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Abstract. For any natural natural number m, the m-cluster tilted algebras are

generalization of cluster tilted algebras. These class algebras are defined as the

endomorphism of certain object in m-cluster category called m-cluster tilting object.

Finding such object in the m-cluster category has become a combinatorial problem.

In this article we characterize Nakayama m-cluster tilted algebras of type An by

geometric description given by Baur and Marsh.
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Abstrak. Untuk setiap bilangan asli m, aljabar teralih m-kluster adalah general-
isasi dari aljabar teralih kluster. Kelas aljabar ini didefinisikan sebagai endomor-

fisma objek tertentu di kategori m-kluster yang disebut objek pengalih m-kluster.

Mencari objek tersebut dalam kategori m-kluster dapat menjadi masalah kombina-
torial. Dalam artikel ini dikarakterisasi aljabar Nakayama yang merupakan aljabar

teralih m-kluster jenis An berdasarkan deskripsi geometris yang diberikan oleh Baur

dan Marsh.

Kata kunci: aljabar teralih kluster, kategori kluster, objek pengalih, aljabar

Nakayama.

1. Introduction

Let K be an algebraically closed field, and Q a finite acyclic quiver with n ver-
tices. Let Db(H) be a bounded derived category of mod H where H is a basic, finite
dimensional hereditary algebra over K. We can assume H as a path algebra KQ of
some quiver Q. The m-cluster category is the orbit category CmH = Db(H)/τ−1[m]
where τ is the Auslander-Reiten translation of Db(H) and [m] denotes m-th power
of shift [1] in the derived category Db(H). The m-cluster category is triangulated
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[5] and it is a Krull-Schmidt category [2]. These categories are generalization of
cluster categories defined in [2] and independently [3] for the Dynkin type An case.

In m-cluster category we consider a class of objects called m-cluster tilting
objects. These objects have nice combinatorial properties. By definition, an object
T is an m-cluster tilting object if for any object X, we have X ∈ add T if only
if ExtiCm

H
(T,X) = 0 for all i ∈ {1, 2, . . . ,m}. The objects T always have exactly

n indecomposable direct summands [7]. The endomorphism algebra EndopCm
H

(T ) is

called m-cluster tilted algebra.

In this paper we investigate m-Cluster Tilted Algebras(m-CTA) of type An
which are Nakayama algebras. Nakayama algebra itself by its quiver is divided into
two types, namely type An and cyclic. In this paper we focus on m-CTAs which
are Nakayama algebras of type An and all possible relations as from [6] we have
known all m-CTAs which are Nakayama algebras of type cyclic, see also [4]. In
order to do this we use the geometric description of m-cluster category type An in
[1]. We will divide into three cases in the search of m-CTAs of type An. We divide
these two cases based on the relationship between m and n. The first case is when
m ≥ n− 2, the second case is m < n− 2.

This article is organized as follows. In Section 2 we describe the geomet-
ric description and the relations of Nakayama m-CTAs; in Section 3 we give a
characterization of Nakayama m-CTA of cyclic type; in Section 4 we give a char-
acterization of Nakayama m-CTA of acyclic type which will be divided into two
cases.

2. Geometric Description and Relations in Nakayama m-CTAs

The geometric description of m-cluster category type An in [1] briefly repre-
senting indecomposable objects and arrows of the AR-quiver of m-cluster category
in a regular gon. The indecomposable object is described as a diagonal of a regular
gon while an arrow between two indecomposable objects described as two diagonals
that have a common endpoint. From this geometric description we can also see the
relations of quivers of the m-CTAs of type An.

Let Pm(n+1)+2 be (m(n + 1) + 2)-regular gon, m,n ∈ N, where its corner
points are numbered clockwise from 1 to m(n+ 1) + 2. A diagonal D of Pm(n+1)+2

can be denoted as a pair (i, j). Consequently, the diagonal (i, j) is the diagonal
(j, i). We said a diagonal D of Pm(n+1)+2 is an m-diagonal if D divide Pm(n+1)+2

into two parts that is (mj+ 2)-gon and (m(n− j) + 2)-gon where j = 1, 2, . . . , dn2 e.
For i 6= j, an arc Dij of Pm(n+1)+2 is a part of boundary that connect i to j
clockwise. Note that if j is a clockwise direct neighbor of i then arc Dij is an
edge ij of Pm(n+1)+2. We always have two arcs Dij , Dji. Let ΓmAn

be a quiver
with the vertices are all m-diagonals of polygon Pm(n+1)+2 while arrows obtained
in the following way: suppose D = (i, j) and D′ = (i, j′) are m-diagonals which
have a common vertex i in Pm(n+1)+2 then there is an arrow from D to D′ if D,D′
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together with arc from j to j′ form (m+2)-gon in Pm(n+1)+2 and D can be rotated
clockwise to D′ about the common endpoint i.

Using this regular gon we can easily make a quiver of an m-CTA. The set of
indecomposable objects of a tilting object of m-cluster category of type An can be
identified as the set of maximal m-diagonals in Pm(n+1)+2 and the number of direct
summands of this object is always n. Such a set is called an (m+ 2)−angulation of
Pm(n+1)+2. By definition, we can conclude that if X and Y are m-diagonals of a
tilting object T that has a common endpoint then there is a path from TX and TY
in the Auslander-Reiten(AR) quiver of m-cluster category where TX and TY are
indecomposable objects associated to X and Y . It is clear that the composition
of the arrows in this path is not zero. If there is no m-diagonal between X and
Y in Pm(n+1)+2 then the composition of irreducible maps from TX to TY does not
pass through another indecomposable object which is a direct summand of a tilting
object T . It means that there is an arrow from the point corresponding to X and
Y in the quiver of m-CTA Endop(T ).

By the above argument we can define a quiver of an m-CTA independently
from (m + 2)-angulation of Pm(n+1)+2. Let T = {T1, T2, . . . , Tn} be an (m + 2)-
angulation. Define a quiver QT as follows: The vertices of QT are the numbers
1, 2, . . . , n which are in bijective correspondence with them-diagonals T1, T2, . . . , Tn.
Given two vertices a, b of QT , there is an arrow from a to b if

(i) Ta and Tb have a common point in Pm(n+1)+2,
(ii) there is no m-diagonal of T between Ta and Tb and

(iii) Ta can be rotated clockwise to Tb at the common endpoint.

Our first lemma characterize the possible forms of two m-diagonals in polygon
Pm(n+1)+2, correspond to a path of length two in the quiver of an m-CTA. We have
the following easy lemma.

Lemma 2.1. Let H =Endop(T ) be an m-CTA with T is an m-cluster tilting object
of CmAn

. If x→ y → z is a path of length two in QH and Tx, Ty, Tz respectively are
m-diagonals correspond to points x, y, z then

(1) Tx = (x1, x2), Ty = (x2, x3), Tz = (x3, x4) with x4 in arc Dx3x1

or

(2) Tx = (x1, x2), Ty = (x2, x3), Tz = (x2, x4) with x4 in arc Dx3x2 ,

where xi 6= xj if i 6= j.

Proof. Let Tx = (x1, x2). Since there is an arrow from x to y then Tx and Ty have
a common endpoint. Without loss of generality, suppose Ty = (x2, x3). Since there
is an arrow from y to z then Ty and Tz have a common endpoint. If x3 is a common
endpoint of Ty and Tz then Tz = (x3, x4) where x4 in arc Dx1x3

, otherwise Tz will
cross Tx. If x2 is a common endpoint of Ty and Tz then Tz = (x2, x4) where x4 in
arc Dx3x2

. �

Let Q be a finite quiver without cycle and H = KQ/I where I is an admissi-
ble ideal of KQ. If Q is not connected then the algebra H is not connected. Indeed
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let Q be the collection of maximal connected subquivers of Q. It can be shown that

H =
∏
Q′∈Q

KQ′/I ′ where I ′ is an ideal of Q′, but then H is a finite direct product

of some algebras. Hence, H is not connected.

In order to know the condition of an (m+ 2)-angulation such that the quiver
of m-cluster tilted algebra is connected, we have the following easy lemma.

Lemma 2.2. Let T be an (m+ 2)-angulation of Pm(n+1)+2. The graph generated
by the diagonals in T is connected if only if the quiver QT is connected.

Let X = (x1, x2) be a diagonal of Pm(n+1)+2. We may assume x2 > x1.
Define the length of diagonal X to be the min{x2 − x1,m(n + 1) + 2 + x1 − x2}.
Thus, the length of X is equal to the minimum of the number of sides between arc
Dx1x2

and Dx2x1
. An m-diagonal X of Pm(n+1)+2 is said to be short if its length

Figure 1. short m-diagonal

is minimal, that is of length m+ 1. An m-diagonal X is short if only if there is no
m-diagonal whose endpoints are in smaller polygon divided by X.

Lemma 2.3. Let T be an (m + 2)-angulation of Pm(n+1)+2 with n ≥ 3. If QT is
cyclic then all m-diagonals in T are short.

