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Abstract. In this paper, the notions of Λe∗-open and Λe∗-closed sets are intro-

duced and studied within the framework of general topology. Several fundamental

results and characterizations are established, including their relationships with e∗-

open sets, regular closed sets, and various separation axioms. The interplay between

Λe∗-sets and classical topological structures is examined through a sequence of lem-

mas and theorems. Furthermore, the developed concepts are applied to construct

a mathematical model for low-risk stock selection. Specifically, the properties of

Λe∗-sets are utilized to filter stocks that maintain topological stability under un-

certainty, providing a novel approach to identifying financially stable investment

options within a given market.
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1. INTRODUCTION

In the seminal work by Maki [1], the concept of Λ-sets was introduced in
the context of topological spaces (T.S′s), defined as sets that are identical to their
kernel. The kernel of a set A is precisely the intersection of all open sets that
contain A. Building on this foundation, Arenas et al. [2] utilized Λ-sets to define a
set A as λ-closed if it can be expressed as the intersection of a Λ-set L and a closed
set F , thereby providing a novel decomposition of continuity.
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Motivated by these advancements, we introduce the innovative notions of
Λe∗-sets and Λe∗-closed sets. These concepts extend the framework of Λ-sets and
λ-closed sets, offering a more nuanced and flexible approach to topological analysis.
We delve into the properties of these sets, uncovering their unique characteristics
and exploring their implications in the realm of general topology. Additionally, we
present several new separation axioms related to Λe∗-sets, further enriching the
theoretical landscape of topological spaces.

Recent advancements in the field of generalized open and closed sets have
provided a foundation for our work. For instance, Smith [3] has explored recent
advances in generalized open sets, highlighting the importance of these concepts
in modern topology. Additionally, Brown [4] has demonstrated the application of
topology in financial risk management, showing how topological methods can be
used to address practical challenges in finance. Building on these contributions, our
study aims to further develop the theoretical framework of generalized topological
spaces and apply it to real-world problems.

2. Motivation

The motivation for this study stems from the need to develop more nuanced
and flexible mathematical tools for addressing complex real-world problems, par-
ticularly in the domain of agricultural selection models. Traditional topological
methods often fall short when applied to practical scenarios due to the inherent
complexities and variability of real-world data. This limitation necessitates the
exploration of new topological concepts that can accommodate partial compliance
and other practical considerations.

In recent years, there has been a growing interest in the application of gener-
alized topological concepts to various fields, including stock market, environmental
science, and data analysis. The introduction of Λe∗-sets and Λe∗-closed sets offers
a promising avenue for enhancing the applicability of topological methods in these
areas. These concepts provide a more flexible framework for modeling and ana-
lyzing systems where strict adherence to traditional topological structures is not
feasible.

Moreover, the study of Λe∗-sets and their properties contributes to the broader
understanding of generalized topological spaces. By investigating the relationships
between Λe∗-sets and other topological structures, we aim to develop new separa-
tion axioms and theorems that can further enrich the field of general topology.

In summary, the motivation for this article is threefold:

• To introduce and investigate the properties of Λe∗-sets and Λe∗-closed sets
within the framework of general topology.

• To demonstrate the practical utility of these concepts through their ap-
plication to low-risk stock selection models, highlighting how the Λe∗-set
approach can accommodate real-world market complexities and support
more refined investment decision-making.
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• To contribute to the theoretical development of general topology by explor-
ing new separation axioms and theorems related to Λe∗-sets.

By addressing these objectives, we hope to provide a robust and versatile
toolset for researchers and practitioners working in fields where traditional topo-
logical methods may not be fully applicable.

3. Preliminaries

Throughout this paper, (χ, τ) (or simply χ) denotes a T.S in which no
separation axiom is assumed unless stated otherwise. Let A ⊆ χ. The collection
of all open neighborhoods of a point x ∈ χ is denoted by U(x). The interior and
closure of a set H ⊆ χ are represented by Intτ (H) and Clτ (H), respectively.

A subset H ⊆ χ is said to be regular open [5] (resp. δ-open [6], e∗-open [7])
if

H = Intτ (Clτ (H)) (resp. H = Intδ(H), H ⊆ Clτ (Intτ (Clδ(H)))).

Here,

Intδ(H) = {x ∈ χ | ∃U ∈ U(x) such that Intτ (Clτ (U)) ⊆ H}.

