the p-Laplace operator whenever

INLf+ A fIP2f =0 (16)

then f is said to be the eigenfunction associated to A, or equivalently they satisfy
m

[ Rap <95 s do=n [ (i ede vecWiAsM)  7)
SM SM
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where Wy P (SM) is closure of C§°(SM) in Sobolev WP (SM).

By substitution ¢ = f in (17) we have:

Vflrd
A= M (18)
fSM |fIPdv
Normalized eigenfunctions are defined as follows:
[ a2 =o, [ ppa=1. (19)
sM SM

Suppose that (M™, F;) is a solution of the Ricci flow on the smooth manifold
(M™, Fp) in the interval [0,7") and

A(t) = /S V)P (20)

defines the evolution of an eigenvalue of P-Laplacian under the variation of Fj}
whose eigenfunction associated to A(t) is normalized.Suppose that for any metric
g(t) on M™

Specy(9) = {0=Xo(9) < Ai(9) < A2(9) < ... < Ai(g) < ..}

is the spectrum of A, = 9A,. In what follows we assume the existence and C*-
differentiability of the elements A(¢) and f(¢), under a Ricci flow deformation g(¢)
of a given initial metric. We prove some propositions about the problem of the
spectrum variation under a deformation of the metric given by a Ricci flow equation.

3. VARIATION OF A(t)

In this part, we will give some useful evolution formulas for A(t) under the
Ricci flow. Let (M™, Fy), t € [0,T),be a deformation of Finsler metric Fy. Assume
that A(¢) is the eigenvalue of A,, f = f(z,y,t) satisfies

Apf+AfP2f =0
and [, [f[Pdv =1, using (12), we have:

d\gpe _ O iy ofof ;0 0f 0f
VI = 5955 T 5 5
2
i 5f_§(ﬁ) O(F) i 0f OF (21)
ox* Ot " 0xI ot y* OyI
o, ... 0f of Of of
2 Y ig o 2 i3~2J YJ
T e e T iy
where
o .. 8
(g = i ik L
at(g ) =—9"g at(glk) (22)



Eigenvalues variation of the P-Laplacian 163

and
o of  _ o(of ., 0f
oo = 8t(8$i Giayr>
_of o 9 . 0f
= o Gy a%ay (23)
!
_ 09 9t

T 615( i)ayr

therefore, a substitution of (22) and (23) in (21), implies that:

Proposition 3.1. Let (M™, F})) be a deformation of Finsler manifold (M™, Fy), then

d & DS pp—2 i gk O of of i 0f" of
el p — £ P _gilgik < el ig 0 O
e e B O e
0 of 6f DS sip—a OF ,.0f of
21— (GN) =L 2LV L B 2 dop g SL 2L
9751 G 5y &w}* 5!Vl ot 7 oyl oy
) of of ;01 Of
9°9" gilom) g i g7 T2 G0,
On the other hand we have
d o) 0
el —ddi (g -l
100 = {a S0) ~ n 3 toar) f av. (24)
Now, we get the following two integrability conditions:
d —92 —2 p/ -2 d
O=— [ |fPfdo= (-1 [ [fIF=fdv+ | |fIP"f—dv
dt Jsn SMm SM dt

therefore

=0 [ A== [ e {0 ) - ngear) fao (25)

and

d/ . d
0=— fpdv:p/ frfP dv+/ fIP—dv
dt SM| | SM 7 SM‘ |dt

which implies

| £|P— - _ P 173 A g
p [ arista=— [ {e S —ngegr) bae.
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Now, if we suppose that g(t) is a solution of the un-normalized Ricci flow (1) and

(2), then we have:

0\ 4o <l
| GO [ 95 g

dt
P of of
Lt

Ozt dxJ
9, . 0f 8f

gllgjk( QRiClk) +2

_2gij

of of
Ayt DyI

VAL B Ty - T
—&-/SM|Vf| {g (—2Rici;)

F2 il Jk( 2Rlclk) 6

+/ |6f|p {—2¢" Ric;; + nRic} dv
SM

ij 0f of

af af
_ 2 w
P SMRZCF oy 8 y

where 4 (G7) is obtained as follows:

== |V P 2dv

VP~ 2dv

}yjyk,

39jk
ozl

39]‘1

=3 Dz

1l
iy
49{

ra _af3

1 8( )
49 g atgaﬁg

16 0(gab)

oy’
ra a(gab)

oyt 2
9951 _
ozk
89;'1
Oxk

g5
Oxk

1 la bp 0
299 at(gaﬂ)g

9gjk
Ozt
ag;‘k
Ox!