Proof. Let X be an m-diagonal of T which is not short . Without loss of generality,
let X = (1, x1) and X has length which is minimal among the diagonals in T which

are not short . First, assume that x1 ≤
m(n+ 1) + 2

2
. The diagonal X will

divide Pm(n+1)+2 into two smaller polygons P1 and P2 with P1 is the smallest
polygon (see Figure 2). Since X is not short and T is maximal, there exists an
m-diagonal of T whose endpoints in arc Dx1x2

. By the same argument we also
have another m-diagonal of T which divides the polygon P2. We then have that all
m-diagonals in P1 are short by the minimality of X. Since QT is connected there
exists a short m-diagonal X1 of T in P1 that adjacent to X. We may assume that
X1 = (1, b). Now there exists a short m-diagonal that adjacent to X1, namely X2.
By the same argument we have a collection of short m-diagonals X1 = (1, a1), X2 =
(a1, a2) . . . , Xk = (ak−1, ak) where all of these are in P1 and maximal with respect
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Figure 2. m-diagonal X

to this property. It follows that xk = x1, otherwise there is no arrow which target
is Xk in QT . We describe this situation in the following figure

Figure 3. m-diagonals in P1

But now we have a path X1 → X → Xk in QT . So there can be no further
m-diagonals adjacent to X, which is a contradiction.

If x1 >
m(n+ 1) + 2

2
we get similar proof for P2 since in this case P2 becomes

the smallest polygon divided by X. �

Lemma 2.3 gives us a characterization of m-cluster tilting object such that
the corresponding m-CTA is a Nakayama algebra of cyclic type. We will find all
m-cluster tilting objects in this form in the next section. Now we look at the
configuration of an (m+ 2)-angulation T which QT is of An type.

Lemma 2.4. Let T be an (m + 2)-angulation of Pm(n+1)+2 with n ≥ 3. If QT is
of An type then

T = TC ∪ Tα1
∪ Tα2

∪ · · · ∪ Tαr−1
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for some r ≥ 2 where (up to rotation) TC = {(1, x1), (x1, x2), . . . , (xr−1, xr)} and
all m-diagonals in TC are short,

Tα1
= {(x1, y11), (x1, y12), . . . , (x1, y1j1)}, j1 ≥ 0

Tα2 = {(x2, y21), (x1, y22), . . . , (x1, y2j2)}, j2 ≥ 0

...

Tαr−1 = {(xr−1, yr−1,1), (x1, yr−1,2), . . . , (xr−1, yr−1,jr−1)}, jr−1 ≥ 0

with y11 < y12 < · · · < y1j1 < y21 < · · · < y2j2 < · · · < yn−1,jn−1
.

Figure 4. (m+ 2)-angulation of T with QT = An

Proof. Let (1, x1) be an m-diagonal of Pm(n+1)+2 correspond to a source in QT .
We claim that (1, x1) is short. If (1, x1) is not short then either there is an m-
diagonal (x1, t) with t > x1 or there is an m diagonal (1, u) with u > x1 (see Figure
5). Consider the first case , if there is an m-diagonal (x1, t), we chose t maximal

Figure 5. m-diagonals (x1, t) and (1, u)

such that t > x1. Then we have an arrow (x1, t)→ (1, x1), but it contradicts that
(1, x1) is a source. Second case, if there is an m-diagonal (1, u) we chose u minimal
such that u > x1. Since (1, x1) is not short, there is either an m-diagonal (x1, a)
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with 1 < a < x1 or an m-diagonal (1, b) with 1 < b < x1. We may assume that
a is minimal and b maximal. If there is a diagonal (x1, a) then there is an arrow
(1, b)→ (x1, a). It contradicts the fact that there is also an arrow (1, x1)→ (1, u).
So we can assume that there is a diagonal (1, b). It follows that there is an arrow
(1, b) → (1, x1). This is a contradiction since (1, x1) is a source. Therefore (1, x1)
is short, this proves our claim.

Let (1, x1) → (x1, z) be the arrow starting in (1, x1) then z > 1. Now there
are two cases, either (x1, z) is short or (x1, z) is not short.

Figure 6. m-diagonal (x1, z)

(1) (x1, z) is short.
If Tα = (x1, z) is short then arc Dzx1

together with Tα is a smaller polygon
divided by (x1, z). Hence, there is no m-diagonal with endpoints in arc
Dzx1

. We also have that there is no m-diagonal (x1, y) with 1 < y < z
since otherwise the arrow (1, x1)→ (x1, z) will not exist.

(2) (x1, z) is not short.
If (x1, z) is not short then there is no m-diagonal (z, v) with 1 < v < z.
Indeed, assume to the contrary that there is an m-diagonal (z, v) with
1 < v < z. It follows that there is no m-diagonal (x1, u) for z < u < x1
since otherwise there is also an arrow (x1, z) → (x1, u). If there is an m-
diagonal (z, l) for z < l < x1, and choose z maximal, then there is an arrow
(z, l) → (x1, z), a contradiction. Therefore there is no m-diagonal with
endpoints in arc Dzx1

. This is a contradiction since (x1, z) is not short.
Hence there is no diagonal (z, v). Therefore arc D1z together with (1, x1)
and (x1, z) forms an (m+ 2)-gon.

We describe condition 1 and 2 respectively as follows

where the shaded polygons are m+2-gons and hence there is no m-diagonal in these
polygons. Now we perform same analysis by consider the arrow starting at (x1, z).
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Indeed, in case (x1, z) is short then the arrow starting at (x1, z) is (x1, z)→ (z, w)
with 1 < w < z. In case (x1, z) is not short then the arrow starting at (x1, z) is
(x1, z) → (x1, w) with 1 < w < x. We have similar case for the third m-diagonal
from the source which adjacent to (x1, z). There are again two cases to consider,
that is either this m-diagonal is short or not short. These two cases will be similar
to the condition 1 and 2 above. We complete the proof by induction using the fact
that the the next m-diagonal adjacent to the previous have two possibilities like
condition 1 and 2. �

Two cases in Lemma 2.1 hold for any path of length two in the quiver of
m-CTAs of type An. For both cases the picture is as follows

Figure 7. m-diagonals correspond a path of length two

Using the above lemma we can conclude that each path of length two in the quiver
of m-CTAs of type An is one of these two cases.

Now we will see the composition of paths of length two in End (T ) ∼= KQ/I
for both cases. We have the following facts.

Lemma 2.5. Let T = T1 ⊕ T2 ⊕ · · · ⊕ Tn be an m-cluster tilting object of CmAn
and

Q be a quiver of m-CTA Endop(T ). Suppose i
α−→ j

β−→ k is a path of length two in
Q corresponding to the m-diagonals Ti, Tj , Tk in Pm(n+1)+2.

(1) If Ti = (x1, x2), Tj = (x2, x3), Tk = (x3, x4) with x4 in arc Dx3x1 then the

composition i
α−→ j

β−→ k in Endop(T ) is zero.
(2) If Tx = (x1, x2), Ty = (x2, x3), Tz = (x2, x4) with x4 in arc Dx3x2

then the

composition i
α−→ j

β−→ k in Endop(T ) is not zero.

Proof. See [4]. �

Now we can identify the relation of connected Nakayama m-cluster tilted
algebras using Lemma 2.3, 2.4 and 2.5.

Theorem 2.6. Let H = KQ/I be a connected Nakayama m-cluster tilted algebra
of CmAn

. An ideal I of H is generated by a relation of paths of length two.

Proof. If Q is cyclic then by Lemma 2.3, Q = QT where T is an (m+2)-angulation
such that all m-diagonals in T are short. Therefore, every path of length two in
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QT is in case 1 of Lemma 2.1. By Lemma 2.5 all paths of length two is zero. If
Q is of type An then by Lemma 2.4 every path of length two is either case one
or case two of Lemma 2.5. It remains to prove that every path P = α1α2 . . . α`
with ` ≥ 3 is not zero in H if every subpath of P is not zero in H. It follows that
every subpath of length two in P is case two of Lemma 2.5. We may assume that
Tα1

= (1,mr + 2) with 1 ≤ r < n whose common endpoint with Tα2
and Tα3

is 1.
Hence, Tαj

= (1,mrj + 2) for every j ≥ 2 with r < ri < ri+1 for all i. We have
that Tα1 , Tα2 , . . . , Tα`

will be in the subquiver of ΓmAn
as in Figure 8. Since the

Figure 8. subquiver of ΓmAn

composition of irreducible morphism Tα1
→ Tα2

→ · · · →α`
is not zero in m-cluster

category, we conclude that α1α2 . . . α` not zero in H. This finishes the proof. �

3. m-CTAs which are Nakayama Algebra of Cyclic Type

In this section we will show that m-CTAs which are Nakayama algebras of
cyclic type only occur if m = n−2. It means that there is no m-CTA whose quiver
is cyclic when m 6= n − 2. In addition, in m-CTA there is only one possibility
relation that is relations of paths of length two. More generally, m-CTAs which
have cyclic quivers have been stated by Murphy in [6]. However, in this section we
explain how to characterize m-CTAs which quivers are cyclic by using geometric
description in [1]. The results in this section have been proved in [4]. We state
again here with more structured proofs.