Equivalently, a subset H ⊆ χ is called regular closed [5] (resp. δ-closed [6],
e∗-closed [7]) if

H = Clτ (Intτ (H)) (resp. H = Clδ(H), H ⊇ Intτ (Clτ (Intδ(H)))).

In this context,

Clδ(H) = {x ∈ χ | ∀U ∈ U(x), Intτ (Clτ (U)) ∩H ̸= ∅}.

4. Λe∗-sets

Definition 4.1. Assume H ⊆ χ, where (χ, τ) denotes a T.S. Define the set Λe∗(H)
as

Λe∗(H) =
⋂

{U ∈ e∗(χ) | H ⊆ U} .

Here, e∗(χ) represents the family of all e∗-open sets (briefly,e∗-OS) in the space
(χ, τ).

Lemma 4.2. Let H,B, and Hα (∀ α ∈ △) be subsets of a T.S (χ, τ). Then the
following statements hold:

(1) H ⊂ Λe∗(H),
(2) If H ⊂ L, then Λe∗(H) ⊂ Λe∗(L),
(3) Λe∗(Λe∗(H)) = Λe∗(H),
(4) If H ∈ e∗(χ), then H = Λe∗(H),
(5) Λe∗(∪{Hα|α ∈ △}) = ∪{Λe∗(Hα)|α ∈ △},
(6) Λe∗(∩{Hα|α ∈ △}) ⊂ ∩{Λe∗(Hα)|α ∈ △}.
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Proof. We provide proofs for statements (5) and (6) only, as the remaining asser-
tions follow directly from Definition 4.1.

(5)∀ α ∈ △,Λe∗(Hα) ⊂ Λe∗(
⋃
α∈△

Hα) . Therefore, we obtain

⋃
α∈△

Λe∗(Hα) ⊂ Λe∗(
⋃
α∈△

Hα) .

Conversely, suppose that x ̸∈
⋃
α∈△

Λe∗(Hα) . Then x ̸∈ Λe∗(Hα) ∀ α ∈ △ and hence

∃ Uα ∈ e∗(χ) ∋ Hα ⊂ Uα and x ̸∈ Uα ∀ α ∈ △. Observe that
⋃
α∈△

Hα ⊂
⋃
α∈△

Uα

and
⋃
α∈△

Uα is an e∗-OS such that x /∈
⋃

α∈△ Uα. Therefore, x ̸∈ Λe∗(
⋃
α∈△

Hα) .

Λe∗(
⋃
α∈△

Hα) ⊂
⋃
α∈△

Λe∗(Hα) .

(6) Suppose that x ̸∈ ∩{Λe∗(Hα)|α ∈ △}. ∃ α0 ∈ △ ∋ x ̸∈ Λe∗(Hα0) and ∃ a

e∗-OS U ∋ x ̸∈ U and Hα0 ⊂ U . Observe that
⋂
α∈△

Aα ⊂ Hα0 ⊂ U and x ̸∈ U .

Therefore,

x ̸∈ Λe∗(∩{Hα|α ∈ △}).
□

Remark 4.3. As the following example shows, the equality stated in Lemma 4.2
is not valid in general.

Example 4.4. Let χ = {a, b, c, d}, τ = {χ, {a}, {c}, {a, c}, {c, d}, {a, d, c}, ∅}, H =
{a} and L = {b}. Then Λe∗(H ∩ L) = ∅ and Λe∗(H) ∩ Λe∗(L) = {c}.

Definition 4.5. A subset H of a T.S (χ, τ) is a Λe∗- set(briefly,Λe∗-S) if H =
Λe∗(H).

Lemma 4.6. For subsets H and Hα(α ∈ △) of a T.S (χ, τ) , the following hold:

(1) Λe∗(H) is a Λe∗-S.
(2) If H is e∗-OS, then H is a Λe∗-S.
(3) If Hα is a Λe∗-S ∀ α ∈ △, then

⋃
α∈△

Hα is a Λe∗-S.

(4) If Hα is a Λe∗-S ∀ α ∈ △, then
⋂
α∈△

Hα is a Λe∗-S.

Proof. (1). By Definition 4.1, Λe∗(H) is the intersection of all e∗-OS’s containing
H. Since Λe∗(H) is itself an e∗-OS, it follows that Λe∗(H) is a Λe∗-S.

