COMPLEMENTARY DISTANCE SPECTRA AND COMPLEMENTARY DISTANCE ENERGY OF LINE GRAPHS OF REGULAR GRAPHS

 $H. S. RAMANE^1 AND K. C. NANDEESH^2$

¹Department of Mathematics, Karnatak University,
Dharwad - 580003, India
e-mail: hsramane@yahoo.com

²Department of Mathematics, Karnatak University,
Dharwad - 580003, India
e-mail: nandeeshkc@yahoo.com

Abstract. The complementary distance (CD) matrix of a graph G is defined as $CD(G) = [c_{ij}]$, where $c_{ij} = 1 + D - d_{ij}$ if $i \neq j$ and $c_{ij} = 0$, otherwise, where D is the diameter of G and d_{ij} is the distance between the vertices v_i and v_j in G. The CD-energy of G is defined as the sum of the absolute values of the eigenvalues of CD-matrix. Two graphs are said to be CD-equienergetic if they have same CD-energy. In this paper we show that the complement of the line graph of certain regular graphs has exactly one positive CD-eigenvalue. Further we obtain the CD-energy of line graphs of certain regular graphs and thus constructs pairs of CD-equienergetic graphs of same order and having different CD-eigenvalues.

Key words and Phrases: Complementary distance eigenvalues, adjacency eigenvalues, line graphs, complementary distance energy.

Abstrak. Matriks complementary distance (CD) dari sebuah graph G didefinisikan sebagai $CD(G)=[c_{ij}]$, dimana $c_{ij}=1+D-d_{ij}$ jika $i\neq j$ dan $c_{ij}=0$, atau yang lain, dimana D adalah diameter G dan d_{ij} adalah jarak antara titik-titik v_i dan v_j di G. Energi-CD dari G didefinisikan sebagai jumlahan dari nilai mutlak nilai-nilai eigen matriks-CD. Dua graf disebut ekuienergetik-CD jika mereka mempunyai energi-CD yang sama. Dalam paper ini kami menunjukkan komplemen graf garis dari graf-graf regular tertentu mempunyai tepat satu nilai eigen-CD positif. Lebih jauh, kami mendapatkan energi-CD graf garis dari graf-graf regular tertentu dan selanjutnya mengkonstruksi pasangan graf-graf ekuienergetik-CD-equienergetic berorde sama dan mempunyai nilai-nilai eigen-CD berbeda.

2000 Mathematics Subject Classification: 05C50, 05C12.
 Received: 20-05-2015, revised: 17-02-2016, accepted: 19-02-2016.

Kata kunci: Nilai-nilai eigen complementary distance, Nilai-nilai eigen ketetanggaan, graf-graf garis, energi complementary distance.

1. Introduction

Let G be a simple, undirected, connected graph with n vertices and m edges. Let the vertex set of G be $V(G) = \{v_1, v_2, \ldots, v_n\}$. The adjacency matrix of a graph G is the square matrix $A = A(G) = [a_{ij}]$, in which $a_{ij} = 1$ if v_i is adjacent to v_j and $a_{ij} = 0$, otherwise. The eigenvalues of A(G) are the adjacency eigenvalues of G, and they are labeled as $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. These form the adjacency spectrum of G [4].

The distance between the vertices v_i and v_j , denoted by d_{ij} , is the length of the shortest path joining v_i and v_j . The diameter of a graph G, denoted by diam(G), is the maximum distance between any pair of vertices of G [3]. A graph G is said to be r-regular graph if all of its vertices have same degree equal to r.

The complementary distance between the vertices v_i and v_j , denoted by c_{ij} is defined as $c_{ij} = 1 + D - d_{ij}$, where D is the diameter of G and d_{ij} is the distance between v_i and v_j in G.

The complementary distance matrix or CD-matrix [7] of a graph G is an $n \times n$ matrix $CD(G) = [c_{ij}]$, where

$$c_{ij} = \begin{cases} 1 + D - d_{ij}, & \text{if } i \neq j \\ 0, & \text{if } i = j. \end{cases}$$

The complementary distance matrix is an important source of structural descriptors in the quantitative structure property relationship (QSPR) model in chemistry [7, 8].