We show that if T = T1 ⊕ T2 ⊕ · · · ⊕ Tn then T is a m-cluster tilting object
for m ≥ n+2 where Ti’s are m-diagonals described in Proposition 3.1. The quivers
of m-CTAs Endop(T ) have different forms for each case m = n− 2 and m > n− 2.
Indeed, for 1 ≤ i ≤ n − 1 diagonals Ti and Ti+1 have a common endpoint in
Pm(n+1)+2 for m ≥ n− 2. It means that for every i, we have an arrow i→ i+ 1 in
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the quiver of Endop(T ). Now consider m-diagonals Tn = (3m−(n−5), 2m−(n−4))
and T1 = (1,m + 2). If m = n − 2 then Tn = (2m + 3,m + 2). Hence, Tn and T1
have a common endpoint (m + 2) in Pm(n+1)+2. Therefore there exists an arrow
n → 1 in quiver of Endop(T ). Thus, for m = n − 2 the quiver of m-cluster tilted
algebra Endop(T ) is Figure 9.

Figure 9. Quiver of Endop(T ) for m = n− 2

Proposition 3.1. Let CmAn
= Db(KAn)/Fm, where Fm = τ−1[m] and m = n− 2.

Suppose that T1 = (1,m+ 2), T2 = (1, nm+ 2) and for 3 ≤ i ≤ n,

Ti = ((n− (i− 2))m− (i− 4), (n− (i− 3))m− (i− 5))

then

(1) T1, T2, . . . , Tn are m-diagonals of Pm(n+1)+2.
(2) T = T1 ⊕ T2 ⊕ · · · ⊕ Tn is an m-cluster tilting object.
(3) m-cluster tilted algebra Endop(T ) is isomorphic to KQ/I where Q is cyclic

with n vertices and I is an ideal generated by all paths of length two.

Proof. It is clear that if T1 = (1,m+ 2), T2 = (1, nm+ 2) and for 3 ≤ i ≤ n,

Ti = ((n− (i− 2))m− (i− 4), (n− (i− 3))m− (i− 5))

then T1, T2, . . . , Tn are m-diagonals of Pm(n+1)+2. For i = n we have that Tn =
((n − (n − 2))m − (n − 4), (n − (n − 3))m − (n − 5)) = (3m − (n − 5), 2m − (n −
4)). Consider m-diagonals T1, T2, . . . , Tn in Pm(n+1)+2, see Figure 10. Because
T1, T2 . . . , Tn are not crossing each other then T is an m-cluster tilting object. Let
Q be a quiver of m-cluster tilted algebra Endop(T ), then there is only one arrow
i→ i+1 for every 1 ≤ i ≤ n−1. Sincem = n−2, we obtain that Tn = (2m+3,m+2)
and T1 = (1,m + 2) have a common endpoint. Consequently, there is exactly one
arrow n → 1 in Q. It means that Q is a cyclic quiver with n vertices. By Lemma
2.5 the composition of all paths of length two is zero. �

Next we show that the m-CTA of type An whose quiver is cyclic is the algebra
stated in Proposition 3.1.
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Figure 10. m-diagonals T1, T2, . . . , Tn

Proposition 3.2. If T is an m-cluster tilting object of m-cluster category CmAn
such

that the quiver of m-cluster tilted algebra Endop(T ) is connected and cyclic, then
m = n− 2. Moreover, Endop(T ) = KQ/I with I an ideal generated by all paths of
length two.

Proof. Let Q be a quiver of m-cluster tilted algebra Endop(T ). Suppose T =
T1⊕T2⊕ · · ·⊕Tn,we may assume {T1, T2, . . . , Tn} is a set of maximal non-crossing
m-diagonals in (m(n+ 1) + 2)-gon Pm(n+1)+2. Assume that Q0 = {T1, T2, . . . , Tn}
the set of vertices of Q, and the set of arrows Q1 = {α1, α2, . . . , αn−1, αn} with
αi : Ti → Ti+1 for every i ∈ {1, 2, . . . , n − 1} and αn : Tn → T1. Consider any
path of length two Tp → Tq → Tr in Q. By Lemma 2.3 Tq, Tr, Ts are short. It
follows that Tq = (x1, x2), Tr = (x2, x3), Ts = (x3, x4) can be described as in Figure
11. By applying the above argument, the picture of m-diagonals T1, T2, . . . , Tn in

Figure 11. m-diagonals correspond to Tq, Tr and Ts

Pm(n+1)+2 is Figure 12.
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Figure 12. m-diagonals T1, T2, . . . , Tn for m = n− 2

Since all Ti are short then the length of Ti is m + 1. Consequently, we have the
equation

(m+ 1) + (m+ 1) + · · ·+ (m+ 1)︸ ︷︷ ︸
n

= m(n+ 1) + 2.

Therefore,

(m+ 1)n = m(n+ 1) + 2⇔ n = m+ 2

For the last statement we apply Lemma 3.1. �

Example 3.3. Let m = 4 and n = 6 then m(n+1)+2 = 4(6+1)+2 = 30. Consider
30-gon P30, let T1 = (1, 6), T2 = (1, 26), T3 = (26, 21), T4 = (21, 16), T5 = (16, 11)
and T6 = (11, 6) then T = T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T5 ⊕ T6 is a 4-cluster tilting object.
The picture of P30 together with the six m-diagonals is

Figure 13. (m+ 2)-angulation T for m = 4 and n = 6
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4. m-CTAs which are Nakayama Algebras with Acyclic Quivers

In this section we will characterize m-CTA which are Nakayama algebras
whose quivers are connected acyclic. In other words, we find m-cluster tilting
objects T = T1 ⊕ T2 ⊕ · · · ⊕ Tn such that Endop(T ) ∼= KQ/I where Q is

T1
α1−→ T2

α2−→ T3 → · · · → Tn−1
αn−1−−−→ Tn.

Throughout, Q is assumed to be the above quiver, unless otherwise specified.

We will also observe the relation in this type of m-CTA. To do this we divide
into two cases correspond to m and n. These three cases are m ≥ n − 2 and
m < n− 2.

The following is the list of m-diagonals in Pm(n+1)+2.

Table 1. m-diagonals

(1,−) (nm+ 2,−) ((n− 1)m+ 1,−) ((n− 2)m,−) ((n− 3)m− 1,−)
m+ 2 1 nm+ 2 (n− 1)m+ 1 (n− 2)m
2m+ 2 m+ 1 (n+ 1)m+ 2 nm+ 1 (n− 1)m
3m+ 2 2m+ 1 m (n+ 1)m+ 1 nm
4m+ 2 3m+ 1 2m m− 1 (n+ 1)m

...
...

...
...

...
nm+ 2 (n− 1)m+ 1 (n− 2)m (n− 3)m− 1 (n− 4)m− 2

((n− 4)m− 2,−) ((n− 5)m− 3,−) . . . ((n− i)m− (i− 2),−) ((n− (i+ 1))m− (i− 1),−)
(n− 3)m− 1 (n− 4)m− 2 . . . (n− (i− 1))m− (i− 3) (n− i)m− (i− 2)
(n− 2)m− 1 (n− 3)m− 2 . . . (n− (i− 2))m− (i− 3) (n− (i− 1))m− (i− 2)
(n− 1)m− 1 (n− 2)m− 2 . . . (n− (i− 3))m− (i− 3) (n− (i− 2))m− (i− 2)

nm− 1 (n− 1)m− 2 . . .
...

...
(n+ 1)m− 1 nm− 2 . . . nm− (i− 3) (n− 1)m− (i− 2)

m− 3 (n+ 1)m− 2 . . . (n+ 1)m− (i− 3) nm− (i− 2)
2m− 3 m− 4 . . . m− (i− 1) (n+ 1)m− (i− 2)

...
...

...
...

...
(n− 5)m− 3 (n− 6)m− 5 . . . (n− (i+ 1))m− (i− 1) (n− (i+ 2))m− i
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From Table 1 we take m-diagonals which will be used as a direct summand
of an m-cluster tilting object such that the quiver of m-CTA is An. The following
table lists some m-diagonals which will be used for our m-cluster tilting object.

Table 2. m-diagonals of m-cluster tilting objects

X1,1 = (1, 2m+ 2) X1,2 = (nm+ 2, 2m+ 1)
X2,1 = (1, 3m+ 2) X2,2 = (nm+ 2, 3m+ 1)
X3,1 = (1, 4m+ 2) X3,2 = (nm+ 2, 4m+ 1)

...
...