1 ra lb a(gab)
—= Jabl $ o
979 gy

ra _lb a(gab)
—— . 2
T

g Pk

09,1
{2 oxk
_ Ogji
} vy
} vy

4

1

4

1 ra lﬁa(gaﬁ)

— 2—

—1—49 ot Qytox*k
1 829}1
4
1
4

529;%
Oyiox!

"~ Qyio!

} v'y*
0gik |k
Ox! }y

rl
2—
9 { Oyidxk

ra_180(gap)
g B8
I "o

ra 18 9(9as) {

agzl
81’“
8911
ox?

+39

09ij;
Ox!

+4g I "ot

+

g 5f" of

ozt dxd
}|%f|f’—2dv+p/ {2F2(—Rz’c)gij
2 Jsm
2 z] afl af

of of
Oyt OyJ

}IVfI” 24y

n(—Ric)} dv

p/ Ric(%f,%f)|§f|p‘2dv+p/ (VI VHIVFP2dv
SM SM

oG"
oy’

}yjyk
}yjyk

G =

gk
Ox!

ox!

(27)

i k
}yjy

892/‘1
axk
89§'z
ami

392 k
axf } Y

995 \ . j
Ox! }y ’
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From the un-normalized Ricci flow, we can then write

SO = G iy O (200 S0t ey
+§g"“g“’—a(§;‘§“”) P -G jov
—I—%gmglb 8(5;7:) {265;'?; 8ch]k }
g e {2500 - S o

1oy {2623icﬂ B aQchjk} ik

29 Oyidxk dy'Oxt
1 va 185, O0gi  0gir | &
29 9 Ricap {26@’“ " oat [V
1 4 9 ORicy ORick k
29 ox*  Oxl
;gmgwRicaﬁ {nggil _ aai;ll] }ya
1 rl aRile aR’iCij ;
29 {2 oxt Bl v

Using (26) we obtain
p [ GELIHNIPa = [Pt
SM SM
= —)\/ | fIP {—2¢" Ric;; + nRic} dv.
SM

We have thus proved the following proposition:

Proposition 3.2. Let (M™, F;)) be a solution of the un-normalized Ricci flow on the
smooth Finsler manifold (M™, Fy). If A(t) denotes the evolution of an eigenvalue
under the Ricci flow, then

G = v [ ReSLINR
dt S
+/ (AIfP = [V fIP) {297 Ricij — nRic} dv (29)
SM
of of 2
_ ij p—
p [ GG fr
_ 2 7 f af p—2
D SMchF g oy 83|vf| dv (30)

where f is the associated normalized evolving eigenfunction.O
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NoTE. Let f: SM — R be a lifting of f: M — R. We have:

G = v [ RSLINRA
t SM

+/ IfIP = [V £P) {—2¢" Ric;; + nRic} dv
sM
and in this case, if —2¢" Ric;; + n'Ric is a constant, then

dX R
G [ RGRIOT P

dt M
Corollary 3.3. Let (M"™, F;) be a solution of the un-normalized Ricci flow on the
smooth Riemannian manifold (M™, Fy), i.e. Fy, Fy are Riemannian metric. If A(t)
denotes the evolution of an eigenvalue under Ricci flow, then:

X ~ o= ~
G = v RGLINCI s [ ROI - 91
of of p—2
- ! dv 1
v [ el G
p 2 5 Of Of 2
P pprgiifl =2
el o g (AP
where R is the scalar curvature of M.
Proof:
If F} is the Riemannian metric, then
1
Ric = ~R, (32)
n
and -
2¢ Ric;j — nRic = R, (33)
therefore (31) is obtained by replacing (32) and (33) in (29).
O

Corollary 3.4. Let (M?,F;) be a solution of the un-normalized Ricci flow on the
smooth Riemannian surface (M?, Fy). If X(t) denotes the evolution of an eigenvalue
under the Ricci flow, then:

d\ p = <
5/SIVIR|W|Pdv+/ RO fIP — [V fIP)dv

da
of of 2
- Gi ViP2dv
p/SMg 5 )ay 5.7 VSl

_B 2 zgaf af pg
n/SMRF 83/83' P dv

where R is the scalar curvature of M.
Proof: In dimension n = 2, for a Riemannian manifold, we have:

1
Ric = 3 Ry, (34)
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hence the corollary is obtained by replacing (34) in (29). O

Corollary 3.5. Let (M™, F}) be a solution of the un-normalized Ricci flow on the
smooth homogenous Riemannian manifold (M™, Fy). If A(t) denotes the evolution
of an eigenvalue under the Ricci flow, then:

dA = / Ric(NV £,V )|V fP~2dv

_ ij af of b2
p/SMg 8t(G) IV 1P~ 2dv

Dy" dad
—RB/ F? g 2 af oy IV
nJsm

oy’

where R is the scalar curvature of M.

Proof:

Since the evolving metric remains homogenous and a Riemannian homoge-
nous manifold has constant scalar curvature, so the corollary is obtained by (29).0

Now, we give a variation of A(¢) under the normalized Ricci flow which is
similar to the pervious proposition.

Proposition 3.6. Let (M™, F;) be a solution of the normalized Ricci flow on the
smooth Finsler manifold (M™, Fy). If A(t) denotes the evolution of an eigenvalue
under Ricci flow, then:

D~ pap [ Rie(Sf, )T
dt SM
+/’<AMW—w%ﬂ%{w“wa—nR“}m’ )
SM
B 8f 5f p—2
p/SMg 7oy Wlw' "

. f of ~
— F2(Ric—r) g4 flP~ 2dv
pLM (Ric—r) g 52 2L 191

. . . . . . "oy Ricdv
where f is the associated normalized evolving eigenfunction, r = Jsy Ricdv .
’ vol(SM)

Proof: In the normalized case, the integrability conditions read as follows

p/ ffIfIP2dv = / |fIP {2¢" Ric;j — nr — nRic} dv. (36)
SM sM

Since

dv) = {—2¢" Ric;j + nr + nRic} dv (37)
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using (24), (27) and the above equation, we can then write

dX d ~ ~ d
- — — P p__
/SM(dthl )dv+/S]\/I V] dt (dve) (38)

dt

’

P il gk . 6f 6f 5 6f 5f p—2

= - . - - + 2 \v dv
2 /SM { 99 Sxt dxd g Szt §ad V1

. a9f o
+g/ {2F2(—Ric+r)g” L o5
2Jsm oy ayJ

af
il gk }I P 2av
Ayt dyI

—F?g" g% (—2Ricyy, + 2rgyp)
g ;i O .. Of ¢ af’ o ~
w2 [ 29t 2 e 2L 2Ly ap2gia 28 O g tan
SM ot

2 AyT bxd Ayt dyJ
+/ \6f|p{—2ginicij +n'r+n72ic} dv
JSM
= (—prr+p / Ric(¥ 1,V NIV P 2dv + p / TS TNITIHP 2 dw
JSM JSM

+ / \%f|p {—Zg'inicij + nT\’,ic} dv
JSM

ij d of of 2,
_ v G p—
p/SMg —( )ayrw|f|
of -
—p/ F2(Ric — ) i1 2L 9 G pp-24,
sMm 8 i Qyd

but

p/SMg(Vf,Vf)IVfI dv pA/SMffIfI d

)\/ |f? {2¢" Ric;; — nr — nRic} dv (39)
SM

and %(Gf) is obtained by replacing F” and g;; from (3) and (4), respectively, in
(27). Thus the proposition is obtained by replacing (39) in (38).0
Similar to un-normalized case we have the following corollaries:

Corollary 3.7. Let (M"™, F;) be a solution of the normalized Ricci flow on the
smooth Riemannian manifold (M™, Fy). If A(t) denotes the evolution of an eigen-
value under Ricci flow, then:

dA\ PO
il (n—p)w\+p/SMRic(Vf,Vf)|Vf|p_2dv

~ af o
[ ROUP =B p [ g1 G5 S )

1 af of
_ - F2 ij 2 p—2
p/SM(nR nEg oy’ 3y3‘vﬂ dv

where R is the scalar curvature of M.

