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Abstract. In this paper we discuss a mathematical model of two parties technol-

ogy transfer from a leader to a follower. The model is reconstructed via dynamical

system approach from a known standard Raz and Assa model and we found some im-

portant conclusion which have not been discussed in the original model. The model

assumes that in the absence of technology transfer from a leader to a follower, both

the leader and the follower have a capability to grow independently with a known

upper limit of the development. We obtain a rich mathematical structure of the

steady state solution of the model. We discuss a special situation in which the

upper limit of the technological development of the follower is higher than that of

the leader, but the leader has started earlier than the follower in implementing the

technology. In this case we show a paradox stating that the follower is unable to

reach its original upper limit of the technological development could appear when-

ever the transfer rate is sufficiently high. We propose a new ‘paradox-free’ model

to increase realism so that any technological transfer rate could only has a positive

effect in accelerating the rate of growth of the follower in reaching its original upper

limit of the development.
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Abstrak. Di dalam makalah ini dibahas sebuah model matematika mengenai trans-

fer teknologi dari seorang individu atau suatu parti yang disebut leader kepada

seorang individu atau suatu parti yang disebut follower. Model tersebut direkon-
struksi melalui pendekatan sistem dinamik dari model standar Raz-Assa yang sudah

dikenal. Hasil analisis model memperlihatkan sebuah sifat dari model hasil rekon-

struksi yang tidak ada dalam bahasan model aslinya. Model Raz-Assa mengasum-
sikan bahwa ketika tidak ada transfer teknologi, masing-masing individu atau parti

mempunyai kapasitas untuk berkembang secara independen menuju batas atas yang

diketahui. Selain itu juga diperlihatkan sifat-sifat solusi setimbang dari model terse-
but di atas. Kemudian juga dibahas situasi khusus di mana follower mempunyai

batas atas perkembangan yang lebih tinggi dibandingkan dengan leader, namun ter-
lambat dalam implementasi teknologi terkait dibandingkan dengan leader tersebut.

Dalam situasi seperti ini akan diperlihatkan suatu paradox di mana follower tidak

akan pernah mencapai batas atas kapasitasnya apabila laju transfer teknologi terlalu
tinggi. Untuk mengatasi paradox ini sebuah model baru diperkenalkan, sehingga

laju transfer teknologi selalu memberikan efek positif terhadap follower dalam hal

pencapaian batas atas pengembangan teknologinya.

Kata kunci: Sistem dinamik, Transfer Teknologi, Manajemen Ilmu, Kurva Logistik

1. Introduction

Technology transfer has been defined as a process of the implementation of
scientific/technological information developed in one area into another area, or
equivalently defined as a process of migration and redeployment of technology from
one area into different area [2, 18, 22]. The transfer could be done either by a mar-
ket oriented mechanism, e.g. purchasing, licensing, etc., or a non market oriented
mechanism, e.g. academic journal, industrial fair, etc. [16]. Three main compo-
nents in the process of technology transfer are the technology, the owner of the
technology (also called as a leader, transferor, or donor), and the recepient (also
called as a follower, transferee, or receiver). The process is usually complex involv-
ing many related aspects, such as the properties of the technology being transfered,
the transferor capability of tranferring, and the transferee capability of adapting
the technology [4, 14].

One important thing of technology transfer is the assesment of the future
and the long-term behaviour of the technology transfer, which is known as techno-
logical forecasting [26]. There are many literatures discussing this important, yet
complicated, area of research. In general, mathematical modeling has been widely
accepted as one approach in attacking complicated problems in many areas of in-
dustrial engineering research (e.g. [6, 7, 9, 8, 1, 17]). However, despite numerous
works on technology transfer, to date the use of mathematical modeling in this
area is still limited. Among the known literatures on technology transfer that uti-
lize mathematical models are [5, 10, 15, 19, 20, 23]. These models, and also related
models regarding technological diffusion, e.g. [21], have been critically reviewed in
[16].

In two closely related papers [19, 20], the hypothesis that the rate of growth
of a transferee is proportional to the indigenous development of the transferee, the
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technology gap between the transferor and the transferee, and the function gov-
erning the technology transfer rate are used to develop the model for investigating
technology transfer which relates to the behaviours of the technological leader and
followers. In general, the model of the technological follower consists of two contri-
butions, those from indigenous development indicating by the indigenous ability to
develop (kF ) and those from the interaction between the technology transfer rate
(kT ) and the technology gap between the leader and the follower. The general form
of the model is given by

dXF (t)

dt
= kF f0(XF (t)) + kT f1(XF (t))f2(XF (t), XL(t)). (1)

Here XF (t) is a measure of technological development for the follower and usually
in the form of logistic growth (it is also called sigmoid, S-type growth, a growth
with saturation [13]), or Gompertz-type growth [24].

