VERTEX (a, d)-ANTIMAGIC TOTAL LABELING ON CIRCULANT GRAPH $C_{n}(1,2,3)$

K.A. Sugeng 1 and N.H. Bong 2
${ }^{1}$ Department of Mathematics, Faculty of Mathematics and Natural Science, University of Indonesia, Kampus Depok, Depok 15424, Indonesia, kiki@ui.ac.id
${ }^{2}$ Department of Mathematics, Faculty of Mathematics and Natural Science, University of Indonesia, Kampus Depok, Depok 15424, Indonesia, novi_bong@yahoo.com

Abstract

Let $G=(V, E)$ be a graph with order $|G|$ and size $|E|$. An (a, d)-vertexantimagic total labeling is a bijection α from all vertices and edges to the set of consecutive integers $\{1,2, \ldots,|V|+|E|\}$, such that the weights of the vertices form an arithmetic progression with the initial term a and the common difference d. If $\alpha(V(G))=\{1,2, \ldots,|V|\}$ then we call the labeling a super (a, d)-vertex antimagic total. In this paper we show how to construct such labelings for circulant graphs $C_{n}(1,2,3)$, for $d=0,1,2,3,4,8$.

Key words: Circulant graph, (a, d)-vertex antimagic total graph.

Abstract

Abstrak. Misalkan $G=(V, E)$ adalah sebuah graf dengan orde $|G|$ dan ukuran $|E|$. Suatu pelabelan total antimagic (a, d)-titik adalah suatu bijeksi α dari semua titiktitik dan sisi-sisi ke himpunan dari bilangan bulat berurutan $\{1,2, \ldots,|V|+|E|\}$, sedemikian sehingga bobot dari titik-titik membentuk sebuah barisan aritmatika dengan suku awal a dan beda d. Jika $\alpha(V(G))=\{1,2, \ldots,|V|\}$ maka kita menyebut pelabelan total antimagic (a, d)-titik super. Pada paper ini kami menunjukkan bagaimana mengkonstruksi pelabelan-pelabelan untuk graf-graf sirkulan $C_{n}(1,2,3)$, dengan $d=0,1,2,3,4,8$.

Kata kunci: Graf sirkulan, graf total antimagic (a,d)-titik.

[^0]
1. Introduction

All graphs which are discussed in this paper are simple and connected graphs. For a graph $G=G(V, E)$, we will denote the set of vertices $V=V(G)$ and the set of edges $E=E(G)$. We use $n=|V(G)|$ and $e=|E(G)|$.

A labeling α of a graph G is a mapping that assigns elements of a graph to a set of positive integers. We will discuss a total labeling which means the domain of the mapping of α is $V \cup E$.

The vertex-weight $w t(x)$ of a vertex $x \in V$, under a labeling $\alpha: V \cup E \rightarrow$ $\{1,2, \ldots, n+e\}$, is the sum of values $\alpha(x y)$ assigned to all edges incident to a given vertex x together with the value assigned to x itself.

A bijection $\alpha: V \cup E \rightarrow\{1,2, \ldots, n+e\}$ is called an (a, d)-vertex-antimagic total (in short, (a, d)-VAT) labeling of G if the set of vertex-weights of all vertices in G is $\{a, a+d, a+2 d, \ldots, a+(n-1) d\}$, where $a>0$ and $d \geq 0$ are two fixed nonnegative integers. If $d=0$ then we call α a vertex-magic total labeling. The concept of the vertex-magic total labeling was introduced by MacDougall et. al. [?] in 2002.

An (a, d)-VAT labeling will be called super if it has the property that the vertex-labels are the integers $1,2, \ldots, n$, the smallest possible labels. A graph which admits a (super) (a, d)-VAT labeling is said to be (super) (a, d)-VAT. These labelings were introduced in [2] as a natural extension of the vertex-magic total labeling (VAT labeling for $d=0$) defined by MacDougall et al. [9] (see also [13]). Basic properties of (a, d)-VAT labelings are studied in [2]. In [11], it is shown how to construct super (a, d)-VAT labelings for certain families of graphs, including complete graphs, complete bipartite graphs, cycles, paths and generalized Petersen graphs.