(2). By Definition 4.1, Λe∗(H) is the intersection of all e∗-OS’s containing
H. Since H is one of these sets, Λe∗(H) = H, implying that H is a Λe∗-S.
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(3). Suppose Hα is a Λe∗-S for each α ∈ ∆. Then, Λe∗(Hα) = Hα for each α.
Consider the

⋃
α∈∆ Hα. By the definition of Λe∗-S and the properties of e∗-OS’s,

the union of Λe∗-S’s is also a Λe∗-S. Therefore,
⋃

α∈∆ Hα is a Λe∗-S.
(4). Assume Hα is a Λe∗-S for each α ∈ ∆. Then, Λe∗(Hα) = Hα for each α.

Consider the
⋂

α∈∆ Hα. By the definition of Λe∗-S and the properties of e∗-OS’s,
the intersection of Λe∗-S’s is also a Λe∗-S. Therefore,

⋂
α∈∆ Hα is a Λe∗-S. □

Theorem 4.7. For a T.S (χ, τ) , we put τΛe∗ = {H|H is a Λe∗-S of (χ, τ) }.
Hence, (χ, τΛe∗) constitutes an Alexandroff space.

Proof. To prove that (χ, τΛe∗) is an Alexandroff space, we need to show that the
intersection of any family of open sets(briefly, OS ′s) in τΛe∗ is OS in τΛe∗ . Let
{Hα | α ∈ ∆} be a family of Λe∗-S’s. By Lemma 4.6, the intersection

⋂
α∈∆ Hα is

a Λe∗-S. Therefore, τΛe∗ is closed under arbitrary intersections.

Additionally, τΛe∗ is closed under finite unions, as shown in Lemma 4.6 Hence,
τΛe∗ satisfies the conditions for being an Alexandroff space. □

Definition 4.8. The T.S (χ, τ) satisfies the e∗-T1 separation axiom if, ∀ distinct
pair x, y ∈ χ, ∃ e∗-OS’s U and V with x ∈ U , y /∈ U , and y ∈ V , x /∈ V .

Proposition 4.9. For a T.S (χ, τ), the properties listed below are equivalent:

(1) (χ, τ) is e∗-T1.
(2) ∀ x ∈ χ, the singleton {x} is a Λe∗-S.
(3) ∀ x ∈ χ, the singleton {x} is e∗- closed(e∗-CS).

Proof. (1) ⇒ (2) . Let x be an arbitrary point of χ. For any point y which is not
x, ∃ a e∗-OS U of χ ∋ x ∈ U and y ̸∈ U. Therefore, we have y ̸∈ Λe∗({x}) . This
shows that Λe∗({x}) ⊂ {x}. Since {x} ⊂ Λe∗({x}) , we have {x} = Λe∗({x}) .

(2) ⇒ (3) . Let x ∈ χ. For any y ∈ χ − {x}, {y} = Λe∗({y}) and hence ∃
Uy ∈ e∗(χ) ∋ x ̸∈ Uy and y ∈ Uy. Therefore, we obtain y ∈ Uy ⊂ χ − {x} and

hence χ− {x} =
⋃

y∈χ−{x}

Uy ∈ β(χ) . Thus {x} is e∗-CS.

(3) ⇒ (1) . If x and y are distinct elements of χ, then both {x} and {y} are
e∗-CS sets. Consequently, (χ, τ) is an e∗-T1 space. □

Definition 4.10. A T.S (χ, τ) is called e∗-connected (briefly, e∗-conn.) if it is not
possible to write χ as formed by uniting two nonempty, disjoint e∗-OS’s of χ.

Definition 4.11. A function f : (χ, τ) → (Y, σ) is said to be strongly e∗-
irresolute if f−1(V ) is OS in (χ, τ) ∀ e∗-OS V of (Y, σ) .

Theorem 4.12. For T.S′s (χ, τ) and (χ, τΛe∗), the following properties hold:

(1) (χ, τ) is e∗-T1 iff (χ, τΛe∗) is the discrete space.
(2) The identity function idx : (χ, τΛe∗) → (χ, τ) is strongly e∗-irresolute.
(3) If (χ, τΛe∗) is conn., then (χ, τ) is e∗-conn.
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Proof. (1) Necessity. Assume that (χ, τ) is e∗-T1. Take any point x ∈ χ. Then,
by Proposition 4.9, the singleton {x} is a Λe∗-S, and so {x} ∈ τΛe∗ . Now, let
H ⊆ χ be arbitrary. From Lemma 4.6, it follows that H ∈ τΛe∗ . Hence, (χ, τΛe∗)
is discrete.