In this paper we reconstruct and paraphrasing the model in [19], which is a
special form of equation (1), via dynamical system approach [25]. This approach is
similar to system dynamics approach proposed by Jay Forrester [3] and among the
best framework available in predicting the long-term behaviour of the solution of
dynamic systems, such the case in technology transfer. Recently, system dynamic
approach has been used in addressing technological forecasting problems, since it
can enhance insight in the essence of the problems by allowing the development
of more complex model to investigate the structures and to further focus on the
processes of the underlying technological forecasting aspect [11].

We found some important hidden notions of technological transfer arising
from the model of Raz and Assa [19], which have not been discussed in their original
paper. For example, we show a paradox stating that ‘the follower is unable to reach
its original upper limit of the technological development could appear whenever
the transfer rate is sufficiently high’. This is caused by an implicit assumption that
there might be a negative effect of technology transfer whenever the transferee has
a significant ability to develop in the absence of technology transfer. We propose a
new model of technology transfer by modifying those in [19], which appropriately
fits to reflect a technology transfer in which the transferee has a significant ability
to develop in the absence of technology transfer. In this new model we assume
that the presence of technology transfer from the transferor always has a positive
effect in the technology development of the transferee. The model has a wide
spectrum of application as long as we provide appropriate measurement to the
level of development of the technology under consideration.

2. Raz and Assa Coupled Logistic Model

In this section we discuss the model of coupled technology transfer developed
by Raz and Assa [19]. In the absence of technology transfer they assume that both
the leader and the follower have a logistic curve XL(t) and XF (t), respectively, to
describe the growth of their technological development. The logistic equation for
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the leader is given by

XL(t) =
uL

1 + bLe−KLt
, (2)

and for the follower is given by

XF (t) =
uF

1 + bF e−KF t
, (3)

where bL and bF are constants and:

uL - is the upper limit of the technological development of the leader,
uF - is the upper limit of the technological development of the follower,
kL - is the indigenous ability of the leader to develop,
kF - is the indigenous ability of the follower to develop.

In this model, without any technology transfer from the leader, equation (3) tells
us that the follower could attain the maximum level of the technology development
by solely use of its indigenous ability to develop. In the presence of technology
transfer, their model (equations (5) and (10) in [19]) takes the form

XL(t) =
uL

1 + bLe−KLt
, (4)

dXF (t)

dt
= gF +KT (XL(t)−XF (t)) , (5)

where gF = bFKF e
KF tUF

(
1 + bF e

−KF t
)−2

. It is easy to check that the right hand
side of equation (4) is the solution of the logistic differential equation

dXL(t)

dt
= kLXL(t)

(
1− XL(t)

uL

)
, (6)

with b = uL−XL(0), where XL(0) is the initial condition of the leader development
at t = 0. Consequently, equation (4) can be replaced by equation (6). Note also
that gF in equation (5) is actually the growth rate of the follower development in

the absence of technology transfer, that is gF = d
dt

(
uF

1+bF e−KF t

)
= dX̃F (t)

dt . Using a

similar argument as in the case of the leader, gF in equation (5) can also be replaced

by dX̃F (t)
dt = kFXF (t)

(
1− XF (t)

uF

)
. Hence, the system (4-5) can be rewritten in the

form
dXL(t)

dt
= kLXL(t)

(
1− XL(t)

uL

)
, (7)

dXF (t)

dt
= kFXF (t)

(
1− XF (t)

uF

)
+ kT (XL(t)−XF (t)) . (8)

Raz and Assa [19] solved the system (4-5) numerically and studied the be-
haviour of the solution by varying the parameters in the model. In this paper
we reconstruct their finding by investigating the alternative system, i.e. equations
(7-8) via dynamical system approach to study the long-term behaviour of the sys-
tem. The following propositions are the results derived by investigating the critical
points of the systems via linearization method (see [12] : p. 168 for an introductory).
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Proposition 2.1. The system of equations (7) and (8) has four steady state solu-
tions with exactly one positive steady state solution.