In this paper, we specially focus on a special class of graphs which called circulant graphs. Let $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq\left\lfloor\frac{n}{2}\right\rfloor$, where n and $a_{i}(i=1,2, \ldots, k)$ are positive integers. A circulant graph $C_{n}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a regular graph with $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E=\left\{\left(v_{i} v_{i+a_{j}}\right)(\bmod n): i=0,1,2, \ldots, n-1, j=\right.$ $1,2, \ldots, k\}$.

Many known results on (a, d)-VAT labeling are already published. For more detail results the reader can see Gallian's dynamic survey on graph labeling [4]. Regarding of circulant graph $C_{n}(1, m)$, Balbuena et. al [3] have the following results.

Theorem 1.1. For odd $n=5$ and $m \in\left\{2,3, \ldots, \frac{n-1}{2}\right\}$, circulant graphs $C_{n}(1, m)$ have a super vertex-magic total labeling with the magic constant $h=\frac{17 n+5}{2}$.

In the following, we will discuss on vertex (a, d)-antimagic total labeling of a class of circulant graphs $C_{n}(1,2,3)$ where n is an odd integer, for $d \in\{0,1,2,3,4,8\}$

2. Vertex (a, d)-antimagic total labeling on circulant graph

The following lemma gives an upper bound for the value of d of vertex (a, d) antimagic total labeling for $C_{n}(1,2,3)$.

Lemma 2.1. Let $n \geq 5$ be odd integers. If $C_{n}(1,2,3)$ has vertex (a,d)-antimagic total labeling, then $d \leq 22$.

The following theorems show that circulant graph $C_{n}(1,2,3)$ is a vertex (a, d) antimagic graph for $n \geq 5$ and $d=0,1,2,3,4$, and 8 .
Theorem 2.2. For odd $n \geq 5$, circulant graphs $C_{n}(1,2,3)$ have a super vertexmagic total labeling with the magic constant $h=\frac{31 n+7}{2}$.

Proof. Let $C_{n}(1,2,3)$ be a subclass of circulant graphs with $n \geq 5$. Let $\left\{v_{i}: i=\right.$ $0,1, \ldots, n-1\}$ be the vertices of $C_{n}(1,2,3)$.

Label all the vertices and edges as follows:

$$
\begin{gathered}
\alpha_{0}\left(v_{i}\right)= \begin{cases}3-i, & \text { for } i=0,1,2, \\
n+3-i, & \text { for } i=3,4, \ldots, n-1,\end{cases} \\
\alpha_{0}\left(v_{i} v_{i+1}\right)= \begin{cases}2 n, & \text { for } i=0 \\
\frac{3 n+i}{2}, & \text { for } i=1,3, \ldots, n-2 \\
\frac{2 n+i}{2}, & \text { for } i=2,4, \ldots, n-1,\end{cases} \\
\alpha_{0}\left(v_{i} v_{i+2}\right)=3 n-i, \text { for } i=0,1, \ldots, n-1, \\
\alpha_{0}\left(v_{i} v_{i+3}\right)=3 n+i+1, \text { for } i=0,1, \ldots, n-1
\end{gathered}
$$

The vertex and edge labels under the labeling α_{0} are $\alpha_{0}(V)=\{1,2, \ldots, n\}$ and $\alpha_{0}(E)=\{n+1, n+2, \ldots, 4 n\}$. It means that the labeling α_{0} is a bijection from the set $V\left(C_{n}(1,2,3)\right) \cup E\left(C_{n}(1,2,3)\right)$ onto the set $\{1,2, \ldots, 4 n\}$.

We consider the vertex-weights of $C_{n}(1,2,3)$ case by case.
Case 1. $i=0,1,2$
a) For $i=0$

$$
\begin{aligned}
w t_{\alpha_{0}}\left(v_{0}\right)= & (3)+(2 n)+(3 n)+(3 n+1) \\
& \stackrel{+2 n+(n-1)}{2}+(3 n-(n-2))+(3 n+(n-3)+1) \\
= & \frac{31 n+7}{2} .
\end{aligned}
$$

b) For $i=1$

$$
\begin{aligned}
w t_{\alpha_{0}}\left(v_{0}\right)= & (3-1)+\frac{3 n+1}{2}+(3 n-1)+(3 n+1+1) \\
& +(2 n)+(3 n-(n-1))+(3 n+(n-2)+1) \\
= & \frac{31 n+7}{2} .
\end{aligned}
$$

c) For $i=2$

$$
\begin{aligned}
w t_{\alpha_{0}}\left(v_{0}\right)= & (3-2)+\frac{2 n+2}{2}+(3 n-2)+(3 n+2+1) \\
& +\frac{3 n+1}{2}+(3 n)+(3 n+(n-1)+1) \\
= & \frac{31 n+7}{2} .
\end{aligned}
$$

