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Abstract. Let G = (V,E) be a graph with order |G| and size |E|. An (a, d)-vertex-

antimagic total labeling is a bijection α from all vertices and edges to the set of

consecutive integers {1, 2, ..., |V | + |E|}, such that the weights of the vertices form

an arithmetic progression with the initial term a and the common difference d. If

α(V (G)) = {1, 2, . . . , |V |} then we call the labeling a super (a, d)-vertex antimagic

total. In this paper we show how to construct such labelings for circulant graphs

Cn(1, 2, 3), for d = 0, 1, 2, 3, 4, 8.

Key words: Circulant graph, (a, d)-vertex antimagic total graph.

Abstrak. Misalkan G = (V,E) adalah sebuah graf dengan orde |G| dan ukuran |E|.
Suatu pelabelan total antimagic (a, d)-titik adalah suatu bijeksi α dari semua titik-

titik dan sisi-sisi ke himpunan dari bilangan bulat berurutan {1, 2, ..., |V | + |E|},
sedemikian sehingga bobot dari titik-titik membentuk sebuah barisan aritmatika

dengan suku awal a dan beda d. Jika α(V (G)) = {1, 2, . . . , |V |} maka kita menye-

but pelabelan total antimagic (a, d)-titik super. Pada paper ini kami menunjukkan

bagaimana mengkonstruksi pelabelan-pelabelan untuk graf-graf sirkulan Cn(1, 2, 3),

dengan d = 0, 1, 2, 3, 4, 8.

Kata kunci: Graf sirkulan, graf total antimagic (a, d)-titik.
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1. Introduction

All graphs which are discussed in this paper are simple and connected graphs.
For a graph G = G(V,E), we will denote the set of vertices V = V (G) and the set
of edges E = E(G). We use n = |V (G)| and e = |E(G)|.

A labeling α of a graph G is a mapping that assigns elements of a graph to
a set of positive integers. We will discuss a total labeling which means the domain
of the mapping of α is V ∪ E.

The vertex-weight wt(x) of a vertex x ∈ V , under a labeling α : V ∪ E →
{1, 2, ..., n+ e}, is the sum of values α(xy) assigned to all edges incident to a given
vertex x together with the value assigned to x itself.

A bijection α : V ∪ E → {1, 2, ..., n + e} is called an (a, d)-vertex-antimagic
total (in short, (a, d)-VAT) labeling of G if the set of vertex-weights of all vertices
in G is {a, a + d, a + 2 d, . . . , a + (n − 1) d}, where a > 0 and d ≥ 0 are two fixed
nonnegative integers. If d = 0 then we call α a vertex-magic total labeling. The
concept of the vertex-magic total labeling was introduced by MacDougall et. al.
[?] in 2002.

An (a, d)-VAT labeling will be called super if it has the property that the
vertex-labels are the integers 1, 2, . . . , n, the smallest possible labels. A graph
which admits a (super) (a, d)-VAT labeling is said to be (super) (a, d)-VAT. These
labelings were introduced in [2] as a natural extension of the vertex-magic total
labeling (VAT labeling for d = 0) defined by MacDougall et al. [9] (see also [13]).
Basic properties of (a, d)-VAT labelings are studied in [2]. In [11], it is shown how
to construct super (a, d)-VAT labelings for certain families of graphs, including
complete graphs, complete bipartite graphs, cycles, paths and generalized Petersen
graphs.

In this paper, we specially focus on a special class of graphs which called
circulant graphs. Let 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤

⌊
n
2

⌋
, where n and ai(i = 1, 2, . . . , k)

are positive integers. A circulant graph Cn (a1, a2, . . . , ak) is a regular graph with
V = {v0, v1, . . . , vn−1} and E = {(vi vi+aj ) (modn) : i = 0, 1, 2, . . . , n − 1, j =
1, 2, . . . , k}.

Many known results on (a,d)-VAT labeling are already published. For more
detail results the reader can see Gallian’s dynamic survey on graph labeling [4].
Regarding of circulant graph Cn(1,m), Balbuena et. al [3] have the following
results.