Proof. The steady state solutions of equations (7) and (8) are obtained by equat-
ing both equations to zero and solve for XL and XF . The system has four steady

states, namely (X∗
L0, X

∗
F0) = (0, 0), (X∗

L1, X
∗
F1) = (0, uF (kF−kT )

kF
), (X∗

L2, X
∗
F2) =

(uL, Z
∗
1 ), (X∗

L3, X
∗
F3) = (uL, Z

∗
2 ), where Z∗

1 and Z∗
2 are the roots of the quadratic

equation kFZ
2 + (kT − kF )uFZ − kTuFuL, which is given by X∗

F2 = uF (kF−kT )+D
2kF

and X∗
F3 = uF (kF−kT )−D

2kF
, where D =

√
(uF (kT − kF ))2 + 4kF kTuFuL. The ex-

pression in X∗
F2 and X∗

F3 ensure that there is a non-trivial steady state. Further-
more, since the product of the roots is negative then there is exactly one positive
non-trivial steady state. �

The proof in the proposition shows that the indigenous ability of the leader
to develop (kL) does not appear in the steady state. This means that the level
of the technological development of the follower is independent from the indige-
nous ability of the leader to develop. However, the upper limit of the technological
development of the leader (uL) and the rate of technology transfer (kT ) critically
affect the technological development of the follower with the structural properties
described in Propositions 2.1 to 2.4.

Proposition 2.2. The positive steady state solution (X∗
L2, X

∗
F2) = (uL, Z

∗
1 ) is

stable while all other steady states are unstable.

Proof. The stability of a steady state is determined by the negative sign of all
the eigenvalues of the associated Jacobian matrix.

(1) The eigen values of the Jacobian matrix for (X∗
L0, X

∗
F0) are kL and kF −kT ,

which is not all negative.
(2) The eigen values of the Jacobian matrix for (X∗

L1, X
∗
F1) are kL and kT −kF ,

which is not all negative.
(3) The eigen values of the Jacobian matrix for (X∗

L2, X
∗
F2) are −kL and

−
√

k2
Fu2

F−2kFu2
F kT+k2

Tu2
F+4kF kTuFuL

uF
= −

√
(uF (kT−kF ))2+4kF kTuFuL

uF
, which

is all negative.
(4) The eigen values of the Jacobian matrix for (X∗

L3, X
∗
F3) are −kL and

−
√

k2
Fu2

F−2kFu2
F kT+k2

Tu2
F+4kF kTuFuL

uF
=

√
(uF (kT−kF ))2+4kF kTuFuL

uF
, which is

not all negative.

�

Proposition 2.3. The stable steady state solution (X∗
L2, X

∗
F2) has the following

properties:

(1) If uF > uL then



42 H. Husniah, et al.

(a) in general uF
kF−kT

kF
< X∗

F2 < uF ,

(b) if furthermore kF > kT then uL < X∗
F2 < uF .

(2) If uF < uL then
(a) in general uF < X∗

F2 < uL
kF+kT

kF
,

(b) if furthermore kF > kT then uF < X∗
F2 < uL.

(3) If uF = uL then X∗
F2 = uL.

Proof.

(1) Case uF > uL.
(a) First we prove the left part of the inequality in the general case,

X∗
F2 =

uF (kF − kT ) +
√

(uF (kF − kT ))2 + 4kF kTuFuL
2kF

>
uF (kF − kT ) +

√
(uF (kF − kT ))2

2kF

=
uF (kF − kT ) + uF (kF − kT )

2kF
= uF

kF − kT
kF

.

Next we prove the right part of the inequality as follows,

X∗
F2 =

uF (kF − kT ) +
√

(uF (kF − kT ))2 + 4kF kTuFuL
2kF

<
uF (kF − kT ) +

√
(uF (kF − kT ))2 + 4kF kTuFuF

2kF

=
uF (kF − kT ) + uF (kF + kT )

2kF
= uF .

(b) Here we only prove the left part of the inequality in the case kF > kT
since the right part is the same as above.

X∗
F2 =

uF (kF − kT ) +
√

(uF (kF − kT ))2 + 4kF kTuFuL
2kF

>
uF (kF − kT ) +

√
(uL(kF − kT ))2 + 4kF kTuLuL

2kF

=
uF (kF − kT ) + uL(kF + kT )

2kF
.

Since in this case kF > kT then

X∗
F2 >

uL(kF − kT ) + uL(kF + kT )

2kF
= uL.

(2) Case uF < uL
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(a) First we prove the left part of the inequality in the general case,

X∗
F2 =

uF (kF − kT ) +
√

(uF (kF − kT ))2 + 4kF kTuFuL
2kF

>
uF (kF − kT ) +

√
(uF (kF − kT ))2 + 4kF kTuFuF

2kF

=
uF (kF − kT ) + uF (kF + kT )

2kF
= uF .