Case 2. i odd, $i \geq 3$

$$
\begin{aligned}
w t_{\alpha_{0}}\left(v_{0}\right)= & (n+3-i)+\frac{3 n+i}{2}+(3 n-i)+(3 n+i+1) \\
& +\frac{2 n+i-1}{2}+(3 n-(i-2))+(3 n+(i-3)+1) \\
= & \frac{31 n+7}{2} .
\end{aligned}
$$

Case 3. i even, $i \geq 4$

$$
\begin{aligned}
w t_{\alpha_{0}}\left(v_{0}\right)= & (n+3-i)+\frac{2 n+i}{2}+(3 n-i)+(3 n+i+1) \\
= & \frac{3 n+i}{2}+(3 n-(i-2))+(3 n+(i-3)+1) \\
& \frac{31 n+7}{2} .
\end{aligned}
$$

Thus, we obtain $w t_{\alpha_{0}}\left(v_{i}\right)=\frac{31 n+7}{2}$ for all cases. Consequently, it proves that α_{0} is a vertex-magic total labeling for $C_{n}(1,2,3)$ with the magic constant $h=\frac{31 n+7}{2}$.

Theorem 2.3. Let n be an odd integer, $n \geq 5$. The graph $C_{n}(1,2,3)$ admits a vertex $\left(\frac{29 n+9}{2}, 1\right)$-antimagic total labeling.

Proof. Let $C_{n}(1,2,3)$ be a subclass of circulant graphs with $n \geq 5$. Let $\left\{v_{i}: i=\right.$ $0,1, \ldots, n-1\}$ be the vertices of $C_{n}(1,2,3)$.

Label all the vertices and edges as follows:

$$
\begin{gathered}
\alpha_{1}\left(v_{i}\right)= \begin{cases}5-2 i, & \text { for } i=0,1,2, \\
2(n-i)+5, & \text { for } i=3,4, \ldots, n-1,\end{cases} \\
\alpha_{1}\left(v_{i} v_{i+1}\right)= \begin{cases}3 n, & \text { for } i=0, \\
\frac{5 n+i}{2}, & \text { for } i=1,3, \ldots, n-2, \\
\frac{4 n+i}{2}, & \text { for } i=2,4, \ldots, n-1,\end{cases} \\
\alpha_{1}\left(v_{i} v_{i+2}\right)=4 n-i, \text { for } i=0,1, \ldots, n-1, \\
\alpha_{1}\left(v_{i} v_{i+3}\right)=2(i+1), \text { for } i=0,1, \ldots, n-1 .
\end{gathered}
$$

The vertex and edge labels under the labeling α_{1} are $\alpha_{1}(V)=\{1,3, \ldots, 2 n-$ $1\}$ and $\alpha_{1}(E)=\{2,4, \ldots, 2 n\} \cup\{2 n+1,2 n+2, \ldots, 4 n\}$. It means that the labeling α_{1} is a bijection from the set $V\left(C_{n}(1,2,3)\right) \cup E\left(C_{n}(1,2,3)\right)$ onto the set $\{1,2, \ldots, 4 n\}$.

We consider the vertex-weights of $C_{n}(1,2,3)$ case by case.
Case 1. $i=0,1,2$
a) For $i=0$

$$
\begin{aligned}
w t_{\alpha_{1}}\left(v_{0}\right)= & (5)+(3 n)+(4 n)+2(0+1) \\
& +\frac{4 n+(n-1)}{2^{2}}+(4 n-(n-2))+2((n-3)+1) \\
= & \frac{29 n+9}{2} .
\end{aligned}
$$

b) For $i=1$

$$
\begin{aligned}
w t_{\alpha_{1}}\left(v_{1}\right)= & (5-2)+\frac{5 n+1}{2}+(4 n-1)+2(1+1) \\
& +(3 n)+(4 n-(n-1))+2(n-2+1) \\
= & \frac{29 n+11}{2} .
\end{aligned}
$$

c) For $i=2$

$$
\begin{aligned}
w t_{\alpha_{1}}\left(v_{2}\right)= & (5-4)+\frac{4 n+2}{2}+(4 n-2)+2(2+1) \\
& +\frac{5 n+1}{2}+(4 n)+2((n-1)+1) \\
= & \frac{29 n+13}{2}+3
\end{aligned}
$$