Theorem 1.1. For odd n = 5 and m ∈ {2, 3, . . . , n−1
2 }, circulant graphs Cn(1,m)

have a super vertex-magic total labeling with the magic constant h = 17n+5
2 .

In the following, we will discuss on vertex (a, d)-antimagic total labeling of a
class of circulant graphs Cn(1, 2, 3) where n is an odd integer, for d ∈ {0, 1, 2, 3, 4, 8}

2. Vertex (a, d)-antimagic total labeling on circulant graph

The following lemma gives an upper bound for the value of d of vertex (a, d)-
antimagic total labeling for Cn(1, 2, 3).
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Lemma 2.1. Let n ≥ 5 be odd integers. If Cn(1, 2, 3) has vertex (a, d)-antimagic
total labeling, then d ≤ 22.

The following theorems show that circulant graph Cn(1, 2, 3) is a vertex (a, d)-
antimagic graph for n ≥ 5 and d=0, 1, 2, 3, 4, and 8.

Theorem 2.2. For odd n ≥ 5, circulant graphs Cn(1, 2, 3) have a super vertex-
magic total labeling with the magic constant h = 31n+7

2 .

Proof. Let Cn(1, 2, 3) be a subclass of circulant graphs with n ≥ 5. Let {vi : i =
0, 1, . . . , n− 1} be the vertices of Cn(1, 2, 3).

Label all the vertices and edges as follows:

α0(vi) =

{
3− i, for i = 0, 1, 2,

n+ 3− i, for i = 3, 4, . . . , n− 1,

α0(vivi+1) =


2n, for i = 0,

3n+i
2 , for i = 1, 3, . . . , n− 2

2n+i
2 , for i = 2, 4, . . . , n− 1,

α0(vivi+2) = 3n− i, for i = 0, 1, . . . , n− 1,

α0(vivi+3) = 3n+ i+ 1, for i = 0, 1, . . . , n− 1.

The vertex and edge labels under the labeling α0 are α0(V ) = {1, 2, . . . , n}
and α0(E) = {n + 1, n + 2, . . . , 4n}. It means that the labeling α0 is a bijection
from the set V (Cn(1, 2, 3)) ∪ E(Cn(1, 2, 3)) onto the set {1, 2, . . . , 4n}.

We consider the vertex-weights of Cn(1, 2, 3) case by case.

Case 1. i = 0, 1, 2

a) For i = 0

wtα0(v0) = (3) + (2n) + (3n) + (3n+ 1)

+ 2n+(n−1)
2 + (3n− (n− 2)) + (3n+ (n− 3) + 1)

= 31n+7
2 .

b) For i = 1

wtα0
(v0) = (3− 1) + 3n+1

2 + (3n− 1) + (3n+ 1 + 1)
+(2n) + (3n− (n− 1)) + (3n+ (n− 2) + 1)

= 31n+7
2 .

c) For i = 2

wtα0(v0) = (3− 2) + 2n+2
2 + (3n− 2) + (3n+ 2 + 1)

+ 3n+1
2 + (3n) + (3n+ (n− 1) + 1)

= 31n+7
2 .

Case 2. i odd, i ≥ 3
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wtα0
(v0) = (n+ 3− i) + 3n+i

2 + (3n− i) + (3n+ i+ 1)
+ 2n+i−1

2 + (3n− (i− 2)) + (3n+ (i− 3) + 1)
= 31n+7

2 .

Case 3. i even, i ≥ 4

wtα0
(v0) = (n+ 3− i) + 2n+i

2 + (3n− i) + (3n+ i+ 1)
+ 3n+i

2 + (3n− (i− 2)) + (3n+ (i− 3) + 1)
= 31n+7

2 .