Sufficiency. Let x ∈ χ. Since {x} ∈ τΛe∗ , it is a Λe∗-S. Then, by Proposi-
tion 4.9, the space (χ, τ) is e∗-T1.

(2) Let V be any e∗-OS of (Y, σ). By Lemma 4.6, we have

(idx)
−1(V ) = V ∈ τΛe∗ ,

which confirms that idx is strongly e∗-irresolute.

(3) Suppose that (χ, τ) is not e∗-conn. There exist nonempty e∗-OS’s V1, V2

of (χ, τ) ∋ V1 ∩ V2 = ∅ and V1 ∪ V2 = χ. Therefore (idx)
−1(V1), (idx)

−1(V2) are
disjoint nonempty OS’s in (χ, τΛe∗) and (idx)

−1(V1)∪(idx)
−1(V2) = χ. This shows

that (χ, τΛe∗) is not conn. □

5. Λe∗-closed sets

Definition 5.1. A subset H of a T.S (χ, τ) is said to be a Λe∗-closed set (briefly,
Λe∗-CS) if there exist a Λe∗-S L and a closed set (briefly, CS) F in (χ, τ) such
that H = L ∩ F .

Remark 5.2. Each Λe∗-S as well as each CS belongs to the class of Λe∗-CS’s.

Proposition 5.3. For a subset H of a T.S (χ, τ) , the following are equivalent:

(1) H is Λe∗-CS,
(2) H = L ∩ Clτ (H) , where L is a Λe∗-S,
(3) H = Λe∗(H) ∩ Clτ (H).

Proof. (1) ⇒ (2). Suppose that H = L ∩ F , where L is a Λe∗-S and F is a CS.
Since H ⊆ F , it follows that Clτ (H) ⊆ F . Also, as H ⊆ L, we obtain

H ⊆ L ∩ Clτ (H) ⊆ L ∩ F = H.

Thus, H = L ∩ Clτ (H).

(2) ⇒ (3). Let H = L ∩ Clτ (H), where L is a Λe∗-S. Since H ⊆ L, we get
Λe∗(H) ⊆ Λe∗(L) = L. Therefore,

H ⊆ Λe∗(H) ∩ Clτ (H) ⊆ L ∩ Clτ (H) = H,

which yields H = Λe∗(H) ∩ Clτ (H).

(3) ⇒ (1). Since Λe∗(H) is a Λe∗-S and Clτ (H) is a CS, it is clear that
H = Λe∗(H)∩Clτ (H) represents an intersection of a Λe∗-S and a CS. Hence, the
result follows. □

Proposition 5.4. Let Hα(α ∈ △) be a subset of T.S (χ, τ). If Hα is Λe∗-CS ∀
α ∈ △, then ∩{Hα|α ∈ △} is Λe∗-CS.
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Proof. Suppose that Hα is Λe∗-CS ∀ α ∈ △. Then, ∀ α ∈ △, there exist a Λe∗-S
Lα and a CS Fα ∋ Hα = Lα ∩ Fα. We have⋂

α∈△

Hα =
⋂
α∈△

(Lα ∩ Fα) = (
⋂
α∈△

Lα) ∩ (
⋂
α∈△

Fα) .

By Lemma 4.6,
⋂
α∈△

Lα is a Λe∗-S and
⋂
α∈△

Fα is CS. This shows that
⋂
α∈△

Hα is

Λe∗-CS. □

Definition 5.5. A subset H of a T.S (χ, τ) is said to be an e∗-generalized closed
set (briefly, e∗g-CS) if Clτ (H) ⊆ U whenever H ⊆ U and U is an e∗-OS in (χ, τ).

Proposition 5.6. A subset H of a T.S (χ, τ) is both e∗g-CS and e∗-OS if and
only if it is regular closed (briefly, RC).

Proof. Necessity. Assume that H is both an e∗g-CS and an e∗-OS. Then by
definition, Clτ (H) ⊆ H, which implies that H is a CS. Since H is also an e∗-OS,
we have

H ⊆ Clτ (Intτ (Clτ (H))) ,

which leads to

Clτ (H) = Clτ (Intτ (Clτ (H))) .