Case 2. i odd, $i \geq 3$

$$
\begin{aligned}
w t_{\alpha_{1}}\left(v_{i}\right)= & 2(n-i)+5+\frac{5 n+i}{2}+(4 n-i)+2(i+1) \\
& +\frac{4 n+(i-1)}{2}+(4 n-(i-2))+2(i-3+1) \\
= & \frac{29 n+9}{2}+i .
\end{aligned}
$$

Case 3. i even, $i \geq 4$

$$
\begin{aligned}
w t_{\alpha_{1}}\left(v_{i}\right)= & 2(n-i)+5+\frac{4 n+i}{2}+(4 n-i)+2(i+1) \\
& +\frac{5 n+(i-1)}{2}+(4 n-(i-2))+2((i-3)+1) \\
= & \frac{29 n+9^{2}}{2}+i .
\end{aligned}
$$

Thus, we obtain that the vertex-weights form a sequence of consecutive integers: $\frac{29 n+9}{2}, \frac{29 n+9}{2}+1, \ldots, \frac{29 n+9}{2}+n-1$. Consequently, circulant graph $C_{n}(1,2,3)$, $n \geq 5$, admits a $\left(\frac{29 n+9}{2}, 1\right)$-VAT labeling.

Theorem 2.4. Let n be an odd integer, $n \geq 5$. The graph $C_{n}(1,2,3)$ has a super $\left(\frac{29 n+7}{2}, 2\right)$-VAT labeling.

Proof. Let $C_{n}(1,2,3)$ be a subclass of circulant graphs with $n \geq 5$. Let $\left\{v_{i}: i=\right.$ $0,1, \ldots, n-1\}$ be the vertices of $C_{n}(1,2,3)$.

Label all the vertices and edges as follows:

$$
\begin{aligned}
& \alpha_{2}\left(v_{i}\right)= \begin{cases}3-i, & \text { for } i=0,1,2, \\
n+3-i, & \text { for } i=3,4, \ldots, n-1,\end{cases} \\
& \alpha_{2}\left(v_{i} v_{i+1}\right)= \begin{cases}n+1, & \text { for } i=0, \\
\frac{3 n-i+2}{2}, & \text { for } i=1,3, \ldots, n-2, \\
2 n+1-\frac{i}{2} & \text { for } i=2,4, \ldots, n-1,\end{cases} \\
& \alpha_{2}\left(v_{i} v_{i+2}\right)=3 n-i \text {, for } i=0,1, \ldots, n-1, \\
& \alpha_{2}\left(v_{i} v_{i+3}\right)=3 n+i+1, \text { for } i=0,1, \ldots, n-1 .
\end{aligned}
$$

The vertex and edge labels under the labeling α_{2} are $\alpha_{2}(V)=\{1,2, \ldots, n\}$ and $\alpha_{2}(E)=\{n+1, n+2, \ldots, 4 n\}$. It means that the labeling α_{2} is a bijection from the set $V\left(C_{n}(1,2,3)\right) \cup E\left(C_{n}(1,2,3)\right)$ onto the set $\{1,2, \ldots, 4 n\}$.

We divide the vertex-weights of $C_{n}(1,2,3)$ in three cases.
Case 1. $i=0,1,2$
a) For $i=0$

$$
\begin{aligned}
w t_{\alpha_{2}}\left(v_{0}\right)= & (3)+(n+1)+(3 n)+(3 n+1) \\
& +\left(2 n+1-\frac{n-1}{2}\right)+(3 n-(n-2))+(3 n+(n-3)+1) \\
= & \frac{29 n+11}{2}
\end{aligned}
$$

b) For $i=1$

$$
\begin{aligned}
w t_{\alpha_{2}}\left(v_{1}\right)= & (3-1)+\frac{3 n-1+2}{2}+(3 n-1)+(3 n+1+1) \\
& +(n+1)+(3 n-(n-1))+(3 n+(n-2)+1) \\
= & \frac{29 n+7}{2} .
\end{aligned}
$$

c) For $i=2$

$$
\begin{aligned}
w t_{\alpha_{2}}\left(v_{2}\right)= & (3-2)+2 n+1-\frac{2}{2}+(3 n-2)+(3 n+2+1) \\
& +\frac{3 n+1}{2}+(3 n)+(3 n+(n-1)+1) \\
= & \frac{33 n+3}{2} .
\end{aligned}
$$