Thus, we obtain wtα0
(vi) = 31n+7

2 for all cases. Consequently, it proves
that α0 is a vertex-magic total labeling for Cn(1, 2, 3) with the magic constant
h = 31n+7

2 . �

Theorem 2.3. Let n be an odd integer, n ≥ 5. The graph Cn(1, 2, 3) admits a
vertex ( 29n+9

2 , 1)-antimagic total labeling.

Proof. Let Cn(1, 2, 3) be a subclass of circulant graphs with n ≥ 5. Let {vi : i =
0, 1, . . . , n− 1} be the vertices of Cn(1, 2, 3).

Label all the vertices and edges as follows:

α1(vi) =

{
5− 2i, for i = 0, 1, 2,

2(n− i) + 5, for i = 3, 4, . . . , n− 1,

α1(vivi+1) =


3n, for i = 0,

5n+i
2 , for i = 1, 3, . . . , n− 2,

4n+i
2 , for i = 2, 4, . . . , n− 1,

α1(vivi+2) = 4n− i, for i = 0, 1, . . . , n− 1,

α1(vivi+3) = 2(i+ 1), for i = 0, 1, . . . , n− 1.

The vertex and edge labels under the labeling α1 are α1(V ) = {1, 3, . . . , 2n−
1} and α1(E) = {2, 4, . . . , 2n}∪{2n+1, 2n+2, . . . , 4n}. It means that the labeling α1

is a bijection from the set V (Cn(1, 2, 3))∪E(Cn(1, 2, 3)) onto the set {1, 2, . . . , 4n}.
We consider the vertex-weights of Cn(1, 2, 3) case by case.

Case 1. i = 0, 1, 2

a) For i = 0

wtα1
(v0) = (5) + (3n) + (4n) + 2(0 + 1)

+ 4n+(n−1)
2 + (4n− (n− 2)) + 2((n− 3) + 1)

= 29n+9
2 .

b) For i = 1

wtα1
(v1) = (5− 2) + 5n+1

2 + (4n− 1) + 2(1 + 1)
+(3n) + (4n− (n− 1)) + 2(n− 2 + 1)

= 29n+11
2 .
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c) For i = 2

wtα1(v2) = (5− 4) + 4n+2
2 + (4n− 2) + 2(2 + 1)

+ 5n+1
2 + (4n) + 2((n− 1) + 1)

= 29n+13
2 + 3.

Case 2. i odd, i ≥ 3

wtα1
(vi) = 2(n− i) + 5 + 5n+i

2 + (4n− i) + 2(i+ 1)

+ 4n+(i−1)
2 + (4n− (i− 2)) + 2(i− 3 + 1)

= 29n+9
2 + i.

Case 3. i even, i ≥ 4

wtα1
(vi) = 2(n− i) + 5 + 4n+i

2 + (4n− i) + 2(i+ 1)

+ 5n+(i−1)
2 + (4n− (i− 2)) + 2((i− 3) + 1)

= 29n+9
2 + i.

Thus, we obtain that the vertex-weights form a sequence of consecutive inte-
gers: 29n+9

2 , 29n+9
2 +1, . . . , 29n+9

2 +n−1. Consequently, circulant graph Cn(1, 2, 3),

n ≥ 5, admits a ( 29n+9
2 , 1)-VAT labeling.

�

Theorem 2.4. Let n be an odd integer, n ≥ 5. The graph Cn(1, 2, 3) has a super
( 29n+7

2 , 2)-VAT labeling.

Proof. Let Cn(1, 2, 3) be a subclass of circulant graphs with n ≥ 5. Let {vi : i =
0, 1, . . . , n− 1} be the vertices of Cn(1, 2, 3).

Label all the vertices and edges as follows:

α2(vi) =

{
3− i, for i = 0, 1, 2,

n+ 3− i, for i = 3, 4, . . . , n− 1,

α2(vivi+1) =


n+ 1, for i = 0,

3n−i+2
2 , for i = 1, 3, . . . , n− 2,

2n+ 1− i
2 for i = 2, 4, . . . , n− 1,

α2(vivi+2) = 3n− i, for i = 0, 1, . . . , n− 1,

α2(vivi+3) = 3n+ i+ 1, for i = 0, 1, . . . , n− 1.