Corollary 3.8. Let (M2 F;) be a solution of the normalized Ricci flow on the
smooth Riemannian surface (M?, Fy). If \(t) denotes the evolution of an eigenvalue
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under Ricci flow, then:
% = (2—p)r)\+g/SMR|§f|pdv
[ ROV - Fame—p [ g7 Gk L Rt
—p/SM(g2 r)F? ”gf gi IV fP~2dv

where R is the scalar curvature of M.

Corollary 3.9. Let (M™, F}) be a solution of the normalized Ricci flow on the
smooth homogenous Riemannian manifold (M™, Fy). If A(t) denotes the evolution
of an eigenvalue under Ricci flow, then:

d\ Ay
& = (=pratp / Ric(V f, V)|V f[P~2dv
af &
_p/sM at(Gs)afafa‘Vf'p v
1 6 8

where R is the scalar curvature of M.

4. EXAMPLES

In this section, we will find the variational formula for some of Finsler mani-
folds.

Example 4.1. Let (M™, Fy) be an FEinstein manifold i.e. there exists a constant
a such that Ric(Fy) = aF§. Therefore Ricij(go) = agi;(0). Assume we have a
solution to the Ricci flow which is of the form
g9(t) = u(t)go, u(0)=1

where u(t) is a positive function. Now (2) implies that

u(t) = —2at + 1,
so that we have

g(t) = (1 — 2at)go
which says that g(t) is an Einstein metric. On the other hand it is easily seen that

. . a
Ric(g(t)) = Ric(go) = ago = 7—5—9(1),
. 1 a
Riclg) = g Riclgo) = 75
F? = (1-2at)F?
therefore
an

2¢" Ric;j — nRic =
9" Ricj —nRic=——
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and
Rie(V,Vf) = 1=5=3(V.V) = 7= |V
Also
i _lu %_8Qﬂc gk
_ 1 il 8(90>J _ 9(9o) _ i
- Z(gO) {2 Ak ozl } _G(O)
therefore
a i
7 (Gr) =

Using the un-normalized Ricci flow equation (2) and (29) ,we obtain the following
relation:

dA a ~ an
o P P
dt p/leQath' d”JM/M'fl T 2a®
_ an = Py — / a F2 af af p— 2d
/M 1—2at|vf| vop syv 1 —2at g Oyt Oy J‘vﬂ v

ba 2 i of of 2
= _ F%g j 2 p—
1—2at {)\ /SM oyt 8y3|vf| dv

Now, If we suppose that gr = u(t)go, u(0) = 1 is a solution of the normalized Ricci
flow and r = W fSM Ricdv, then from (8) we have

' go = —2ago + 2rugo.
It implies that

So that we have:

,
and
a -1
Ric(g(t)) = a ((1 — ) + 62”) 90
r
a -1
Ric(g(t)) = a((l — ety 4 62”)
r
.. a -1
2¢" Ric;j — Ricij = an((l — ety + eQTt> ,
r
also
G'(t) = G'(0),
therefore

oGT

B =0.
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Using (35), we obtain the following:

dX

-1
il (n— p)rA—&-paA( (l—eQTt)—i—eQ”)

- p/SM (a<i(1_em)+em>_l )( g V2|V fIP~2dv
= <(n —p)r era((;(l — ey 4 62”) _1)/\

-1
. a ot 2rt _ 2 5f of p—2
p(a(r(l e +e ) 7") /SMF g¥ 8y By J|Vf| dv.

REMARK. Let (M", Fy) be a Finsler manifold of dimension n > 3. Suppose that the
flag curvature k = k(z) is isotropic and a function of x € M alone then k = constant
and therefore (M™, Fy) is Einstein and the variation of its eigenvalues is similar to
example (4.1).

Definition 4.2. A Finsler metric on an n-dimensional manifold is called a weak
Einstein metric if

3
Ric = (n— 1){%7 + o} F?
where ) is a 1-form and o = o(x) is scalar function.

Example 4.3. If we suppose that F; = u(t)Fy, uw(0) =1 is a solution of the Ricci
flow, then:

; ; 30 4 4 2 37,0 0
Ric(F,) = Ric(Fy) _ Ric(Fy) _ (n = D{F + 00} F§ _ (n— {32 + 50}

F? (u(t))*Fg (u(t))*F§ (U(t))2
Now the Ricci flow (1) implies that
C=D{F o} dlogF  F (1)
@®)? T e TR ul)

or equivalently
wu’ = (n — ){ + o0}
By integration we have:
u?(t) = —2(n — 1){ +Jo}t+c
with condition u(0) = 1 we have:
uW(t)=1-2(n— ){ +Uo}t
therefore