Case 2. i odd, $i \geq 3$

$$
\begin{aligned}
w t_{\alpha_{2}}\left(v_{i}\right)= & (n+3-i)+\frac{3 n-i+2}{2}+(3 n-i)+(3 n+i+1) \\
& +\left(2 n+1-\frac{i-1}{2}\right)+(3 n-(i-2)+(3 n+(i-3)+1) \\
= & \frac{29 n+13}{2}-2 i .
\end{aligned}
$$

Case 3. i even, $i \geq 4$

$$
\begin{aligned}
w t_{\alpha_{2}}\left(v_{i}\right)= & (n+3-i)+2 n+1-\frac{i}{2}+(3 n-i)+(3 n+i+1) \\
& +\frac{3 n-(i-1)+2}{2}+(3 n-(i-2))+(3 n+(i-3)+1 \\
= & \frac{33 n+13^{2}}{2}-2 i .
\end{aligned}
$$

Then we obtain that the vertex weight form consecutive integers : $\frac{29 n+7}{2}, \frac{29 n+9}{2}+$ $2, \ldots, \frac{29 n+9}{2}+2 n-1=\frac{33 n+7}{2}$. Thus we obtain that $C_{n}(1,2,3), n \geq 5$, has super $\left(\frac{29 n+7}{2}, 2\right)$-VAT labeling.
Theorem 2.5. Let n be an odd integer, $n \geq 5$. The graph $C_{n}(1,2,3)$ admits a $\left(\frac{27 n+11}{2}, 3\right)$-VAT labeling.

Proof. Let $C_{n}(1,2,3)$ be a subclass of circulant graphs with $n \geq 5$. Let $\left\{v_{i}: i=\right.$ $0,1, \ldots, n-1\}$ be the vertices of $C_{n}(1,2,3)$.

Label all the vertices and edges as follows:

$$
\begin{gathered}
\alpha_{3}\left(v_{i}\right)= \begin{cases}2 n+2 i-5, & \text { for } i=0,1,2, \\
2 i-5, & \text { for } i=3,4, \ldots, n-1,\end{cases} \\
\alpha_{3}\left(v_{i} v_{i+1}\right)= \begin{cases}3 n, & \text { for } i=0, \\
\frac{5 n+i}{2}, & \text { for } i=1,3, \ldots, n-2, \\
\frac{4 n+i}{2}, & \text { for } i=2,4, \ldots, n-1,\end{cases} \\
\alpha_{3}\left(v_{i} v_{i+2}\right)=4 n-i, \text { for } i=0,1, \ldots, n-1,
\end{gathered}
$$

$$
\alpha_{3}\left(v_{i} v_{i+3}\right)=2(n-i), \text { for } i=0,1, \ldots, n-1
$$

The vertex and edge labels under the labeling α_{3} are $\alpha_{3}(V)=\{1,3, \ldots, 2 n-$ $1\}$ and $\alpha_{3}(E)=\{2,4, \ldots, 2 n\} \cup\{2 n+1,2 n=2, \ldots, 4 n\}$. Then the labeling α_{3} is a bijection from the set $V\left(C_{n}(1,2,3)\right) \cup E\left(C_{n}(1,2,3)\right)$ onto the set $\{1,2, \ldots, 4 n\}$.