Xn−2,1 = (1, (n− 1)m+ 2) Xn−2,2 = (nm+ 2, (n− 1)m+ 1)

X1,3 = ((n− 1)m+ 1, 2m) . . . X1,i = ((n− (i− 2))m− (i− 4), 2m− (i− 3))
X2,3 = ((n− 1)m+ 1, 3m) . . . X2,i = ((n− (i− 2))m− (i− 4), 3m− (i− 3))
X3,3 = ((n− 1)m+ 1, 4m) . . . X3,i = ((n− (i− 2))m− (i− 4), 4m− (i− 3))

...
...

...
Xn−3,3 = ((n− 1)m+ 1, (n− 2)m) . . . Xn−i,i = ((n− (i− 2))m− (i− 4), (n− i+ 1)m− (i− 3))

Throughout, for every 1 ≤ i ≤ n, Ti is assumed to be the m-diagonal de-
scribed in Proposition 3.1.

4.1. Case m ≥ n− 2.

Recall that T1 = (1,m+ 2), T2 = (1, nm+ 2) and for 3 ≤ i ≤ n− t we have

Ti = ((n− (i− 2))m− (i− 4), (n− (i− 3))m− (i− 5)).

We have that all m-diagonals in the set T = {T1, T2, . . . Tn−1, Tn} are short. In the
case m = n− 2 the quiver of QT is a cyclic quiver and every path of length of two
is a relation in the corresponding m-CTA. We will prove that there is no m-CTA
whose quiver is An and every path of length two is zero in the case m = n−2. But
in the case m > n− 2 the quiver QT is a path and every path of length of two is a
relation in the corresponding m-CTA.

Lemma 4.1. Suppose that CmAn
= Db(KAn)/Fm, where Fm = τ−1[m] with m >

n− 2.

(1) T1, T2, . . . , Tn are m-diagonals of Pm(n+1)+2.
(2) T = T1 ⊕ T2 ⊕ · · · ⊕ Tn is an m-cluster tilting object.
(3) The m-cluster tilted algebra Endop(T ) is isomorphic to KQ/I where Q is

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n.

and I is an ideal generated by all paths of length two.
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Proof. It is clear that T1, T2, . . . , Tn are m-diagonals of Pm(n+1)+2, where if i = n
then Tn = ((n− (n−2))m− (n−4), (n− (n−3))m− (n−5)) = (3m− (n−5), 2m−
(n − 4)). Observe that the picture of m-diagonals T1, T2, . . . , Tn in Pm(n+1)+2 is
Figure 14. Since T1, T2 . . . , Tn are not crossing each other then T is an m-cluster

Figure 14. m-diagonals of T

tilting object. Let Q be the quiver of m-cluster tilted algebra Endop(T ), then there
exists exactly one arrow Ti → Ti+1 for every 1 ≤ i ≤ n − 1. If m > n − 2 then
m− (n− 2) > 0 and consequently m+ 2 +m− (n− 2) > m+ 2. Hence, Tn and T1
don’t have common endpoint. In other words there is no arrow from Tn to T1. We
conclude Q is the quiver in the proposition. Finally, by Lemma 2.5 the composition
of all paths of length two is zero. �

Lemma 4.2. Let m ≥ n−2 and T = T1⊕T2⊕· · ·⊕Tn−1⊕X1,i with 1 ≤ i ≤ n−2
then

(1) T is an m-cluster tilting object in CmAn
.

(2) If Q is a quiver of Endop(T ) then Q is

1
α1−→ 2

α2−→ 3→ · · · → n− 1
αn−1−−−→ n.

(3) If ρj = αjαj+1 for every 1 ≤ j ≤ n − 2 then Endop(T ) = KQ/I where
I = 〈ρ1, ρ2, . . . , ρi−1, ρi+1, . . . , ρn−2〉.

Proof. Suppose that T ′ = {T1, T2, . . . , Tn−1} then it is clear that T ′ is the set of
m-diagonals that are not crossing each other in Pm(n+1)+2. We have that X1,1 =
(1, 2m+2) and X1,i = (m(n− (i−2))− (i−4), 2m− (i−3)) for 1 ≤ i ≤ n−2 = m.
Hence,

m+ 2 < 2m− (i− 3) < 2m+ 3

It follows that the set T ′ ∪ {X1,i} of m-diagonals in Pm(n+1)+2 is as in Figure
15. We conclude that T is an m-cluster tilting object of CmAn

. From Figure 15 we
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Figure 15. m-diagonal T ′ ∪X1,i

obtain easily that quiver of Endop(T ) is Q. Note that m-diagonals Ti, X1,i, Ti+1

satisfy case 2, hence the composition ρi = αiαi+1 is not zero. But all ρj with j 6= i
is zero since the corresponding m-diagonals with ρj satisfy case 1. We conclude
Endop(T ) ∼= KQ/I, as required. �

Lemma above gives us how to construct other m-cluster tilting objects which
have different relations. We know that the number of paths of length two in An is
(n− 2), where the relations are ρ1, ρ2, . . . , ρn−2. In Lemma 4.2 ideal I is generated
by a combination of (n− 3) relations of paths of length two from (n− 2) relations.
We can get the m-CTA Endop(T ) ∼= KQ/I where I generated by (n− 4) relations
of paths of length two from (n− 2) relations by the following lemma.

Lemma 4.3. Suppose that m ≥ n− 2 and T = T1 ⊕ T2 ⊕ · · · ⊕ Tn−2 ⊕X1,i ⊕X2,j

where 1 ≤ i ≤ j ≤ n− 3 then T is an m-cluster tilting object of CmAn
. Furthermore,

the algebra Endop(T ) ∼= KQ/I where I generated by (n − 4) relations of paths of
length two. If T be the collection of such T then |T| =

(
n−2
n−4
)
.

Proof. It is clear that m-diagonal T1, T2, . . . , Tn−2 are not crossing each other in
Pm(n+1)+2. Now we just need to consider m-diagonals X1,i and X2,j in Pm(n+1)+2.
We have that

X1,1 = (1, 2m+ 2),

X2,1 = (1, 3m+ 2),

X1,i = (m(n− (i− 2))− (i− 4), 2m− (i− 3)) and

X2,j = (m(n− (j − 2))− (j − 4), 3m− (j − 3))

where i > 1 and j > 1. It is easy to see that for i = 1 and j = 1, m-diagonals
T1, T2, . . . , Tn−2, X1,1, X2,1 are not crossing each other. Next, we consider endpoints
of X1,i and X2,j for every i ≥ 1, j > 1 . If i = j then 3m− (j−3)− (2m− (i−3)) =
m = n− 2. Since j ≤ n− 3 then

m+ 2 < m+ 4 ≤ 2m− (i− 3) < 3m− (j − 3) ≤ 3m+ 2 < 3m+ 4.
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It follows that one end point ofX1,i andX2,j is in arcDm+2,3m+4. While other point
both of X1,i and X2,j coincides with one of endpoint of T1, T2, . . . , Tn−2. It turns
out that X1,iis not crossing with T1, T2, . . . , Tn−2 as well as also for X2,j . It remains
to prove that X1,i and X2,k are not crossing each other. If i = 1 and j = 1 then it is
clear that X1,1 and X2,1 are not crossing each other. If i = 1 and 1 < j ≤ n−3 then
X1,1 = (1, 2m+2) and X2,j = (m(n−(j−2))−(j−4), 3m−(j−3)) are not crossing
each other. If j ≥ i > 1, we have X1,i = (m(n− (i− 2))− (i− 4), 2m− (i− 3)) and
X2,j = (m(n− (j − 2))− (j − 4), 3m− (j − 3)). Since

m(n− (j − 2))− (j − 4) ≤ m(n− (i− 2))− (i− 4) and 2m− (i− 3) < 3m− (j − 3)

thenX1,i andX2,j are not crossing each other. We deduce that T1, T2, Tn−2, X1,i, X2,j

is the set of m-diagonals which are not crossing each other. Thus, T = T1 ⊕ T2 ⊕
· · ·⊕Tn−2⊕X1,i⊕X2,j is an m-cluster tilting object. Observe that paths of length
two X ′ → X1,i → X ′′ and Y ′ → X2,j → Y ′′ with X ′, Y ′, X ′′, Y ′′ are m-diagonals
of T which satisfy case 2 in Lemma 2.1. Beside these two paths, all other path of
length two in quiver End(T ) satisfy case 1 in Lemma 2.1. Furthermore, for such T
there are exactly two paths of length two in Q which composition in Endop(T ) is
not zero .

We can compute the number of such T by compute the number of all combi-
nations (i, j) where 1 ≤ i ≤ n− 3 and i ≤ j ≤ n− 3.

Table 3. Pair of (i, j)

i 1 2 3 . . . n− 2 n− 3
j 1

2 2
3 3 3
...

...
...

... n− 2
n− 3 n− 3 n− 3 n− 3 n− 3 n− 3

The number of such T is

1 + 2 + · · ·+ (n− 4) + (n− 3) =
1

2
(n− 3)(n− 2) =

(n− 2)!