The eigenvalues of CD(G) labeled as $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ are said to be the complementary distance eigenvalues or CD-eigenvalues of G and their collection is called CD-spectra of G. Two non-isomorphic graphs are said to be CD-cospectral if they have same CD-spectra.

The complementary distance energy or CD-energy of a graph G denoted by CDE(G) is defined as

$$CDE(G) = \sum_{i=1}^{n} |\mu_i| . \tag{1}$$

The Eq. (1) is defined in full analogy with the ordinary graph energy E(G), defined as [5]

$$E(G) = \sum_{i=1}^{n} |\lambda_i| . (2)$$

Two graphs G_1 and G_2 are said to be *equienergetic* if $E(G_1) = E(G_2)$. Results on non cospectral equienergetic graphs can be found in [1, 2, 12, 13, 17]. For more details about ordinary graph energy one can refer [9].

Two connected graphs G_1 and G_2 are said to be *complementary distance* equienergetic or CD-equienergetic if $CDE(G_1) = CDE(G_2)$. Trivially, the CD-cospectral graphs are CD-equienergetic. In this paper we obtain the CD-energy of line graphs of certain regular graphs and thus construct CD-equienergetic graphs having different CD-spectra.

We need following results.

Theorem 1.1. [4] If G is an r-regular graph, then its maximum adjacency eigenvalue is equal to r.

The line graph of G, denoted by L(G) is the graph whose vertices corresponds to the edges of G and two vertices of L(G) are adjacent if and only if the corresponding edges are adjacent in G [6]. If G is a regular graph of order n and of degree r then the line graph L(G) is a regular graph of order nr/2 and of degree 2r-2.

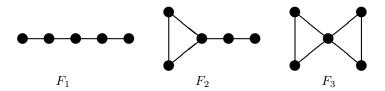


Figure 1: The forbidden induced subgraphs

Theorem 1.2. [10, 11] For a connected graph G, $diam(L(G)) \leq 2$ if and only if none of the three graphs F_1 , F_2 and F_3 of Fig. 1 is an induced subgraph of G.

Theorem 1.3. [15] If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the adjacency eigenvalues of a regular graph G of order n and of degree r, then the adjacency eigenvalues of L(G) are

$$\lambda_i + r - 2,$$
 $i = 1, 2, \dots, n,$ and $-2,$ $n(r-2)/2$ times.

Theorem 1.4. [14] Let G be an r-regular graph of order n. If $r, \lambda_2, \ldots, \lambda_n$ are the adjacency eigenvalues of G, then the adjacency eigenvalues of \overline{G} , the complement of G, are n-r-1 and $-\lambda_i-1$, $i=2,3,\ldots,n$.

Lemma 1.5. [16] If for any two adjacent vertices u and v of a graph G, there exists a third vertex w which is not adjacent to either u or v, then

(i) \overline{G} is connected and

(ii) $diam(\overline{G}) = 2$.

2. CD-eigenvalues

Theorem 2.1. Let G be an r-regular graph on n vertices and diam(G) = 2. If $r, \lambda_2, \ldots, \lambda_n$ are the adjacency eigenvalues of G, then CD-eigenvalues of G are n+r-1 and λ_i-1 , $i=2,3,\ldots,n$.

Proof. Since G is an r-regular graph, $\mathbf{1} = [1, 1, \dots, 1]'$ is an eigenvector of A = A(G) corresponding to the eigenvalue r. Set $\mathbf{z} = \frac{1}{\sqrt{n}}\mathbf{1}$ and let P be an orthogonal matrix with its first column equal to \mathbf{z} such that $P'AP = \operatorname{diag}(r, \lambda_2, \dots, \lambda_n)$. Since $\operatorname{diam}(G) = 2$, the CD-matrix CD(G) can be written as CD(G) = J + A - I, where J is the matrix whose all entries are equal to 1 and I is an identity matrix. Therefore

$$P'(CD)P = P'(J+A-I)P$$

$$= P'JP + P'AP - I$$

$$= \operatorname{diag}(n+r-1, \lambda_2 - 1, \dots, \lambda_n - 1),$$

where we have used the fact that any column of P other than the first column is orthogonal to the first column. Hence the eigenvalues of CD(G) are n+r-1 and $\lambda_i-1,\ i=2,3,\ldots,n$.