The vertex-weights of $C_{n}(1,2,3)$ will be calculated in three cases.
Case 1. $i=0,1,2$
a) For $i=0$

$$
\begin{aligned}
w t_{\alpha_{3}}\left(v_{0}\right)= & (2 n-5)+(3 n)+(4 n)+2(n) \\
& +\frac{4 n+(n-1)}{2}+(4 n-(n-2))+2(n-(n-3)) \\
= & \frac{33 n+5}{2} .
\end{aligned}
$$

b) For $i=1$

$$
\begin{aligned}
w t_{\alpha_{3}}\left(v_{1}\right)= & (2 n+2-5)+\frac{5 n+1}{2}+(4 n-1)+2(n-1) \\
& +(3 n)+(4 n-(n-1))+2(n-(n-2))
\end{aligned}
$$

c) For $i=2$

$$
\begin{aligned}
w t_{\alpha_{3}}\left(v_{2}\right)= & (2 n+4-5)+\frac{4 n+2}{2}+(4 n-2)+2(n-2) \\
& +\frac{5 n+1}{2}+(4 n)+2(n-(n-1)) \\
= & \frac{33 n-7}{2}
\end{aligned}
$$

Case 2. i odd, $i \geq 3$

$$
\begin{aligned}
w t_{\alpha_{3}}\left(v_{1}\right)= & (2 i-5)+\frac{5 n+i}{2}+(4 n-i)+2(n-i) \\
& +\frac{4 n+i-1}{2}+(4 n-(i-2))+2(n-(i-3)) \\
= & \frac{33 n+5}{2}-3 i .
\end{aligned}
$$

Case 3. i even, $i \geq 4$

$$
\begin{aligned}
w t_{\alpha_{3}}\left(v_{2}\right)= & (2 i-5)+\frac{4 n+i}{2}+(4 n-i)+2(n-i) \\
& +\frac{5 n+(i-1)}{2^{2}}+(4 n-(i-2))+2(n-(i-3)) \\
= & \frac{33 n+5}{2}-3 i .
\end{aligned}
$$

Thus, we conclude that $C_{n}(1,2,3), n \geq 5$, has a vertex $\left(\frac{27 n+11}{2}, 3\right)$-antimagic total labeling

Theorem 2.6. Let n be an odd integer, $n \geq 5$. The graph $C_{n}(1,2,3)$ admits a $(13 n+6,4)-$ VAT labeling.

Proof. Let $C_{n}(1,2,3)$ be a subclass of circulant graphs with $n \geq 5$. Let $\left\{v_{i}: i=\right.$ $0,1, \ldots, n-1\}$ be the vertices of $C_{n}(1,2,3)$.

Label all the vertices and edges as follows:

$$
\alpha_{4}\left(v_{i}\right)= \begin{cases}5-2 i, & \text { for } i=0,1,2 \\ 2(n-i)+5, & \text { for } i=3,4, \ldots, n-1\end{cases}
$$

$$
\begin{gathered}
\alpha_{4}\left(v_{i} v_{i+1}\right)= \begin{cases}2, & \text { for } i=0, \\
n-i+2, & \text { for } i=1,3, \ldots, n-2, \\
2(n+i)+1, & \text { for } i=2,4, \ldots, n-1,\end{cases} \\
\alpha_{4}\left(v_{i} v_{i+2}\right)=4 n-2 i, \text { for } i=0,1, \ldots, n-1, \\
\alpha_{4}\left(v_{i} v_{i+3}\right)=2(n+i)+1, \text { for } i=0,1, \ldots, n-1 .
\end{gathered}
$$

The vertex and edge labels under the labeling α_{4} are $\alpha_{4}(V)=\{1,3, \ldots, 2 n-$ $1\}$ and $\alpha_{4}(E)=\{2,4, \ldots, 2 n\} \cup\{2 n+1,2 n+2, \ldots, 4 n\}$. It means that the labeling α_{4} is a bijection from the set $V\left(C_{n}(1,2,3)\right) \cup E\left(C_{n}(1,2,3)\right)$ onto the set $\{1,2, \ldots, 4 n\}$.

We consider the vertex-weights of $C_{n}(1,2,3)$ case by case.
Case 1. $i=0,1,2$
a) For $i=0$

$$
\begin{aligned}
w t_{\alpha_{4}}\left(v_{0}\right)= & (5)+(2)+(4 n)+(2 n+1) \\
& +2(n+1)-(n-1)+(4 n-2(n-2))+(2(n+(n-3))+1) \\
= & 13 n+10
\end{aligned}
$$

b) For $i=1$

$$
\begin{aligned}
w t_{\alpha_{4}}\left(v_{0}\right)= & (5-2)+(n-1+2)+(4 n-2)+(2(n+1)+1) \\
& +2+(4 n-2(n-1))+(2(n+(n-2))+1) \\
= & 13 n+6
\end{aligned}
$$

c) For $i=2$

$$
\begin{aligned}
w t_{\alpha_{4}}\left(v_{0}\right)= & (5-4)+2(n+1)-2+(4 n-4)+(2(n+2)+1) \\
& +(n-1+2)+(4 n)+(2(n+(n-1))+1) \\
= & 17 n+2
\end{aligned}
$$