F? = {1 —2(n — 1){?;;7(;)—#00}1%} F} (41)
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and
Ric(Vf,Vf) = L (n — 1)g"¢7* { (310 F0) yrys + 200(g0)is | VifV;f. (42)
Also we have
(n — D{F + 00}
" o D{3 + oo}t
(43)

2ginicij—nRic = (n—l)gij {(3770F0)yiyj + 20’0(90)1‘3‘}

Note that on OF
n
9i5(t) = (1 = 2(n = oot){go)i; = 6(n =t 555
By replacing (42),(43) and (44) in (29) we obtain the variation of an eigenvalue.
Now, if we suppose that Fy = u(t)Fy, u(0) =1 is a solution of the normalized Ricci
flow and r = W Jsps Ricdv, then from (3), we have:

(44)

n—1)>30 g !
rf( ) Ozr—Ric:alo‘qF:u(t)
u?(t) ot u(t)
. It implies that
’ 2., 310 _
we —ur=—-(n-—1)— 409, u(0)=1
Fo
which is an ordinary diﬁerential equation and has a solution as follow:
—13no
2 2rt 2rt
t) = -
() = T P (1 ) e
therefore
—1 3’(}0 r r
FE:{ . F0+ oo(1 e2t)—|—62t}F02
and £ is obtained from (35).

Example 4.4. In this example we determine the behavior of the evolving spectrum
on the Ricct solitons.
Let F} is a solution of the Ricci flow ‘%OgF —Ric. If p ia a time-independent
isometry such that
F(z,y) = ¢"Fi(z,y)
is a solution of the un-normalized Ricci flow, because of %logFt(x, y) = —Ric(z,y), F(0) =
Fo,

0
alogF(x y) = (‘3t

since @ is a isometry we have

0 0 ) . .
5el09F (w,y) = 5 logFi(z,y) = —Ric(z,y) = —Ric(p(z), (y)) = ~Ric(F)
Definition 4.5. Let (M, F;) is a solution of the Ricci flow and py is a family of
diffeomorphisms. We says F(t) is Ricci soliton, when satisfies in

F} = u(t)p; Fy. (45)

P logi(ry) = ~-logFi(g(x). £.(1)
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Let (M, F) and (M, F) be two closed Finsler manifolds and
¢ (M,g) = (M,F)
an isometry, then for p = 2 we have
gAp o (p* = (p* OEAP.
Therefore given a diffeomorphism ¢ : M — M we have that
@ (SM,¢"g) = (SM, g)

is an isometry, hence we conclude that (SM,p*g), and (SM,g) have the same
spectrum

Specy(g) = Specy(£79)
with eigenfunction fr, and ¢* fi, respectively. If g(t) is a Ricci soliton on (M™, go)
then

SWMmm=ﬁ%%m@m

so that \(t) satisfies
1 dx W)
SUTO N )

Example 4.6. Suppose that
R} = {(;cl’;g27...,xn> ER™2' >0, i=1, on}

has the metric

—e ifi=]
gij(@,y) = { &) 7 (46)
0 if i

where it is a solution for the un-normalized Ricci flow and ¢¢(y) is a strictly positive
C* homogeneous function of degree zero and p > 0. We use the formula
( ,)2(1>+1)
. z’ P e
gi={ s Ti=J (47)
0 ifi#]

fori=1,...,n, we have

Iet pt1 (91)2
2p  at
and
F?Ric(g(t)) =0
therefore Ric(g(t)) = 0 and the un-normalized Ricci flow equation implies that

dg(t)
ot =0

hence, g(t) = go and A(t) = X(0).
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Example 4.7. Suppose that R? has the metric

4(z1)?+1 —222 ) (48)

gij(xa y) = ¢t(y) ( _2x1 1

which is a solution for the the un-normalized Ricci flow, where ¢:(y) is a strictly
positive C'°° homogeneous function of degree zero. We obtain

Gl —_ 07 G2 _ _<y1>2
and
F?*Ric(g(t)) =0

therefore Ric(g(t)) = 0 and the un-normalized Ricci flow equation implies that

dg(t)
ot 0
hence, g(t) = go and A(t) = X\(0).
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