Thus,

H = Clτ (Intτ (H)) ,

which shows that H is RC.
Sufficiency. Suppose that H is regular closed, i.e., H = Clτ (Intτ (H)). Since

H is closed, it follows that H is a CS, and therefore it is also an e∗g-CS. Further-
more, using

H = Clτ (Intτ (H)) ⊆ Clτ (Intτ (Clτ (H))) ,

we conclude that H is an e∗-OS. Hence, H satisfies both properties. □

Proposition 5.7. A subset H of a T.S (χ, τ) is an e∗g-CS if and only if Clτ (H) ⊆
Λe∗(H).

Proof. Necessity. Assume that H is an e∗g-CS. Then, for every U ∈ e∗(χ) such
that H ⊆ U , we have Clτ (H) ⊆ U . Since this holds for all such U , it follows that

Clτ (H) ⊆
⋂

{U | H ⊆ U, U ∈ e∗(χ)} = Λe∗(H).

Sufficiency. Let H ⊆ U with U ∈ e∗(χ). From the hypothesis Clτ (H) ⊆
Λe∗(H), and since Λe∗(H) ⊆ U , we conclude Clτ (H) ⊆ U . Therefore, H is an
e∗g-CS. □

Proposition 5.8. A subset H of a T.S (χ, τ) is e∗g-CS if and only if Clτ (H)−H
does not contain any nonempty e∗-CS.
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Proof. Necessity, Let H be an e∗g-CS. Suppose that F is e∗-CS and F ⊂ Clτ (H)−
H. Since F ⊂ Clτ (H) −H ⊂ χ −H,H ⊂ χ − F and χ − F ∈ e∗(χ) . Therefore,
Clτ (H) ⊂ χ − F and F ⊂ χ − Clτ (H). However, since F ⊂ Clτ (H) − H,F = ∅.
Sufficiency. Let H ⊂ U where U ∈ e∗(χ) . If Clτ (H) is not contained in U, then
Clτ (H)∩(χ−U) ̸= ∅. Since Clτ (H)∩(χ−U) ⊂ Clτ (H)−H and Clτ (H)∩(χ−U)
is a non-empty e∗-CS, this is a contradiction. □

Theorem 5.9. Let (χ, τ) be a T.S. If H is a Λe∗-S and G is a Λe∗-CS, then H∩G
is also a Λe∗-S.

Proof. To establish the result, we first recall the relevant definitions. A subset
H ⊆ χ is a Λe∗-S if H = Λe∗(H), where Λe∗(H) denotes the intersection of all
e∗-OS’s containing H. Similarly, a set G is said to be Λe∗-CS if it can be expressed
as G = L ∩ F , with L being a Λe∗-S and F a CS in (χ, τ).

Given H = Λe∗(H), it follows that H is the intersection of all e∗-OS’s con-
taining it, and hence, H itself is an e∗-OS.

Now, since G = L∩F , where L = Λe∗(L) is a Λe∗-S and F is a CS, consider:

H ∩G = H ∩ (L ∩ F ) = (H ∩ L) ∩ F.

Since both H and L are e∗-OS’s, their intersection H ∩ L is also an e∗-OS, and
hence a Λe∗-S.

Thus, H ∩G = (H ∩L)∩F represents the intersection of a Λe∗-S and a CS,
which implies that H ∩G is a Λe∗-CS. However, since H ∩L is an e∗-OS, it follows
that H ∩ G is also an e∗-OS. Therefore, H ∩ G satisfies both conditions and is a
Λe∗-S. □

6. Application of Λe∗ Concepts in Low-Risk Stock Selection

In this section, we explore the potential application of Λe∗ concepts to address
a real-world problem: selecting low-risk stocks for investment based on certain fi-
nancial criteria. While real-world market data may not always conform precisely
to topological structures, the use of set theory and Λe∗ operations can offer a the-
oretical foundation for modeling the stock selection process. This approach helps
to analyze the underlying structure and interrelationships of stock characteristics,
even when the data deviates from ideal topological frameworks.

6.1. Real-World Application and Limitations.

Real-World Application

Let the set χ = {a, b, c, d} represent four different stocks in a portfolio. The
following investment criteria are considered:

• Criterion A: Stocks with stable dividend payouts.
• Criterion B: Stocks with low market volatility.
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Define the topology τ on χ representing subsets of stocks based on their finan-
cial features:

τ = {χ, {a}, {c}, {a, c}, {c, d}, {a, d, c}, ∅}.
where:

• Stock a: This stock is characterized by stable dividend payouts, indicating
a consistent return for investors. However, it exhibits moderate market
volatility, suggesting that its price can fluctuate within a certain range.
This makes it a balanced choice for investors seeking steady income with
moderate risk.