The vertex and edge labels under the labeling α2 are α2(V ) = {1, 2, . . . , n}
and α2(E) = {n + 1, n + 2, . . . , 4n}. It means that the labeling α2 is a bijection
from the set V (Cn(1, 2, 3)) ∪ E(Cn(1, 2, 3)) onto the set {1, 2, . . . , 4n}.

We divide the vertex-weights of Cn(1, 2, 3) in three cases.

Case 1. i = 0, 1, 2
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a) For i = 0

wtα2
(v0) = (3) + (n+ 1) + (3n) + (3n+ 1)

+(2n+ 1− n−1
2 ) + (3n− (n− 2)) + (3n+ (n− 3) + 1)

= 29n+11
2 .

b) For i = 1

wtα2
(v1) = (3− 1) + 3n−1+2

2 + (3n− 1) + (3n+ 1 + 1)
+(n+ 1) + (3n− (n− 1)) + (3n+ (n− 2) + 1)

= 29n+7
2 .

c) For i = 2

wtα2
(v2) = (3− 2) + 2n+ 1− 2

2 + (3n− 2) + (3n+ 2 + 1)
+ 3n+1

2 + (3n) + (3n+ (n− 1) + 1)
= 33n+3

2 .

Case 2. i odd, i ≥ 3

wtα2
(vi) = (n+ 3− i) + 3n−i+2

2 + (3n− i) + (3n+ i+ 1)
+(2n+ 1− i−1

2 ) + (3n− (i− 2) + (3n+ (i− 3) + 1)
= 29n+13

2 − 2i.

Case 3. i even, i ≥ 4

wtα2
(vi) = (n+ 3− i) + 2n+ 1− i

2 + (3n− i) + (3n+ i+ 1)

+ 3n−(i−1)+2
2 + (3n− (i− 2)) + (3n+ (i− 3) + 1

= 33n+13
2 − 2i.

Then we obtain that the vertex weight form consecutive integers : 29n+7
2 , 29n+9

2 +

2, . . . , 29n+9
2 + 2n − 1 = 33n+7

2 . Thus we obtain that Cn(1, 2, 3), n ≥ 5, has super

( 29n+7
2 , 2)-VAT labeling. �

Theorem 2.5. Let n be an odd integer, n ≥ 5. The graph Cn(1, 2, 3) admits a
( 27n+11

2 , 3)-VAT labeling.

Proof. Let Cn(1, 2, 3) be a subclass of circulant graphs with n ≥ 5. Let {vi : i =
0, 1, . . . , n− 1} be the vertices of Cn(1, 2, 3).

Label all the vertices and edges as follows:

α3(vi) =

{
2n+ 2i− 5, for i = 0, 1, 2,

2i− 5, for i = 3, 4, . . . , n− 1,

α3(vivi+1) =


3n, for i = 0,

5n+i
2 , for i = 1, 3, . . . , n− 2,

4n+i
2 , for i = 2, 4, . . . , n− 1,

α3(vivi+2) = 4n− i, for i = 0, 1, . . . , n− 1,



Vertex Antimagic Total Circulant Graph 85

α3(vivi+3) = 2(n− i), for i = 0, 1, . . . , n− 1.

The vertex and edge labels under the labeling α3 are α3(V ) = {1, 3, . . . , 2n−
1} and α3(E) = {2, 4, . . . , 2n} ∪ {2n+ 1, 2n = 2, . . . , 4n}. Then the labeling α3 is a
bijection from the set V (Cn(1, 2, 3)) ∪ E(Cn(1, 2, 3)) onto the set {1, 2, . . . , 4n}.

The vertex-weights of Cn(1, 2, 3) will be calculated in three cases.