Next we prove the right part of the inequality as follows,

X∗
F2 =

uF (kF − kT ) +
√

(uF (kF − kT ))2 + 4kF kTuFuL
2kF

<
uF (kF − kT ) +

√
(uL(kF − kT ))2 + 4kF kTuLuL

2kF

=
uF (kF − kT ) + uL(kF + kT )

2kF
<
uF (kF + kT ) + uL(kF + kT )

2kF

<
uL(kF + kT ) + uL(kF + kT )

2kF
= uL

kF + kT
kF

.

(b) Here we only prove the right part of the inequality in the case of
kF < kT since the left part is the same as above.

X∗
F2 =

uF (kF − kT ) +
√

(uF (kF − kT ))2 + 4kF kTuFuL
2kF

<
uF (kF − kT ) +

√
(uL(kF − kT ))2 + 4kF kTuLuL

2kF

=
uF (kF − kT ) + uL(kF + kT )

2kF
.

Since in this case kF > kT then

X∗
F2 <

uL(kF − kT ) + uL(kF + kT )

2kF
= uL.

(3) Case uF = uL Let kF = nkT with n > 0 then

X∗
F2 =

uF (kF − kT ) +
√

(uF (kF − kT ))2 + 4kF kTuFuL
2kF

=
uL((n− 1)kT ) +

√
(uL((n− 1)kT ))2 + 4nkT kTuLuL

2nkT

=
uL((n− 1)kT ) +

√
(uL((n+ 1)kT ))2

2nkT
= uL.

�

Note that in the model above, in the absence of technology transfer from the leader,
i.e. when kT = 0, the maximum technological development of the follower will reach
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the maximum level uF eventually, regardless the technological development level of
the leader. However, in the presence of technological transfer, Propositions 2.1-2.3
show this is true only if uF = uL. In this case there is a trade-off among the leader
and follower parameters. The Proposition 2.4 uncovers more results regarding the
trade-off for some spesific parameters.

Proposition 2.4. Let uF = muL and kF = nkT , with m,n > 0, the stable steady
state solution (X∗

L2, X
∗
F2) has the following properties:

(1) If m = n then X∗
F2 = muL,

(2) If m > n then nuL < X∗
F2 < (m

n )uL,
(3) If m < n then (m

n )uL < X∗
F2 < nuL,

(4) If m = 1 then X∗
F2 = uL,

(5) If n = 1 then X∗
F2 =

√
muL.

Proof.

(1)

X∗
F2 =

muL(nkT − kT ) +
√

(muL(nkT − kT ))2 + 4nkT kTmuLuL
2kF

=
m(n− 1)kTuL +

√
(m(n− 1)kTuL)2 + 4mn(kTuL)2

2kF

=
(m(n− 1) +m(n+ 1))kTuL

2nkT
= muL.

(2)

X∗
F2 =

muL(nkT − kT ) +
√

(muL(nkT − kT ))2 + 4nkT kTmuLuL
2kF

>
n(n− 1)kTuL +

√
(n(n− 1)kTuL)2 + 4nn(kTuL)2

2kF

=
(n(n− 1) + n(n+ 1))kTuL

2nkT
= nuL.

On the other hand we also have

X∗
F2 =

muL(nkT − kT ) +
√

(muL(nkT − kT ))2 + 4nkT kTmuLuL
2kF

<
m(m− 1)kTuL +

√
(m(m− 1)kTuL)2 + 4mm(kTuL)2

2kF

=
(m(m− 1) +m(m+ 1))kTuL

2nkT
= (

m

n
)uL.
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(3)

X∗
F2 =

muL(nkT − kT ) +
√

(muL(nkT − kT ))2 + 4nkT kTmuLuL
2kF

<
n(n− 1)kTuL +

√
(n(n− 1)kTuL)2 + 4nn(kTuL)2

2kF

=
(n(n− 1) + n(n+ 1))kTuL

2nkT
= nuL.

On the other hand we also have

X∗
F2 =

muL(nkT − kT ) +
√

(muL(nkT − kT ))2 + 4nkT kTmuLuL
2kF

,

>
m(m− 1)kTuL +

√
(m(m− 1)kTuL)2 + 4mm(kTuL)2

2kF
,

=
(m(m− 1) +m(m+ 1))kTuL

2mkT
= (

m

n
)uL.

(4) It is clear from result (1) of the proposition.
(5) It is clear from the definition of X∗

F2.

�

Note that Proposition 2.4 implies the maximum level of the follower technological
development is given by X∗

F2 ≤ max(uF , uL). In the next section we presents some
examples to illustrate the results described in the propositions.

Raz-Assa Model for uF < uL with kT = 0.0

Figure 1. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 1,

uL = 2, kT = 0.
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Raz-Assa Model for uF < uL with kT = 0.3

Figure 2. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 1,

uL = 2, kT = 0.3.