Theorem 2.2. Let G be an r-regular graph of order n. Let L(G) be the line graph of G such that for any two adjacent vertices u and v of L(G), there exists a third vertex w in L(G) which is not adjacent to either u or v. Then $\overline{L(G)}$, the complement of L(G), has exactly one positive CD-eigenvalue, equal to r(n-2).

Proof. Let the adjacency eigenvalues of G be $r, \lambda_2, \ldots, \lambda_n$. From Theorem 1.3, the adjacency eigenvalues of L(G) are

$$2r-2$$
, and
$$\lambda_i + r-2$$
, $i = 2, 3, \dots, n$, and
$$-2$$
, $n(r-2)/2$ times. (3)

From Theorem 1.4 and the Eq. (3), the adjacency eigenvalues of L(G) are

$$(nr/2) - 2r + 1$$
, and
$$-\lambda_i - r + 1$$
, $i = 2, 3, ..., n$, and
$$1, \qquad n(r-2)/2 \text{ times.}$$
 (4)

The graph $\overline{L(G)}$ is a regular graph of order nr/2 and of degree (nr/2)-2r+1. Since for any two adjacent vertice u and v of L(G) there exists a third vertex w which is not adjacent to either u or v in L(G), by Lemma 1.5, $diam\left(\overline{L(G)}\right)=2$. Therefore by Theorem 2.1 and Eq. (4), the CD-eigenvalues of $\overline{L(G)}$ are

$$nr - 2r$$
, and
$$-\lambda_i - r$$
, $i = 2, 3, \dots, n$, and
$$0, \qquad n(r-2)/2 \text{ times.}$$
 (5)

All adjacency eigenvalues of a regular graph of degree r satisfy the condition $-r \le \lambda_i \le r$ [4]. Therefore $\lambda_i + r \ge 0$, i = 1, 2, ..., n. The theorem follows from Eq. (5).

3. CD-energy

Theorem 3.1. Let G be an r-regular graph of order n. Let L(G) be the line graph of G such that for any two adjacent vertices u and v of L(G), there exists a third vertex w in L(G) which is not adjacent to either u or v. Then $CDE\left(\overline{L(G)}\right) = 2r(n-2)$.

Proof. Bearing in mind Theorem 2.2 and Eq. (5), the CD-energy of $\overline{L(G)}$ is computed as:

$$CDE\left(\overline{L(G)}\right) = nr - 2r + \sum_{i=2}^{n} (\lambda_i + r) + |0| \times \frac{n(r-2)}{2}$$

= $2r(n-2)$ since $\sum_{i=2}^{n} \lambda_i = -r$.

Theorem 3.2. Let G be a connected, r-regular graph with n > 3 vertices and let none of the three graphs F_1 , F_2 and F_3 of Fig. 1 is an induced subgraph of G.

(i) If the smallest adjacency eigenvalue of G is greater than or equal to 3-r, then CDE(L(G))=3n(r-2).

(ii) If the second largest adjacency eigenvalue of G is smaller than 3-r, then CDE(L(G)) = nr + 4r - 6.

Proof. Let $r, \lambda_2, \lambda_3, \ldots, \lambda_n$ be the adjacency eigenvalues of a regular graph G. Then from Theorem 1.3, the adjacency eigenvalues of L(G) are

$$2r - 2 \quad \text{and}$$

$$\lambda_i + r - 2, \quad i = 1, 2, \dots, n,$$

$$-2, \quad n(r - 2)/2 \text{ times.}$$
(6)

The graph G is regular of degree r and has order n. Therefore L(G) is a regular graph on nr/2 vertices and of degree 2r-2. As none of the three graphs F_1 , F_2 and F_3 of Fig. 1 is an induced subgraph of G, from Theorem 1.2, diam(L(G)) = 2. Therefore from Theorem 2.1 and Eq. (6), the CD-eigenvalues of L(G) are

$$(nr + 4r - 6)/2$$
, and $\lambda_i + r - 3$, $i = 2, 3, ..., n$ and -3 , $n(r-2)/2$ times. (7)