Case 1. i = 0, 1, 2

a) For i = 0

wtα3
(v0) = (2n− 5) + (3n) + (4n) + 2(n)

+ 4n+(n−1)
2 + (4n− (n− 2)) + 2(n− (n− 3))

= 33n+5
2 .

b) For i = 1

wtα3
(v1) = (2n+ 2− 5) + 5n+1

2 + (4n− 1) + 2(n− 1)
+(3n) + (4n− (n− 1)) + 2(n− (n− 2))

= 33n−1
2 .

c) For i = 2

wtα3(v2) = (2n+ 4− 5) + 4n+2
2 + (4n− 2) + 2(n− 2)

+ 5n+1
2 + (4n) + 2(n− (n− 1))

= 33n−7
2 .

Case 2. i odd, i ≥ 3

wtα3
(v1) = (2i− 5) + 5n+i

2 + (4n− i) + 2(n− i)
+ 4n+i−1

2 + (4n− (i− 2)) + 2(n− (i− 3))
= 33n+5

2 − 3i.

Case 3. i even, i ≥ 4

wtα3
(v2) = (2i− 5) + 4n+i

2 + (4n− i) + 2(n− i)
+ 5n+(i−1)

2 + (4n− (i− 2)) + 2(n− (i− 3))
= 33n+5

2 − 3i.

Thus, we conclude that Cn(1, 2, 3), n ≥ 5, has a vertex ( 27n+11
2 , 3)-antimagic

total labeling �

Theorem 2.6. Let n be an odd integer, n ≥ 5. The graph Cn(1, 2, 3) admits a
(13n+ 6, 4)-VAT labeling.

Proof. Let Cn(1, 2, 3) be a subclass of circulant graphs with n ≥ 5. Let {vi : i =
0, 1, . . . , n− 1} be the vertices of Cn(1, 2, 3).

Label all the vertices and edges as follows:

α4(vi) =

{
5− 2i, for i = 0, 1, 2,

2(n− i) + 5, for i = 3, 4, . . . , n− 1,
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α4(vivi+1) =


2, for i = 0,

n− i+ 2, for i = 1, 3, . . . , n− 2,

2(n+ i) + 1, for i = 2, 4, . . . , n− 1,

α4(vivi+2) = 4n− 2i, for i = 0, 1, . . . , n− 1,

α4(vivi+3) = 2(n+ i) + 1, for i = 0, 1, . . . , n− 1.

The vertex and edge labels under the labeling α4 are α4(V ) = {1, 3, . . . , 2n−
1} and α4(E) = {2, 4, . . . , 2n}∪{2n+1, 2n+2, . . . , 4n}. It means that the labeling α4

is a bijection from the set V (Cn(1, 2, 3))∪E(Cn(1, 2, 3)) onto the set {1, 2, . . . , 4n}.
We consider the vertex-weights of Cn(1, 2, 3) case by case.

Case 1. i = 0, 1, 2

a) For i = 0

wtα4
(v0) = (5) + (2) + (4n) + (2n+ 1)

+2(n+ 1)− (n− 1) + (4n− 2(n− 2)) + (2(n+ (n− 3)) + 1)
= 13n+ 10.

b) For i = 1

wtα4
(v0) = (5− 2) + (n− 1 + 2) + (4n− 2) + (2(n+ 1) + 1)

+2 + (4n− 2(n− 1)) + (2(n+ (n− 2)) + 1)
= 13n+ 6.

c) For i = 2

wtα4(v0) = (5− 4) + 2(n+ 1)− 2 + (4n− 4) + (2(n+ 2) + 1)
+(n− 1 + 2) + (4n) + (2(n+ (n− 1)) + 1)

= 17n+ 2.

Case 2. i odd, i ≥ 3

wtα4(v0) = (2(n− i) + 5) + (n− i+ 2) + (4n− 2i) + (2(n+ i) + 1)
+(2(n+ 1)− (i− 1)) + (4n− 2(i− 2)) + (2(n+ (i− 3)) + 1)

= 17n+ 10− 4i.