(n− 4)!2!
.

�

We combine two lemmas above into a more general result, that is m-CTA
Endop(T ) ∼= KQ/I where I is an ideal generated by (n− 2− t) relations of paths
of length two from (n− 2) relations and 1 ≤ t ≤ n− 2.

Lemma 4.4. Suppose that m ≥ n−2 and T = T1⊕T2⊕· · ·⊕Tn−t⊕X1,j1⊕X2,j2⊕
· · · ⊕Xt,jt with 1 ≤ j1 ≤ j2 ≤ · · · ≤ jt ≤ n − t − 1 and 1 ≤ t ≤ n − 2, then T is
an m-cluster tilting object of CmAn

. The m-cluster tilted algebra Endop(T ) ∼= kQ/I
where I is generated by (n − 2 − t) relations of paths of length two. If T be the
collection of such T then |T| =

(
n−2
n−2−t

)
.
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Proof. For t = 1 and t = 2, it has been proved in Lemma 4.2 and Lemma
4.3. In general, we have that m-diagonals T1, T2, . . . , Tn−t are not crossing each
other in regular gon Pm(n+1)+2. Now consider m-diagonals X1,j1 , X2,j2 , . . . , Xt,jt

in Pm(n+1)+2. If m = n− 2 then

Tn−t = ((t+2)m−n+t+4, (t+3)m−n+t+5) = ((t+1)m+t+2, (t+2)m+t+3).

We will see all cases of j1, j2, . . . , jt in Pm(n+1)+2. To show this we first consider
the case j1 = j2 = · · · = jt = 1 with the picture of this case in Pm(n+1)+2 is

Figure 16. m-diagonals of T in Lemma 4.4

We get that

X1,j1 = (1, 2m+ 2)

X2,j2 = (1, 3m+ 2)

...

Xt−1,jt−1
= (1, tm+ 2)

Xt,jt = (1, (t+ 1)m+ 2).

The configuration of these m-diagonals in Pm(n+1)+2 can be illustrated as in Figure
17. We will use that picture to see the other cases of j1, j2, . . . , jt. The upper line
has (n − t − 1) black dots while the bottom line has t black dots. Let us observe
the m-diagonal Xi,ji = (xi, yi) where xi is one of the black dots on the upper line
and yi one of the points (not necessarily black dot) on the bottom line. We have
that Xk,1 = (1, (k+ 1)m+ 2) with 1 ≤ k ≤ t. We can conclude that Xi,ji = (xi, yi)
where xi is the ji-th black dot on the upper line counted from the right-hand side,
and yi = (i + 1)m + 2 − (ji − 1) = (i + 1)m + 3 − ji. Suppose that 1 ≤ i ≤ t − 1
and Xi,ji = (xi, yi), Xi+1,ji+1

= (xi+1, yi+1) then

yi = (i+ 1)m+ 3− ji < yi+1 = (i+ 1)m+ 3 +m− ji+1.
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Figure 17. m-diagonals X1,1, X2,1, . . . , Xt,1

Since ji ≤ ji+1 ≤ n− t− 1 ≤ m then either xi = xi+1 or xi+1’s position is on the
left of xi. Moreover im + 2 < xi ≤ (i + 1)m + 2. We describe this situation as in
Figure 18.

Figure 18. m-diagonals Xi,ji and Xi+1,ji+1

SinceXi,ji = (xi, yi), Xi+1,ji+1
= (xi+1, yi+1) satisfy this condition(see Figure

18) for every i then X1,j1 , X2,j2 , . . . , Xt,jt are not crossing each other in Pm(n+1)+2.
Finally we conclude that m-diagonals T1, T2, . . . , Tn−t, X1,j1 , X2,j2 , . . . , Xt,jt are not
crossing each other in regular gon Pm(n+1)+2, it proves that T is an m-cluster tilting
object. Next we show the last statement. Every m-diagonal Xi,ji represent one
path of length two which is not zero in Endop(T ). Hence, there exists (n − 2 − t)
relations of paths of length two in Endop(T ). Now we compute the number of
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T in this theorem. This number equal to the number of possibilities of t-tuple
(j1, j2, . . . , jt) where 1 ≤ j1 ≤ j2 ≤ · · · ≤ jt ≤ n− t− 1. This problem is equivalent
to counting the number of distinct shortest routes from point A to point B in the
the following diagram :

Figure 19. Map of routes from A to B

Here ji interpreted as a step up to the i-th and for every ji there is (n − t − 1)
positions can be chosen. It is easy to see that the number of distinct shortest route
is combination (n− 2− t) from (n− 2), that is(

n− 2

n− 2− t

)
=

(n− 2)!

t!(n− 2− t)!
.

�

Proposition 4.5. Let m = n− 2 and H = KQ/I where Q is quiver

1
α1−→ 2

α2−→ 3→ · · · → n− 1
αn−1−−−→ n.

Let W = {ρj = αjαj+1|1 ≤ j ≤ n− 2} and B ⊆ W , |B| 6= n− 2. If I = 〈B〉 then
H is an m-CTA.

Proof. If B = ∅ then I = 0, we choose T in Lemma 4.4 with t = n−2 hence we get
Endop(T ) = KQ. If |B| = k > 1, by Lemma 4.4 we can choose T with t = n−2−k
such that Endop(T ) ∼= H. �

So far we have obtain some m-CTAs in case m = n − 2. By Theorem 3.1 it
remains to find m-CTAs whose number of relations is n− 2. But we will show that
there is no such m-CTA.

Lemma 4.6. If m = n− 2 then there is no m-cluster tilting object T of CmAn
such

that Endop(T ) ∼= KQ/I with I = 〈ρ1, ρ2, . . . , ρn−1, ρn−2〉.
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Figure 20. m-diagonals T1, T2, . . . , Tn

Proof. Let T1, T2, . . . , Tn be m-diagonals corresponding to T , then by Lemma 2.5,
these m- diagonal in Pm(n+1)+2 should be as in Figure 20. It means that xn+1 6= x1
or equivalently arc Dx1xn+1

has at least one side. Note that arc Dxi+1xi
has at

least m + 1 side. If all Ti are short then without loss of generality, suppose that
x1 = m + 2 and x2 = 1. Consequently, T1 = (1,m + 2), T2 = (1, nm + 2), T3 =
((n− 1)m+ 1, nm+ 2), T4 = ((n− 1)m+ 1, (n− 2)m) and for 5 ≤ i ≤ n,

Ti = ((n− (i− 2))m− (i− 4), (n− (i− 3))m− (i− 5)).

The number of sides in arc Dxn+1x1
is (m+ 1)n = mn+ n. Hence, the number of

sides in arc Dx1xn+1
is

m(n+ 1) + 2− (mn+ n) = m− (n− 2).

However if m = n − 2 then there is no side in arc Dx1xn+1
, a contradiction. Now

suppose that there exists Tj which is not short. It follows that the number of sides
in arc Dxn+1x1

is more than (m + 1)n. If x is the number of sides in arc Dxn+1x1

then x > mn + n. We have that (m(n + 1) + 2 − x) is the number of side in arc
Dx1xn+1 . Consequently

m(n+ 1) + 2− x < m(n+ 1) + 2− (mn+ n) = m− (n− 2) = 0

since m = n− 2, a contradiction. We conclude that there is no such T . �

We end this section by giving all m-CTAs which are Nakayama algebras with
acyclic quiver in the case m ≥ n− 2.

Proposition 4.7. Let m = n− 2 and H ∼= KQ/I be an algebra with Q is

1
α1−→ 2

α2−→ 3→ · · · → n− 1
αn−1−−−→ n.

The algebra H is an m-CTA of CmAn
if only if I is generated by at most (n − 3)

paths of length two.

Proof. Use Theorem 2.6, Corollary 4.5 and Lemma 4.6. �
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Proposition 4.8. Let m > n− 2 and H = KQ/I with Q is the quiver

1
α1−→ 2

α2−→ 3→ · · · → n− 1
αn−1−−−→ n.

Suppose that W = {ρj = αjαj+1|1 ≤ j ≤ n − 2} and B ⊆ W . If I = 〈B〉 then H
is an m-CTA.

Proof. If B 6= W , we choose m-cluster tilting object T in Lemma 4.4. If B = W
then we choose the m-cluster tilting object T in Lemma 4.1. �

Theorem 4.9. Let m > n− 2 and H ∼= KQ/I be an algebra with Q is the quiver

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n.

The algebra H is an m-CTA of CmAn
if only if I is generated by any collection of

paths of length two.