2.1. Numerical Examples of Raz and Assa Coupled Logistic Model. Fig-
ure 1 shows the plots of the leader technological development XL (solid) and the
follower technological development XF (dash) with respect to time, as the solution
of equations (7) and (8), respectively. Dots represent the technological gap between
the leader and the follower. The parameters used in this example are taken from
[19] (except that kT = 0), i.e. kL = 0.6, kF = 0.2, uL = 2,uf = 1 with the initial
states of the technological development are XL(0) = 0.6 and XF (0) = 0.02. Fig-
ure 2 shows the solution to the same situation but in this case there is a transfer
technology from the leader to the follower with kT = 0.3. Note that the max-
imum technological development of the follower is now above its original upper
limit (uF =1 and X∗

F2 is about 1.5) due to the presence of the technology transfer.

Next we assume the following situation. Both parties, say L and F , develop
a certain technology independently, with the same parameters as above, except the
values of uL and uF are reversed, i.e., uL = 1 and uF = 2, and they begin from the
same initial condition, i.e. XL(0) = XF (0) = 0.02. The solution to this problem
in the absence of technology transfer is illustrated by Figure 3. Furthermore, if
L is heading in this technological contest compared to L, e.g. XL(0) = 0.6 and
XF (0) = 0.02, then we have Figure 4 as the illustration. Next suppose that since
F is lagged behind, in terms of the innitiation of the technological implementation,
and there is a transfer technology from L to F with kT = 0.3, then the development
of technology of the two parties is depicted by Figure 5. Surprisingly, in the long
term, the condition for the follower is worse compared to the situation in which there
is no technology transfer. In this case the follower cannot attain its original upper
limit technological development. This is somewhat paradoxial. In the next section
we propose alternative models to overcome this limitation by assuming that the
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presence of technology transfer together with the gap of technological development
affect the follower rate of development.

Raz-Assa Model for uF > uL with kT = 0.0 [the same initial conditions]

Figure 3. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 2,

uL = 1, kT = 0.

Raz-Assa Model for uF > uL with kT = 0.0 [different initial conditions]

Figure 4. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 2,

uL = 1, kT = 0.
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Raz-Assa Model for uF > uL with kT = 0.3

Figure 5. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 2,

uL = 1, kT = 0.3. The case where the paradox of technology transfer occurs.

3. Modification of the Raz and Assa Coupled Logistic Model

3.1. The First Modified Model. The first revision to the model is done by
assuming that the presence of technology transfer affects the follower’s ability to
develop kF . Hence the model is given by equations (9) and (10) with the results
presented in Propositions 3.1.1-3.1.2.

dXL(t)

dt
= kLXL(t)

(
1− XL(t)

uL

)
, (9)

dXF (t)

dt
= (1 + kT (XL(t)−XF (t))) kFXF (t)

(
1− XF (t)

uF

)
, (10)

Proposition 3.1. The system of equations (9) and (10) has six steady state solu-
tions with exactly two positive co-existence steady state solution.

Proof. It is clear that by equating both equations (9) and (10) to zero and solve for
xL and xF we found six steady states, namely (X∗

L0, X
∗
F0) = (0, 0), (X∗

L1, X
∗
F1) =

(0, uF ), (X∗
L2, X

∗
F2) = (0, 1/kT ), (X∗

L3, X
∗
F3) = (uL, 0), (X∗

L4, X
∗
F4) = (uL, uF ),

and (X∗
L5, X

∗
F5) = (uL,

1+kTuL

kT
). This completes the proof. �

Proposition 3.2. The positive steady state solution (X∗
L4, X

∗
F4) = (uL, uF ) is

stable and (X∗
L5, X

∗
F5) = (uL,

1+kTuL

kT
) is unstable whenever T0 = kT (uF −uL) < 1.

The converse is true otherwise. All other steady states are unstable, regardless the
value of kT (uF − uL).
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Proof.

(1) The eigen values of the Jacobian matrix for (X∗
L0, X

∗
F0) are kL and kF ,

which is all positive.
(2) The eigen values of the Jacobian matrix for (X∗

L1, X
∗
F1) are kL and kF (kTuF−

1), which is not all negative.

(3) The eigen values of the Jacobian matrix for (X∗
L2, X

∗
F2) are kL and kF (kTuF−1)

kTuF
,

which is not all negative.
(4) The eigen values of the Jacobian matrix for (X∗

L3, X
∗
F3) are −kL and kF (1+

ktuL), which is not all negative.
(5) The eigen values of the Jacobian matrix for (X∗

L4, X
∗
F4) are −kL and −kF −

kF kTuL + kF kTuF . Note that −kF − kF kTuL + kF kTuF = kF (kT (uF −
uL)−1) = kF (T0−1), hence it is negative whenever T0 < 1, means that the
steady state is stable. Otherwise, if T0 > 1 then the eigen value is positive,
means that the steady state is unstable.