Therefore

$$CDE(L(G)) = \left| \frac{nr + 4r - 6}{2} \right| + \sum_{i=2}^{n} |\lambda_i + r - 3| + |-3| \frac{n(r-2)}{2}.$$
 (8)

(i) By assumption, $\lambda_i + r - 3 \ge 0$, $i = 2, 3, \dots n$, then from Eq. (8)

$$CDE(L(G)) = \frac{nr + 4r - 6}{2} + \sum_{i=2}^{n} (\lambda_i + r - 3) + \frac{3n(r - 2)}{2}$$

$$= \frac{nr + 4r - 6}{2} + \sum_{i=2}^{n} \lambda_i + (n - 1)(r - 3) + \frac{3n(r - 2)}{2}$$

$$= 3n(r - 2) \quad \text{since} \quad \sum_{i=2}^{n} \lambda_i = -r.$$

(ii) By assumption, $\lambda_i + r - 3 < 0$, $i = 2, 3, \dots n$, then from Eq. (8)

$$CDE(L(G)) = \frac{nr + 4r - 6}{2} - \sum_{i=2}^{n} (\lambda_i + r - 3) + \frac{3n(r - 2)}{2}$$

$$= \frac{nr + 4r - 6}{2} - \sum_{i=2}^{n} \lambda_i - (n - 1)(r - 3) + \frac{3n(r - 2)}{2}$$

$$= nr + 4r - 6 \quad \text{since} \quad \sum_{i=2}^{n} \lambda_i = -r.$$

Corollary 3.3. Let G be a connected, cubic graph with n vertices and let none of the three graphs F_1 , F_2 and F_3 of Fig. 1 is an induced subgraph of G. Then CDE(L(G)) = 3n + E(G).

Proof. Substituting r = 3 in Eq. (8) we get

$$CD(L(G)) = \left| \frac{3n+6}{2} \right| + \sum_{i=2}^{n} |\lambda_i| + |-3| \frac{n}{2}$$
$$= \frac{3n+6}{2} + (E(G)-3) + \frac{3n}{2}$$
$$= 3n + E(G).$$

4. CD-equienergetic graphs

Lemma 4.1. Let G_1 and G_2 be regular graphs of the same order and of the same degree. Then following holds:

(i) $L(G_1)$ and $L(G_2)$ are of the same order, same degree and have the same number of edges.

(ii) $\overline{L(G_1)}$ and $\overline{L(G_2)}$ are of the same order, same degree and have the same number of edges.

Proof. Statement (i) follows from the fact that the line graph of a regular graph is a regular and that the number of edges of G is equal to the number of vertices of L(G). Statement (ii) follows from the fact that the complement of a regular graph is a regular and that the number of vertices of a graph and its complement is equal.

Lemma 4.2. Let G_1 and G_2 be regular graphs of the same order and of the same degree. Let for i=1,2, $L(G_i)$ be the line graph of G_i such that for any two adjacent vertices u_i and v_i of $L(G_i)$, there exists a third vertex w_i in $L(G_i)$ which is not adjacent to either u_i or v_i . Then $\overline{L(G_1)}$ and $\overline{L(G_2)}$ are CD-cospectral if and only if G_1 and G_2 are cospectral.

Proof. Follows from Eqs. (3), (4) and (5).

Lemma 4.3. Let G_1 and G_2 be connected, regular graphs of the same order n > 3 and of the same degree. Let none of the three graphs F_1 , F_2 and F_3 of Fig. 1 be an induced subgraph of G_i , i = 1, 2. Then $L(G_1)$ and $L(G_2)$ are CD-cospectral if and only if G_1 and G_2 are cospectral.

Proof. Follows from Eqs. (6) and (7). \Box

Theorem 4.4. Let G_1 and G_2 be regular, non CD-cospectral graphs of the same order and of the same degree. Let for i=1,2, $L(G_i)$ be the line graph of G_i such that for any two adjacent vertices u_i and v_i of $L(G_i)$, there exists a third vertex w_i in $L(G_i)$ which is not adjacent to either u_i or v_i . Then $\overline{L(G_1)}$ and $\overline{L(G_2)}$ form a pair of non CD-cospectral, CD-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.2 and Theorem 3.1. \Box

Theorem 4.5. Let G_1 and G_2 be connected, regular, non CD-cospectral graphs of the same order n > 3 and of the same degree r. Let none of the three graphs F_1 , F_2 and F_3 of Fig. 1 be an induced subgraph of G_i , i = 1, 2.