Proof. Apply Theorem 2.6 and Proposition 4.8. �

4.2. Case m < n− 2.

Just like in the two previous cases to characterize Nakayama m-CTA, in this
case it is sufficient to simply consider the relations of path of length two that appear
on this algebra. If the number of relations is at most m, then there is m-cluster
tilting object such that the corresponding m-CTA is Nakayama algebra. If the
ideal generated by more than m relations of paths of length two we have not been
able to guarantee which algebras are Nakayama m-CTA. This happens because we
get different cases depending on the difference between m and n− 2 (we denote by
a). In the first part we put forward some Nakayama algebra which are not m-CTA
in the case m < n − 2. This class of algebra are given in Lemma 4.10, Lemma
4.11, Lemma 4.12 and Lemma 4.13. Next, we provide all the Nakayama m-CTA
algebras which have at most m relation of path of length two in Lemma 4.14 parts
(ii), (iii) and Lemma 4.16 parts (ii). In Theorem 4.18 we give a characterization of
Nakayama m-CTA which have at most m relations. In the last part we try to find
the possibility of more than m relations of path of length two. In Proposition 4.19
there are Nakayama algebras with more than m relation which are not m-CTA for
some certain condition of a. We also give Nakayama algebras with more than m
relation which are m-CTA for some certain condition in Proposition 4.20.

We begin by giving Nakayama algebras acyclic type which are not m-CTAs.

Lemma 4.10. If m < n−2 then there is no m-cluster tilting object T in CmAn
such

that Endop(T ) ∼= KQ/I with Q is

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n

and I = 〈ρ1, ρ2, . . . , ρn−3, ρn−2〉, where ρi = αiαi+1 for every i.

Proof. We utilize the same methods as in the proof of Lemma 4.6. If T1, T2, . . . , Tn
are m-diagonals correspond to T then by Lemma 2.5, these n m-diagonals in
Pm(n+1)+2 should be as Figure 21, and it turns out that arc Dx1xn+1

at least
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Figure 21. m-diagonals T1, T2, . . . , Tn

has one side. Note that the number of sides in arc Dxi+1xi
is at least m+ 1. There-

fore, arc Dxn+1x1
has at least (mn+ n) sides. Let x be the number of sides in arc

Dxn+1x1 , then x ≥ mn+ n. We also have that (m(n+ 1) + 2− x) is the number of
sides in arc Dx1xn+1 . Therefore

m(n+ 1) + 2− x ≤ m(n+ 1) + 2−mn− n = m− (n− 2) < 0,

because m < n− 2, a contradiction. The proof is complete. �

Next lemma shows that the Nakayama algebra whose relations are m + 1
consecutive relation paths of length two starting from ρa+1 is not m-CTA.

Lemma 4.11. Suppose that m < n−2 and a = n−2−m then there is no m-cluster
tilting object T of CmAn

such that Endop(T ) ∼= KQ/I with Q is

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n

and I = 〈ρa+1, ρa+2, . . . , ρn−3, ρn−2〉, where ρi = αiαi+1 for every i.

Proof. Suppose that there exists such T . By Lemma 2.1, the configuration of m-
diagonals correspond to T in Pm(n+1)+2 is as in Figure 22. Hence we may write
T = Y1 ⊕ Y2 ⊕ · · · ⊕ Ym+2 ⊕X1 ⊕X2 ⊕ · · · ⊕Xa. It follows that arc Dxa+1ym+2 has
at least one side. By the definition of m-diagonal, arc Dyi+1yi and arc Dx1y1 have
at least m + 1 sides, while arc Dxjxj+1

has at least m side. Hence, arc Dym+2xa+1

has at least

(m+ 2)(m+ 1) + am = (m+ 2)(m+ 1) + (n− 2−m)m = m(n+ 1) + 2

sides. A contradiction since Pm(n+1)+2 has m(n + 1) + 2 sides and arc Dxa+1ym+2

has at least one side. �
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Figure 22. m-diagonals Y1, Y2, . . . , Ym+2, X1, X2, . . . , Xa

We have that Nakayama algebra with m consecutive relations of path of
length two is not m-CTA of type An.

Lemma 4.12. Suppose that m < n−2 and a = n−2−m then there is no m-cluster
tilting object T of CmAn

such that Endop(T ) ∼= KQ/I with Q is

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n

and I = 〈ρt, ρt+1, . . . , ρt+m−1〉 where 1 ≤ t ≤ a, where ρi = αiαi+1 for every i.

Proof. Assume that there exists such T , then we have m paths of length two in
Endop(T ) whose composition is zero. Therefore we need exactly m triplets of m-
diagonals satisfy case 1 in Lema 2.1. Since the quiver of Endop(T ) is a path then
there exist (m+2) m-diagonals in Pm(n+1)+2, where the configuration is as in Figure
23. Thus it remains a m-diagonals. Because I = 〈ρt, ρt+1, . . . , ρt+m−1〉 then we
should have (t−1) m-diagonals whose endpoint is y1 and the other endpoint in arc
Dx1xm+2 while the remaining (a− (t− 1)) m-diagonals have one endpoint at ym+1

and the other point in arc Dx1ym+2
. More precisely, the picture of all m-diagonals

should be like Figure 24. From Figure 24, m-diagonals which correspond to T are
T1, T2, . . . , Tm+2, X1, X2, . . . , Xt−1,
Y1, Y2, . . . , Ya−t+1 with Xi = (y1, xi+1) and Yj = (ym+1, zj). Note that for every
1 ≤ i ≤ t−1, arc Dxixi+1 has at least m sides. We also have that either arc Dxjxj−1

or arc Dz1ym+1 has at least m sides. Hence, the number of sides in arc Dza−t+1xt is
at least

(m+ 1)(m+ 2) + (t− 1)m+ (a− t+ 1)m = (m+ 1)(m+ 2) + am = m(n+ 1) + 2,

this contradicts the fact that arc Dxtza−t+1
has at least one side. �

The following lemma states that Nakayama algebra with consecutive relations
of path of length two ending in ρn−2 is not m-CTA of type An.



Characterization of Nakayama m-CTA of type An 117

Figure 23. m-diagonals T1, T2, . . . , Tm+2

Figure 24. m-diagonals T1, . . . , Tm+2, X1, X2, . . . , Xt−1, Y1, . . . , Ya−t+1

Lemma 4.13. Suppose that m < n−2 and a = n−2−m then there is no m-cluster
tilting object T of CmAn

such that Endop(T ) ∼= KQ/I with Q is

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n

and I = 〈ρj+1, ρj+2, . . . , ρn−3, ρn−2〉 for every 0 ≤ j ≤ a, where ρi = αiαi+1 for
every i.

Proof. The cases j = 0 and j = a have been proved in Lemma 4.10 and Lemma 4.11.
Now assume that 1 < j < a, then the picture of m-diagonals which corresponds to
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T in Pm(n+1)+2 is Observe that arc Dyn−jx1
has at least (m+ 1)(n− j) sides, while

Figure 25. m-diagonals T1, T2, . . . , Tn−j , X1, . . . , Xj

arc Dx1xj+1
has at least jm sides. Thus, the number of sides in arc Dyn−jxj+1

is at
least

(m+ 1)(n− j) + jm = mn− jm+ n− j + jm = n(m+ 1)− j.
Since j < a we have

m(n+ 1)− j > m(n+ 1)− a = n(m+ 1)− (n− 2−m) = m(n+ 1) + 2.

This contradicts the fact that Pm(n+1)+2 has (m(n+ 1) + 2) sides. �

Lemma 4.14. Suppose that m < n − 2, a = n − 2 −m and T = T1 ⊕ T2 ⊕ · · · ⊕
Tn−t ⊕X1,j1 ⊕X2,j2 ⊕ · · · ⊕Xt,jt with 1 ≤ j1 ≤ j2 ≤ · · · ≤ jt ≤ min{m,n− t− 1}
and a ≤ t ≤ n− 2 then T is an m-cluster tilting object of CmAn

.

(i) If t = a and jt = 1 then the algebra Endop(T ) ∼= KQ/I with Q is

and I generated by all paths of length two in the cycle.
(ii) If t > a then Endop(T ) ∼= KQ/I with Q is

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n

and I generated by (n− 2− t) relations of paths of length two from (n− 2)
relations of paths of length two.