(6) The eigen values of the Jacobian matrix for (X∗
L5, X

∗
F5) are −kL and λ42 =

kF (1+2kTuL−kTuF+k2
Tu2

L−k2
TuLuF )

kTuF
. The later can be simplified into

λ42 =
kF (1 + kT (2uL − uF − kT (uF − uL)uL))

kTuF

=
kF (1 + kT (2uL − uF − T0uL))

kTuF
=
kF (1 + kT ((2− T0)uL − uF ))

kTuF

=
kF (1− kT ((uF − (2− T0)uL))

kTuF
.

Note that the sign of λ42 depends on T0. In the case of T0 < 1 we have

λ42 =
kF (1− kT ((uF − (2− T0)uL))

kTuF

>
kF (1− kT ((uF − uL))

kTuF
=
kF (1− T0)

kTuF
> 0,

means that this steady state is unstable. Meanwhile, in the case of T0 > 1
we have

λ42 =
kF (1− kT ((uF − (2− T0)uL))

kTuF

<
kF (1− kT ((uF − uL))

kTuF
=
kF (1− T0)

kTuF
< 0,

means that this steady state is stable. �

3.2. Numerical Examples of the First Modified Model. In this section we
give numerical examples with the same parameters as in previous examples.
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Modified Logistic Model for uF < uL with kT = 0.0

Figure 6. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 1,

uL = 2, kT = 0.

Modified Logistic Model for uF < uL with kT = 0.3

Figure 7. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 1,

uL = 2, kT = 0.3.

Figure 6 shows the plots of the leader technological development XL (solid)
and the follower technological development XF (dash) with respect to time, as the
solution of equations (9) and (10), respectively. Dots represent the technological
gap between the leader and the follower. As before, the parameters used in this
example are taken from [19] (except that kT = 0), i.e. kL = 0.6, kF = 0.2, uL = 2,
uF = 1 with the initial states of the technological development are XL(0) = 0.6
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and XF (0) = 0.02. Figure 7 shows the solution to the same situation but in this
case there is a transfer technology from the leader to the follower with kT = 0.3.
Note that the maximum technological development of the follower is the same as
before, i.e. X∗

F2 = uF = 1, but it is reached relatively faster than in the absence of
technology transfer.

Next we assume the following situation. Both parties, say L and F , develop
a certain technology independently, with the same parameters as above, except
the values of uL and uF are reversed, i.e., uL = 1 and uF = 2, and they begin
to develop from the same initial condition, i.e. XL(0) = XF (0) = 0.02. The
solution to this problem in the absence of technology transfer is illustrated by
Figure 8. Furthermore, if L is heading in this technological contest compared to
L, e.g. XL(0) = 0.6 and XF (0) = 0.02, then we have Figure 9 as the illustration.
Next suppose that since F is lagged behind, in terms of the innitiation of the
technological implementation, and there is a transfer technology from L to F with
kT = 0.3, then the development of technology of the two parties is depicted by
Figure 10. Different from prediction derived by the original model, in which the
follower cannot attain its original upper limit of technological development uF , here
uF can be attained in a faster time (Figure 10) compared to the time needed in the
absence of technology transfer (Figure 9). Figure 10 also illustrates the stability of
uF since T0 = 0.3 < 1 (see Proposition 3.2 and also Figures 11 and 12).

Modified Logistic Model for uF > uL with kT = 0.0 [the same initial conditions]

Figure 8. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 2,

uL = 1, kT = 0.

Note that by referring to the proof of Proposition 3.2, there is a switching of
stability between (X∗

L4, X
∗
F4) and (X∗

L5, X
∗
F5) depending on the value of T0, hence

the value T0 = kT (uF − uL) is a stability threshold. The figures show that in a
ceterus paribus condition, the increase of technology transfer rate causes the loose
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Modified Logistic Model for uF > uL with kT = 0.0 [different initial conditions]

Figure 9. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 2,

uL = 1, kT = 0.

Modified Logistic Model for uF > uL with kT = 0.3

Figure 10. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 2,

uL = 1, kT = 0.3. In this case the threshold T0 = 0.3 < 1, hence (uL,uF ) is stable.

of the stability of the maximum level of the follower development capacity. In fact
for a very high technology transfer rate, it approaches the maximum level of the
leader as indicated by the following expression limit kT → ∞ ⇒ 1+kTuL

kT
→ uL.