Case 2. i odd, $i \geq 3$

$$
\begin{aligned}
w t_{\alpha_{4}}\left(v_{0}\right)= & (2(n-i)+5)+(n-i+2)+(4 n-2 i)+(2(n+i)+1) \\
& +(2(n+1)-(i-1))+(4 n-2(i-2))+(2(n+(i-3))+1) \\
= & 17 n+10-4 i .
\end{aligned}
$$

Case 3. i even, $i \geq 4$

$$
\begin{aligned}
w t_{\alpha_{4}}\left(v_{0}\right)= & (2(n-i)+5)+(2(n+1)-i)+(4 n-2 i)+(2(n+i)+1) \\
& +(n-(i-1)+2)+(4 n-2(i-2))+(2(n+i-3)+1) \\
= & 17 n+10-4 i .
\end{aligned}
$$

The vertex weight set is $\{13 n+6,13 n+10, \ldots, 13 n+2+4(n-1)=17 n-2\}$. Thus, $C_{n}(1,2,3), n \geq 5$, has vertex $(13 n+6,4)$-antimagic total labeling.

Theorem 2.7. Let n be an odd integer, $n \geq 5$. The graph $C_{n}(1,2,8)$ admits a $(10 n+9,8)$-VAT labeling.

Proof. Let $C_{n}(1,2,3)$ be a subclass of circulant graphs with $n \geq 5$. Let $\left\{v_{i}: i=\right.$ $0,1, \ldots, n-1\}$ be the vertices of $C_{n}(1,2,3)$.

Label all the vertices and edges as follows:

$$
\begin{gathered}
\alpha_{8}\left(v_{i}\right)= \begin{cases}9-4 i, & \text { for } i=0,1,2, \\
4(n-i)+9, & \text { for } i=3,4, \ldots, n-1,\end{cases} \\
\alpha_{8}\left(v_{i} v_{i+1}\right)= \begin{cases}2, & \text { for } i=0, \\
2(n-i+1), & \text { for } i=1,3, \ldots, n-2, \\
2(2 n-i+1), & \text { for } i=2,4, \ldots, n-1,\end{cases} \\
\alpha_{8}\left(v_{i} v_{i+2}\right)=4(n-i), \text { for } i=0,1, \ldots, n-1, \\
\alpha_{8}\left(v_{i} v_{i+3}\right)=4 i+3, \text { for } i=0,1, \ldots, n-1 .
\end{gathered}
$$

The vertex and edge labels under the labeling α_{8} are $\alpha_{8}(V)=\{1,5,9, \ldots, 4 n-$ $3\}$ and $\alpha_{8}(E)=\{2,6,10 \ldots, 4 n-2\} \cup\{3,7,11 \ldots, 4 n-1\} \cup\{4,8,12 \ldots, 4 n\}$. It means that the labeling α_{8} is a bijection from the set $V\left(C_{n}(1,2,3)\right) \cup E\left(C_{n}(1,2,3)\right)$ onto the set $\{1,2, \ldots, 4 n\}$.

We consider the vertex-weights of $C_{n}(1,2,3)$ case by case.
Case 1. $i=0,1,2$
a) For $i=0$

$$
\begin{aligned}
w t_{\alpha_{8}}\left(v_{0}\right)= & (9)+(2)+(4 n)+(3) \\
& +2(2 n-(n-1)+1)+4(n-(n-2))+(4(n-3)+3) \\
= & 10 n+17
\end{aligned}
$$

b) For $i=1$

$$
\begin{aligned}
w t_{\alpha_{8}}\left(v_{1}\right)= & (9-4)+2(n-1+1)+4(n-1)+(4+3) \\
& +(2)+4(n-(n-1))+(4(n-2)+3) \\
= & 10 n+9 .
\end{aligned}
$$

c) For $i=2$

$$
\begin{aligned}
w t_{\alpha_{8}}\left(v_{2}\right)= & (9-8)+2(2 n-2+1)+4(n-2)+(8+3) \\
& +2(n-1+1)+4(n)+(4(n-1)+3) \\
= & 18 n+1
\end{aligned}
$$