(iii) If t = a and jt 6= 1 then Endop(T ) ∼= KQ/I with Q is the quiver in part
(ii) and I generated by m relations of paths of length two where ρn−2 ∈ I.
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Proof. First, consider case t = a and jt = 1, we get j1 = j2 = · · · = jt = 1.
Consequently T = T1 ⊕ T2 ⊕ · · · ⊕ Tm+2 ⊕ X1,1 ⊕ X2,1 ⊕ · · · ⊕ Xa,1. We have
that Tm+2 = (m(a + 1) + 2,m(a + 2) + 3) and Xa,ja = Xa,1 = (1,m(a + 1) + 2),
it follows that Tm+2 and Xa,1 have a common endpoint m(a + 1) + 2. Hence,
the picture of m-diagonals that corresponds to T is as in Figure 26. It is clear

Figure 26. m-diagonals T1, T2, . . . , Tm+1, X1,1, . . . , Xa,1

that the algebra Endop(T ) satisfies the first part of the lemma. Furthermore, if
t > a then (t + 1)m + 2 + t + m − n − 2 > (t + 1)m + 2. Therefore Tn−t =
((t+1)m+2+ t+m−n−2, (t+2)m+3+ t+m−n−2) and Xt,1 = (1, (t+1)m+2)
either are not crossing each other or have a common endpoint in Pm(n+1)+2. Since
t ≥ a + 1 then min{m,n − t − 1} = m + 1 or min{m,n − t − 1} = n − t − 1. It
follows that

1 ≤ j1 ≤ j2 ≤ · · · ≤ jt ≤ min{m,n− t− 1} ≤ m

and then we may use the same way as in the proof of Lemma 4.4. If t = a then
T = T1 ⊕ T2 ⊕ · · · ⊕ Tm+2 ⊕X1,j1 ⊕X2,j2 ⊕ · · · ⊕Xa,ja . The fact that m-diagonals
which correspond to T are not crossing each other can be obtained by the same
argument as in the proof of Lemma 4.4. Because 2 ≤ ja ≤ m we have that Xa,ja

does not have a common endpoint neither with Tm+2 nor at the point am + 2.
Thus, we have the quiver of Endop(T ) is An. Next, we will prove that ρn−2 ∈ I.
Consider m-diagonals Tm, Tm+1 and Tm+2 in Pm(n+1)+2 in Figure 27.

Since ji ≤ m then there is no m-diagonal Xi,ji that have a common endpoint
at ym+1. So there exists an irreducible map Tm → Tm+1 → Tm+2. Because
at the point xm+2 there is only one m-diagonal Tm+2 then this irreducible map
corresponds to the path αn−2αn−1 in Q. But this path satisfies case 1 in Lemma
2.1, hence by Lemma 2.5, ρn−2 = 0 in Endop(T ). �
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Figure 27. m-diagonals T1, T2, . . . , Tm+2

Figure 28. m-diagonals of T for m = 2 and n = 8

Example 4.15. Let m = 2 and n = 8 then a = 8−2−2 = 4 and m(n+1)+2 = 20.
All m-diagonals which correspond to T in Lemma 4.14 are as in Figure 28
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Lemma 4.16. Suppose that m < n− 2, a = n− 2−m and

T = T1⊕· · ·⊕Tm+2⊕X1,j1⊕X2,j2⊕· · ·⊕Xk,jk⊕Xk+1,m+1⊕· · ·⊕Xa−1,m+1⊕Xa,m+1

with 1 ≤ j1 ≤ j2 · · · ≤ jk ≤ m and 1 ≤ k < a then T is an m-cluster tilting object
of CmAn

.

(i) If jk = 1 then the algebra Endop(T ) ∼= KQ/I with Q is and I generated by

all paths of length two in the cycle.
(ii) If jk 6= 1 and jk ≤ m then the algebra Endop(T ) ∼= KQ/I with Q is

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n

and I generated by m relations of paths of length two with
ρk+m+1, ρk+m+2, . . . , ρn−3, ρn−2 6∈ I and ρk+m ∈ I.

Proof. Note that for k = a, T is the m-cluster tilting object in Lemma 4.14 part
1. Assume that k < a, if jk = 1 then T = T1 ⊕ · · · ⊕ Tm+2 ⊕ X1,1 ⊕ X2,1 ⊕
· · · ⊕ Xk,1 ⊕ Xk+1,m+1 ⊕ · · · ⊕ Xa−1,m+1 ⊕ Xa,m+1. We have that m-diagonal
Xk,1 = (1, (k + 1)m+ 2) and Xk+1,m+1 = Xk+1,2 if m = 1 or

Xk+1,m+1 = ((n− (m+ 1− 2))m− (m+ 1− 4), (k + 1 + 1)m− (m+ 1− 3))

= ((n−m)m+ 3, (k + 1)m+ 2)

if m 6= 1. If m 6= 1 then Xk,1 and Xk+1,m+1 have a common endpoint at (k+1)m+2.
If m = 1 then k = 1 and hence Xk+1,m+1 = X2,2 = (n + 2, 4), Xk,1 = X1,1 =
(1, 4). It turns out that Xk+1,m+1 and Xk,1 have a common endpoint if m =
1. So the picture of m-diagonals which correspond to T = T1 ⊕ · · · ⊕ Tm+2 ⊕
X1,1 ⊕ X2,1 ⊕ · · · ⊕ Xk,1 ⊕ Xk+1,m+1 ⊕ · · · ⊕ Xa−1,m+1 ⊕ Xa,m+1 in Pm(n+1)+2

is as in Figure 29. For jk 6= 1 the configuration of m-diagonals T1, T2, . . . , Tm+2

and Xk+1,m+1, . . . , Xa−1,m+1, Xa−1,m+1 in Pm(n+1)+2 is the same as in the Figure
29. It remains to consider the position of X1,j1 , X2,j2 , . . . , Xk,jk in Pm(n+1)+2 if
jk 6= 1 and jk ≤ m. By the same arguments as in the proof of Lemma 4.4 then
for Xi,ji and Xi+1,ji+1

in Pm(n+1)+2 will be one of the following pictures in Figure
30. If jk ≤ m then the number of black dots on the top line that can be the end
point of Xi,ji except point 1 is m (see Figure 30). Consequently the leftmost black
dot on the top line is (a + 3)m + 4. We claim that the ideal I generated by m
relations of paths of length two. From Figure 29 we have that T2, T3, . . . , Tm+1 are
m-diagonals that correspond to a midpoint of a path of length two that satisfies
case 1 in Lemma 2.1 while others m-diagonal satisfy case 2 in Lemma 2.1. So the
number of relations that generate I is only m.
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Figure 29. m-diagonals T1, . . . , Tm+2, X1,1, X2,1, . . . , Xk,1, Xk+1,m+1, . . . , Xa−1,m+1, Xa,m+1

Figure 30. m-diagonals Xi,ji , Xi+1,ji+1

Note that m-diagonals Tm+1, Xk+1,m+1, Xk+2,m+1, . . . , Xa,m+1, Tm+2 have a
common endpoint at (a+2)m+3. Therefore there exists a composition of irreducible
maps

Tm+1 → Xk+1,m+1 → Xk+2,m+1 → · · · → Xa,m+1 → Tm+2.
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Since there is no other m-diagonal whose one endpoint is (a+ 2)m+ 3 and in the
arc D(a+1)m+2,(a+2)m+3 then this composition of irreducible maps correspond to

(k +m+ 1)
αk+m+1−−−−−→ (k +m+ 2)

αk+m+2−−−−−→ · · · → (n− 2)
αn−2−−−→ (n− 1)

αn−1−−−→ n.

We conclude that ρk+m+1, ρk+m+2, . . . , ρn−3, ρn−2 6∈ I. The path

(k +m)
αk+m−−−−→ (k +m+ 1)

αk+m+1−−−−−→ (k +m+ 2)

in Q correspond to the composition of irreducible maps X → Tm+1 → Xk+1,m+1

where X = Tm or X = Xk,m. Because either m-diagonals Tm, Tm+1, Xk+1,m+1 or
Xk,m, Tm+1, Xk+1,m+1 always satisfy case 1 in Lemma 2.1, then ρk+m ∈ I. �

Example 4.17. Let m = 3 and n = 7 then a = n−m−2 = 2 and m(n+1)+2 = 26.
The figure of m-diagonals that correspond to T in Lemma 4.16 for this case is

Figure 31. m-diagonals of T for m = 3 and n = 7

Lemma 4.16 gives us the information of m-CTA from type An which is a
Nakayama algebra of acyclic type and have m relations. Therefore we can compute
the number of m-CTA from type An which has less than or equal to m relations.
By the second part of Lemma 4.14, the number of m-CTA which have less than m
relations of paths of length two is(

n− 2

0

)
+

(
n− 2

1

)
+ · · ·+

(
n− 2

m− 2

)
+

(
n− 2

m− 1

)
.

Next, the possibility of the number of m-CTAs that have exactly m relations

of path of length two is

(
n− 2

m

)
. But, by Lemma 4.12 there are a m-CTAs who

have m relations which are not Nakayama algebras of acyclic type and from Lemma
4.13 we get one more this kind. So the number of m-CTAs which have m relations

and whose quiver is An for this case is at most

(
n− 2

m

)
− (a+ 1). We compute the

number of m-cluster tilting objects in Lemma 4.14 part (iii) together with Lemma
4.16 part (ii). Since 1 ≤ j1 ≤ j2 · · · ≤ jk < m and jk 6= 1 then for every k the

number of m-cluster tilting objects is

(
m+ k

k

)
− 1. Because 1 ≤ k ≤ a then the
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total number of m-cluster tilting objects in Lemma 4.14 part (iii) and Lemma 4.16
part (ii) is

a∑
k=1

(
m+ k

k

)
− a.