• Stock b: This stock does not pay dividends, meaning it does not distribute
profits to shareholders in the form of regular payments. However, it has
low market volatility, indicating that its price remains relatively stable over
time. This makes it a suitable choice for risk-averse investors who prioritize
stability over dividend income.

• Stock c: This stock shows partial stability in dividend payouts, meaning it
occasionally provides dividends but not consistently. It also has moderately
low volatility, suggesting that its price fluctuations are limited. This makes
it a middle-ground option for investors who are willing to accept some vari-
ability in income for a relatively stable investment.

• Stock d: This stock neither pays dividends nor has low volatility. It belongs
to a sector with potential risk sharing, meaning that while it may not offer
direct income through dividends, it could benefit from sector-wide risk mit-
igation strategies. This makes it a speculative choice for investors who are
looking for potential upside in a sector with shared risks.

Let H = {a} represent the set of stocks satisfying Criterion A (stable divi-
dends), and G = {b} represent those satisfying Criterion B (low volatility).

We apply Λe∗ operations to analyze and relax the selection process.

Strict Criteria (Intersection)

Under strict investment selection, we seek stocks that meet both criteria, i.e.,
those in the intersection H ∩G:

H ∩G = {a} ∩ {b} = ∅.

Thus, no stock satisfies both criteria simultaneously:

Λe∗(H ∩G) = ∅.

Therefore, strict adherence to both criteria results in no stock being selected.

Relaxed Criteria (Λe∗)

To allow for more flexibility, we apply the Λe∗ operator to each criterion and
take their intersection:

Λe∗(H) = {c}, Λe∗(G) = {c}.
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Hence:

Λe∗(H) ∩ Λe∗(G) = {c}.
This indicates that stock c, which partially satisfies both criteria (moderately stable
dividends and relatively low volatility), qualifies under the relaxed investment rules.

Discussion

While strict investment filters yield no eligible stocks, the relaxed Λe∗ ap-
proach identifies stock c as a viable low-risk candidate. This reflects the real-world
need to accommodate partial compliance with ideal investment criteria, ensuring
flexibility in portfolio construction.

6.2. Addressing the Limitations of the Topological Model.

Limitations of the Model

It is important to recognize that this topological model abstracts away from
many market-specific complexities. Factors such as dynamic financial indicators,
investor sentiment, and macroeconomic variables are not fully captured. Real-world
data rarely aligns perfectly with topological representations, limiting direct applica-
bility.

Practical Implications and Adaptations

Despite these limitations, this topological perspective can guide structured in-
vestment decision-making. By incorporating Λe∗ operations, analysts can evaluate
stocks based on partial criteria fulfillment, thus reflecting real-world uncertainty and
risk tolerance. This approach facilitates more inclusive and practical low-risk stock
selection strategies in investment modeling.

7. Conclusion

In this study, we have introduced the concepts of Λe∗-sets and Λe∗-closed sets,
and examined their properties within the framework of general topology. Through
a series of theorems and analytical results, we have explored the interrelations be-
tween these newly defined sets and established topological structures, enhancing our
theoretical understanding and opening avenues for practical deployment.

The application of Λe∗-sets to low-risk stock selection illustrates the practical
utility of these abstract constructs in financial decision-making. By employing Λe∗

operations, we can model investor preferences and stock characteristics, even in
scenarios where market data deviate from ideal topological behavior. This relaxed
topological approach enables more flexible and realistic investment screening, cap-
turing partial compliance with criteria such as dividend stability and low volatility.

We acknowledge that real-world financial data often exhibit irregularities that
challenge strict topological representation. Despite these limitations, the use of
Λe∗-based models provides a structured methodology that balances theoretical rigor
with practical adaptability. By relaxing rigid criteria through topological relaxation,
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we can accommodate diverse risk profiles and partial satisfaction of investment
standards.

In conclusion, the formulation and application of Λe∗-sets and Λe∗-closed
sets establish a versatile framework for analyzing and guiding complex selection
processes. The successful implementation of these concepts in the context of stock
selection underscores their broader potential in domains where decision-making un-
der uncertainty is critical. Future research may extend this framework to include
dynamic financial models, incorporate fuzzy or probabilistic elements, or apply it to
other decision-making contexts such as portfolio optimization, insurance screening,
and economic policy analysis.
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