Case 2. i odd, $i \geq 3$

$$
\begin{aligned}
w t_{\alpha_{8}}\left(v_{i}\right)= & (4(n-i)+9)+2(n-i+1)+4(n-i)+(4 i+3) \\
& +2(2 n-(i-1)+1)+4(n-(i-2))+(4(i-3)+3) \\
= & 18 n+17-8 i .
\end{aligned}
$$

Case 3. i even, $i \geq 4$

$$
\begin{aligned}
w t_{\alpha_{8}}\left(v_{i}\right)= & (4(n-i)+9)+2(2 n-i+1)+4(n-i)+(4 i+3) \\
& +2(n-(i-1)+1)+4(n-(i-2))+(4(i-3)+3) \\
= & 18 n+17-8 i .
\end{aligned}
$$

By calculating the vertex weights then $C_{n}(1,2,3), n \geq 5$, has vertex $(10 n+$ 9,8)-antimagic total labeling.

3. Concluding remark

As a final remark, we present some problems that are raised from this paper.
(1) Find the construction of vertex (a, d)-antimagic total labeling of $C_{n}(1,2,3)$ for $d=5,6,7$ and for $9 \leq d \leq 22$.
(3) Find the construction of disjoint union of vertex (a, d)-antimagic total labeling of $C_{n_{j}}(1,2,3)$, for $j=1,2, \ldots t$.

Acknowledgement. This research has been partly funded by Hibah KompetensiHigher Degree Directoral General-Indonesia No239/SP2H/PP/DP2M/III/2010.

References

[1] Ali, G., Bača, M., Lin, Y., and Semaničová-Feňovčíková, A., "Super vertex-antimagic labelings of disconnected graphs", Discrete Math. 309 (2009), 6048-6054.
[2] Bača, M., Bertault, F., MacDougall, J.A., Miller, M., Simanjuntak, R., and Slamin, Vertexantimagic total labelings of graphs, Discussiones Mathematicae Graph Theory 23 (2003), 67-83.
[3] Balbuena, C., Barker, E., Das, K.C., Lin, Y., Miller, M., Ryan, J., Slamin, Sugeng, K., Tkáč, M., "On the degrees of a strongly vertex-magic graph", Discrete Math., 306 (2006), 539-551.
[4] Gallian, J.A., "A dynamic survey of graph labeling", Electron. J. Combin., 6 (2010) DS 6.
[5] Gómez, J., "Solution of the conjecture: If $n \equiv 0(\bmod 4), n>4$, then K_{n} has a super vertex-magic total labeling", Discrete Math. 307 (2007), 2525-2534.
[6] Gray, I.D., "Vertex-magic total labelings of regular graphs", SIAM J. Discrete Math. 21 (2007), 170-177.
[7] Kovář, P., "Magic labelings of regular graphs", AKCE Intern. J. Graphs and Combin., 4 (2007) 261-275.
[8] Lin, Y., and Miller, M., "Vertex-magic total labelings of complete graphs", Bull. Inst. Combin. Appl. 33 (2001), 68-76.
[9] MacDougall, J.A., Miller, M., Slamin and Wallis, W., "Vertex-magic total labelings of graphs", Utilitas Math. 61 (2002), 68-76.
[10] McQuillan, D., and Smith, K., "Vertex-magic total labeling of odd complete graphs", Discrete Math. 305 (2005), 240-249.
[11] Sugeng, K.A., Miller, M., Lin, Y., and Bača, M., "Super (a, d)-vertex- antimagic total labelings", The Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC) 55 (2005), 91-102.
[12] Swaminathan, V., and Jeyanthi, P., "Super vertex-magic labeling", Indian J. Pure Appl. Math. 34 (2003), 935-939.
[13] Wallis, W.D., Magic Graphs, Birkhäuser, Boston - Basel - Berlin, 2001.

[^0]: 2000 Mathematics Subject Classification: 05C78.
 Received: 09-08-2011, revised: 09-09-2011, accepted: 04-12-2011.