Using Pascal’s identity it can be proved that
a∑
k=0

(
m+ k

k

)
=

(
n+ a+ 1

a

)
.

We know that a = n− 2−m, hence
a∑
k=1

(
m+ k

k

)
− a =

a∑
k=1

(
m+ k

k

)
+ 1− (a+ 1)

=

a∑
k=1

(
m+ k

k

)
+

(
m+ 0

0

)
− (a+ 1)

=

a∑
k=0

(
m+ k

k

)
− (a+ 1)

=

(
m+ a+ 1

a

)
− (a+ 1)

=

(
n− 2

n− 2−m

)
− (a+ 1)

=

(
n− 2

m

)
− (a+ 1).

We conclude that all m-CTAs which are Nakayama algebras of acyclic type and
have m relations of paths of length two are the algebras in Lemma 4.14 part (iii)
and Lemma 4.16 part (ii). We write the results so far for the case m < n− 2 in the
following theorem.

Theorem 4.18. Let H ∼= KQ/I be an m-CTA of CmAn
with m < n− 2, and let I

be an ideal generated by less than or equal to m relations of paths of length two and
Q is

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n.

Suppose that W = {ρj = αjαj+1|1 ≤ j ≤ n − 2} then the generator of I is one of
the following

(i) B ⊆W for any B with 0 ≤ |B| < m.
(ii) B ⊆ W for any B with |B| = m and B 6= {ρt, ρt+1, . . . , ρt+m−1} for every

1 ≤ t ≤ a+ 1.

Proof. Apply Lemma 4.11, 4.12, 4.13, 4.14, 4.16. �

Until here we have known all m-CTAs H = KQ/I with Q = An and I
generated by at most m relations of path of length two for the case m < n − 2.
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Next we will give some m-CTAs whose ideal is generated by more than m relations
of paths of length two.

Proposition 4.19. Suppose that m < n−2 and km ≤ a with 1 ≤ k ≤ (a−1) then
there is no m-cluster tilting object T of CmAn

such that Endop(T ) ∼= KQ/I with Q
is

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n

and ideal I generated by at least (n− 2− k) paths of length two.

Proof. Assume that such m-cluster tilting object T exists. First assume that a ≥
k(m+ 1). Since 1 ≤ k ≤ (a− 1) and I generated by at least (n− 2− k) relations
of paths of length two then there exist (m+ 2) m-diagonals which configuration is
as in Figure 32. Observe that Dym+2x1

has at least (m + 2)(m + 1) sides. Hence

.

Figure 32. m-diagonals Y1, Y2, . . . , Ym+2

arc Dx1ym+2
has at least

m(n+ 1) + 2− (m+ 2)(m+ 1) = am

sides. Now there are a m-diagonals which are not shown in the Figure 32. Since
I is generated by at least (n− 2− k) paths of length two, there exist m-diagonals
X1, X2, . . . Xa−k together with (m+ 2) m-diagonal in the Figure 32 such that the
configuration as in the Figure 33. Note that arc Dxym+2

at least has (a−k)(m+ 1)
sides. Since a ≥ k(m+ 1) we get

(a− k)(m+ 1) = am+ (a− k(m+ 1)) ≥ am,

a contradiction. Now assume that km ≤ a < k(m + 1). Consider Figure 32, we
obtain that arc Dx1x has at least (k(m+ 1)− a) sides. Hence

k(m+ 1)− a ≤ k(m+ 1)− km ≤ k.

But there exist k m-diagonals of T besides Y1, Y2, . . . , Ym+1, Ym+2, X1, X2, . . . , Xa−k.
Each of them has one endpoint outside arc Dx1x and the other endpoint should
be in arc Dx1x and different from x1, x. Since arc Dx1x has at most k sides then
there exist two m-diagonals from these k m-diagonals whose common endpoint is
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.

Figure 33. m-diagonals Y1, Y2, . . . , Ym+2, X1, X2, . . . Xa−k

in arc Dx1x. Consequently the quiver of Endop(T ) has a cycle, a contradiction.
This completes the proof. �

Consider Proposition 4.19 for the case k = a− 1. If k = a− 1 then

a ≥ (a− 1)(m+ 1)⇔ a ≤ 1 + 1
m .

We get that a must be equal to 1. If a = 1 or equivalently n− 2 = m+ 1 then by
Lemma 4.10 the ideal I is generated by at most m relations of paths of length two.

Proposition 4.20. Suppose that 2 ≤ m < n− 2, 1 < a = (n− 2−m) < m and

T = T1⊕T2⊕· · ·⊕Tm+2⊕Tm+3⊕Tm+4⊕· · ·⊕Tm+2+t⊕X1,j1⊕X2,j2⊕· · ·⊕Xa−t,ja−t

with 1 ≤ j1 ≤ j2 ≤ · · · ≤ ja−t ≤ m + 1, 1 ≤ t ≤ a − 1 and ja−t > t then T is an
m-cluster tilting object of CmAn

.

(i) if js−1 = 1 and js = m+ 1 for 1 ≤ s ≤ a− t then the algebra Endop(T ) ∼=
KQ/I where Q is

and I generated by all paths of length two in the cycle and t paths of length
two from the right.

(ii) If ja−t = t+ 1 then Endop(T ) ∼= KQ/I where Q is
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and I generated by all paths of length two in the cycle and t paths of length
two in the path 1→ 2→ 3→ · · · → a→ a+ 1.

(iii) Otherwise Endop(T ) ∼= KQ/I where Q is

1
α1−→ 2

α2−→ 3→ · · · → (n− 1)
αn−1−−−→ n

and I generated by (m+t) relations of paths of length two with ρn−t−1, . . . , ρn−3, ρn−2 ∈
I.

Proof. It is clear that m-diagonals which correspond to T1, T2, . . . , Tm+2+t are not
crossing each other in Pm(n+1)+2. Now consider case (1) that is js−1 = 1 and
js = m + 1 for 1 ≤ s ≤ a − t. We get that T = T1 ⊕ T2 ⊕ · · · ⊕ Tm+2+t ⊕X1,1 ⊕
X2,1 ⊕ · · · ⊕Xs−1,1 ⊕Xs,m+1 ⊕Xs+1,m+1 ⊕ · · · ⊕Xa−t,m+1. We have that

X1,1 = (1, 2m+ 2)

X2,1 = (1, 3m+ 2)

...

Xs−1,1 = (1, sm+ 2)

Xs,m+1 = (am+ 3, sm+ 2)

Xs+1,m+1 = (am+ 3, (s+ 1)m+ 2)

...

Xa−t,m+1 = (am+ 3, (a− t)m+ 2)

Tm+2+t = ((a− t)m+m+ 2− t, (a− t+ 1)m+m+ 3− t).
It follows that Xs−1,1 and Xs,m+1 have a common endpoint. Since t ≤ a− 1 < m
then m diagonals Tm+2+t, Xa−t,m+1 are not crossing each other and do not have
a common endpoint. We get the figure of m-diagonals which correspond to T
for this case is as in Figure 34. Now we come to the case 2, let ja−t = t +

.

Figure 34. m-diagonals of T

1. Note that Xa−t,t+1 = ((n − t + 1)m + 3 − t, (n − m − t − 1)m + 2 − t) and
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Tm+2+t = ((n − m − t − 1)m + 2 − t, (n − m − t)m + 3 − t). It turns out that
Xa−t,t+1 and Tm+2+t have a common endpoint and T1, T2, . . . , Tm+2+t, Xa−t,t+1

are not crossing each other in Pm(n+1)+2. We obtain the figure of m-diagonals
T1, T2, . . . , Tm+2+t, Xa−t,t+1 in Pm(n+1)+2 as in Figure 35. It is easy to check that

.

Figure 35. m-diagonals T1, T2, . . . , Tm+2, Xa−t,t+1

X1,jt , X2,j2 , . . . , Xa−t−1,ja−t−1
are not crossing each other since t ≤ a− 1 < m and

1 ≤ j1 ≤ j2 ≤ · · · ≤ ja−t = t+ 1. �

We end the case m < n− 2 by the above proposition. We have not been able
to find all m-CTAs which is Nakayama algebra type An. This is because many
cases on the value of a have to be considered and have different characteristics
in some cases of the value of a. However, Proposition 4.19 gives some m-CTAs
which are not Nakayama algebras in the case km ≤ a with 1 ≤ k ≤ a − 1. While
Proposition 4.20 part (3) give some m-CTAs which are Nakayama algebras in the
case 1 < a < m and have more than m relations. A way to find all m-CTAs which
are Nakayama algebras in this case is by investigating all m-CTAs in each case
km ≤ a where 1 ≤ k ≤ a− 1.

Example 4.21. The following figure shows m-diagonals correspond to m-cluster
tilting objects in Proposition 4.20 in the case m = 4 and n = 9.
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Figure 36. m-diagonals of T for m = 4 and n = 9
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