Figure 13 reveals that for a very high technology transfer rate, the paradox in the
original model still appear. As is the original model, it is plausible to argue that
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Modified Logistic Model for uF > uL with kT = 0.9

Figure 11. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 2,

uL = 1, kT = 0.9. In this case the threshold T0 = 0.9 < 1, hence (uL,uF ) is stable,

although it looks unstable. See Figure 12 for the long-term behaviour.

Modified Logistic Model for uF > uL with kT = 0.9 [the long-term behaviour]

Figure 12. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 2,

uL = 1, kT = 0.9 beyond 100 time course. It is clear, since the threshold T0 = 0.9 < 1,

the equilibrium state (uL,uF ) is stable.

the paradox is due to the presence of negative value of the technology gap between
the leader and the follower. In the next section we propose an alternative model
to overcome this limitation by assuming that the presence of technology transfer
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Modified Logistic Model for uF > uL with kT = 2

Figure 13. Plots of XL(t) (solid), XF (t) (dash), and XL(t) −XF (t) (dots) with uF = 2,

uL = 1, kT = 2. It is clear, since the threshold T0 = 2 > 1, the equilibrium state (uL,uF )

is unstable. In this case the stable equilibrium state is (uL, 1+kT uL
kT

) indicating the

occurence of the technology transfer paradox.

Max-ML Model for uF > uL with kT = 2

Figure 14. Trajectories of system 11 and 12 for three different transfer rates, i.e.

kT = 2, 0.3 and 0.0, together with uF = 2 and uL = 1 (the other parameters are the

same as in the previous examples). As it is expected the model gives a paradox-free

result, in which technology transfer always enhances the growth of the follower.

explicitly has a non-negative impact in increasing the rate of development regardless
the sign of the technology gap between the leader and the follower.
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3.3. The Second Modified Model. Here we assume that the presence of tech-
nology transfer explicitly has a non-negative impact in increasing the follower’s rate
of development. We call the model as the Maximum Modified Logistic (Max-ML)
model with the governing equations given as follows,

dXL(t)

dt
= kLXL(t)

(
1− XL(t)

uL

)
, (11)

dXF (t)

dt
= (1 + kT max (0, (XL(t)−XF (t)))) kFXF (t)

(
1− XF (t)

uF

)
. (12)

The following propositions are the main results of the model’s behaviour in terms
of its equilibria. The propositions will show that the model rectifies/removes the
occurence of the unwanted paradox appearing in the earlier models.

Proposition 3.3. The system of equations (11) and (12) has six steady state so-
lutions with exactly two positive co-existence steady state solutions.

Proof. It is clear that by equating equation (11) to zero and solve for XL we
found two solutions, namely X∗

L = 0 and X∗
L = uL. To find the steady state

solution from equation (12), we have (1 + kT max(0, (XL(t)−XF (t)))) kFXF (t)(
1− XF (t)

uF

)
= 0. We solve this equation for XF , by looking at the following two

cases, namely X∗
L = 0 and X∗

L = uL.

(1) Case X∗
L = 0. We have (1 + max(0, kT (−XF (t)))) kFXF (t)

(
1− XF (t)

uF

)
=

0, hence we obtain three solutions, X∗
F = 0, X∗

F = uF , and one solution
from (1 + max(0, kT (−XF (t)))) = 0 which exists when max(0, kT (−XF (t)))
= −kTXF (t) and satisfied by X∗

F = 1
kT

. Consequently, the steady state

solutions for the system in this case are: (X∗
L0, X

∗
F0) = (0, 0), (X∗

L1, X
∗
F1) =

(0, uF ), and (X∗
L2, X

∗
F2) = (0, 1/kT ).

(2) Case X∗
L = uL. As above we obtain three solutions, X∗

F = 0, X∗
F =

uF , and one solution from (1 + max(0, kT (uL −XF (t)))) = 0, i.e. X∗
F =

1+kTuL

kT
. Consequently, the steady state solutions for the system in this

case are: (X∗
L3, X

∗
F3) = (uL, 0), (X∗

L4, X
∗
F4) = (uL, uF ), and (X∗

L5, X
∗
F5) =

(uL,
1+kTuL

kT
).

These steady states exactly the same as for the previous model, with the positive
co-existence given by the last two steady states. This completes the proof. �

Proposition 3.4. The positive steady state solution (X∗
L4, X

∗
F4) = (uL, uF ) is

stable and (X∗
L5, X

∗
F5) = (uL,

1+kTuL

kT
) is unstable.
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Proof. First we will show that (X∗
L4, X

∗
F4) = (uL, uF ) is stable. Note that the

dynamic of the follower growth in equation (12) can be written in the form

dXF (t)

dt
=


kFXF (t)

(
1− XF (t)

uF

)
, for XL ≤ XF ,

(1 + kT (XL(t)−XF (t))) kFXF (t)
(

1− XF (t)
uF

)
, for XL > XF .