- (i) If the smallest adjacency eigenvalue of G_i , i = 1, 2 is greater than or equal to 3 r, then line graphs $L(G_1)$ and $L(G_2)$ form a pair of non CD-cospectral, CD-equienergetic graphs of equal order and of equal number of edges.
- (ii) If the second largest adjacency eigenvalue of G_i , i = 1, 2 is smaller than 3 r, then line graphs $L(G_1)$ and $L(G_2)$ form a pair of non CD-cospectral, CD-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.3 and Theorem 3.2. \Box

Theorem 4.6. Let G_1 and G_2 be connected, non CD-cospectral, cubic, equienergetic graphs of the same order. Let none of the three graphs F_1 , F_2 and F_3 of Fig. 1 be an induced subgraph of G_i , i = 1, 2. Then line graphs $L(G_1)$ and $L(G_2)$ form a pair of non CD-cospectral, CD-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.3 and Corollary 3.3. \Box

Acknowledgement. The authors H. S. Ramane and K. C. Nandeesh are thankful to the University Grants Commission (UGC), Govt. of India for support through research grant under UPE FAR-II grant No. F 14-3/2012 (NS/PE).

References

- [1] Balakrishnan, R., "The energy of a graph", Linear Algebra Appl., 387 (2004), 287–295.
- [2] Brankov, V., Stevanović, D. and Gutman, I., "Equienergetic chemical trees", J. Serb. Chem. Soc., 69 (2004), 549–553.
- [3] Buckley, F. and Harary, F., Distance in Graphs, Addison-Wesley, Redwood, 1990.
- [4] Cvetković, D., Rowlinson, P. and Simić, S., An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, Cambridge, 2010.
- [5] Gutman, I., "The energy of a graph", Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978), 1–22.
- [6] Harary, F., Graph Theory, Addison-Wesley, Reading, 1969.
- [7] Ivanciuc, O., Ivanciuc, T. and Balaban, A.T., "The complementary distance matrix, a new molecular graph metric", ACH-Models Chem. 137(1) (2000), 57–82.
- [8] Jenežić, D., Miličević, A., Nikolić, S. and Trinajstić, N., Graph Theoretical Matrices in Chemistry, Uni. Kragujevac, Kragujevac, 2007.
- [9] Li, X., Shi, Y. and Gutman, I., Graph Energy, Springer, New York, 2012.
- [10] Ramane, H.S., Gutman, I. and Ganagi, A.B., "On diameter of line graphs", Iranian J. Math. Sci. Inf., 8(1) (2013), 105–109.
- [11] Ramane, H.S., Revankar, D.S., Gutman, I. and Walikar, H.B., "Distance spectra and distance energies of iterated line graphs of regular graphs", Publ. Inst. Math. (Beograd), 85 (2009), 39–46.
- [12] Ramane, H.S. and Walikar, H.B., "Construction of equienergetic graphs", MATCH Commun. Math. Comput. Chem., 57 (2007), 203–210.

- [13] Ramane, H.S., Walikar, H.B., Rao, S.B., Acharya, B.D., Hampiholi, P.R., Jog, S.R. and Gutman, I., "Equienergetic graphs", *Kragujevac J. Math.*, **26** (2004), 5–13.
- [14] Sachs, H., "Über selbstkomplementare Graphen", Publ. Math. Debrecen, 9 (1962), 270–288.
- [15] Sachs, H., "Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II", Wiss. Z. TH Ilmenau, 13 (1967), 405–412.
- [16] Senbagamalar, J., Baskar Babujee, J. and Gutman, I., "On Wiener index of graph complements", Trans. Comb., 3(2) (2014), 11–15.
- [17] Xu, L. and Hou, Y., "Equienergetic bipartite graphs", MATCH Commun. Math. Comput. Chem., 57 (2007), 363–370.