Case 3. i even, i ≥ 4

wtα4
(v0) = (2(n− i) + 5) + (2(n+ 1)− i) + (4n− 2i) + (2(n+ i) + 1)

+(n− (i− 1) + 2) + (4n− 2(i− 2)) + (2(n+ i− 3) + 1)
= 17n+ 10− 4i.

The vertex weight set is {13n + 6, 13n + 10, . . . , 13n + 2 + 4(n − 1) = 17n − 2}.
Thus, Cn(1, 2, 3), n ≥ 5, has vertex (13n+ 6, 4)-antimagic total labeling. �

Theorem 2.7. Let n be an odd integer, n ≥ 5. The graph Cn(1, 2, 8) admits a
(10n+ 9, 8)-VAT labeling.
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Proof. Let Cn(1, 2, 3) be a subclass of circulant graphs with n ≥ 5. Let {vi : i =
0, 1, . . . , n− 1} be the vertices of Cn(1, 2, 3).

Label all the vertices and edges as follows:

α8(vi) =

{
9− 4i, for i = 0, 1, 2,

4(n− i) + 9, for i = 3, 4, . . . , n− 1,

α8(vivi+1) =


2, for i = 0,

2(n− i+ 1), for i = 1, 3, . . . , n− 2,

2(2n− i+ 1), for i = 2, 4, . . . , n− 1,

α8(vivi+2) = 4(n− i), for i = 0, 1, . . . , n− 1,

α8(vivi+3) = 4i+ 3, for i = 0, 1, . . . , n− 1.

The vertex and edge labels under the labeling α8 are α8(V ) = {1, 5, 9, . . . , 4n−
3} and α8(E) = {2, 6, 10 . . . , 4n − 2} ∪ {3, 7, 11 . . . , 4n − 1} ∪ {4, 8, 12 . . . , 4n}. It
means that the labeling α8 is a bijection from the set V (Cn(1, 2, 3))∪E(Cn(1, 2, 3))
onto the set {1, 2, . . . , 4n}.

We consider the vertex-weights of Cn(1, 2, 3) case by case.

Case 1. i = 0, 1, 2

a) For i = 0

wtα8
(v0) = (9) + (2) + (4n) + (3)

+2(2n− (n− 1) + 1) + 4(n− (n− 2)) + (4(n− 3) + 3)
= 10n+ 17.

b) For i = 1

wtα8(v1) = (9− 4) + 2(n− 1 + 1) + 4(n− 1) + (4 + 3)
+(2) + 4(n− (n− 1)) + (4(n− 2) + 3)

= 10n+ 9.

c) For i = 2

wtα8(v2) = (9− 8) + 2(2n− 2 + 1) + 4(n− 2) + (8 + 3)
+2(n− 1 + 1) + 4(n) + (4(n− 1) + 3)

= 18n+ 1.

Case 2. i odd, i ≥ 3

wtα8(vi) = (4(n− i) + 9) + 2(n− i+ 1) + 4(n− i) + (4i+ 3)
+2(2n− (i− 1) + 1) + 4(n− (i− 2)) + (4(i− 3) + 3)

= 18n+ 17− 8i.

Case 3. i even, i ≥ 4



88 K.A. Sugeng and N.H. Bong

wtα8
(vi) = (4(n− i) + 9) + 2(2n− i+ 1) + 4(n− i) + (4i+ 3)

+2(n− (i− 1) + 1) + 4(n− (i− 2)) + (4(i− 3) + 3)
= 18n+ 17− 8i.

By calculating the vertex weights then Cn(1, 2, 3), n ≥ 5, has vertex (10n +
9,8)-antimagic total labeling.

�

3. Concluding remark

As a final remark, we present some problems that are raised from this paper.

(1) Find the construction of vertex (a, d)-antimagic total labeling of Cn(1, 2, 3)
for d = 5, 6, 7 and for 9 ≤ d ≤ 22.

(3) Find the construction of disjoint union of vertex (a, d)-antimagic total la-
beling of Cnj

(1, 2, 3), for j = 1, 2, . . . t.
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