(13)

Clearly X∗
L = uL is a stable steady state solution of equation (11). Furthermore,

X∗
F = uF is a stable steady state solution of the first part of equation (13) whenever

XL ≤ XF . We will show that this is also the case whenever XL > XF . Suppose
that the initial growth of the follower is XF (0) = X0

F < XL. If XL > XF then

from the second part of equation (13) we have dXF (t)
dt > 0, that is XF grows. If

during following the trajectory of the second part of equation (13) XF hits uF
then dXF (t)

dt = 0, which means that the orbit is trapped by the stable steady state
X∗

F = uF . If it does not hit uF then it will be continue to increase until finally
crosses XL at its maximum, i.e. X∗

L = uL. Since now XF = XL, then the trajectory
follows the first part of equation (13) and eventually trapped by X∗

F = uF . This
completes the assertion that (X∗

L4, X
∗
F4) = (uL, uF ) is stable.

Next we will show that (X∗
L5, X

∗
F5) = (uL,

1+kTuL

kT
) is unstable. Suppose that

the initial growth of the follower is XF (0) = X0
F < min(XL,

1+kTuL

kT
), then the

trajectory of a solution of (12) emanating from this initial point will grow accord-
ing to the second part of equation (13). This trajectory will never been trapped
by (X∗

L5, X
∗
F5) = (uL,

1+kTuL

kT
), due to the fact that 1+kTuL

kT
> uL for any positive

value of transfer rate kT . Hence, before it reaches 1+kTuL

kT
, the point uL will be first

encountered. This is the highest point of the leader’s technological development
XL(t), hence from this point onward the trajectory will grow according to the first
part of equation (13), and finally trapped by the stable steady state X∗

F = uF .

This completes the assertion that (X∗
L5, X

∗
F5) = (uL,

1+kTuL

kT
) is unstable. �

Figure 14 shows the trajectories of the system of equations (11) and (13) for
three different transfer rates, i.e. kT = 1.1, 0.3 and 0.0, with the other parameters
are the same as in the previous examples. When there is no technology transfer
from the leader (thin dashes), XL develops according to its original growth rate
and eventually its indigenous capability to develop brings to the upper limit of the
technological development. When there is a very strong technology transfer rate
(thick dashes), XL grows rapidly, i.e. reaches the upper limit of the technological
development faster. The trajectory in between the previous two trajectories reflects
a mild technology transfer from the leader.

4. Concluding Remarks

In this paper, we revisited a well-known mathematical model of coupled technology
transfer. The analysis of the model is carried out via dynamical system approach.
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The model has implicitly assumed that in the absence of technology transfer, a
follower has an ability to develop up to a certain maximum level of technological
development. We found that in some circumstances, there is a paradoxial phenom-
enon predicted by the model, i.e. in the presence of technology transfer a strong
dependence of the follower’s technological growth rate on the leader’s technological
development have a negative impact to the follower’s development growth. This is
due to the formulation of the model in which a positive development gap (between
the leader and the follower) causes the increase of the follower’s growth rate, while
a negative development gap, i.e. when the follower’s level of development is higher
that the leader’s level of development, causes the decrease of the follower’s growth
rate. We have modified the model and obtained a more realistic result, in which the
presence of technology transfer never been an obstacle for the follower to achieve
the upper limit of the technological development. In the modified model we have
assumed that technology transfer always has a non-negative impact on the indige-
nous ability of the follower to develop. Future work can be done by assuming that
the presence of technology transfer might increase the original/indigenous upper
limit of the technological development.

Another venue for future work can be described as the following. Regarding
the original model of [19], a researcher in [15] pointed out that it takes the limit
of the developments of the leader and the follower into account, but the absorbing
capability of the follower remains the same throughout the process of the transfer.
A model that takes the absorbing capability of the follower into account explicitly is
developed in [15] and found an analytic solution of the model. However, the model
fails to acknowledge the limit of the developments of the leader and the follower by
assuming an unbounded increasing growth of the leader. Another contrast between
Raz and Assa [19] and [15] is the fact that the former assumes that without any
technology transfer from the leader, the follower could attain the maximum level
of the technology development by solely use of its indigenous ability to develop,
while the later assumes that there is no development for the follower without any
technology transfer from the leader. Future work can be carried out by integrating
or compromising those models to obtain a more general model (currently under
investigation).
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