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Abstract. The complementary distance (CD) matrix of a graph G is defined as

CD(G) = [cij ], where cij = 1 + D − dij if i 6= j and cij = 0, otherwise, where

D is the diameter of G and dij is the distance between the vertices vi and vj

in G. The CD-energy of G is defined as the sum of the absolute values of the

eigenvalues of CD-matrix. Two graphs are said to be CD-equienergetic if they have

same CD-energy. In this paper we show that the complement of the line graph of

certain regular graphs has exactly one positive CD-eigenvalue. Further we obtain

the CD-energy of line graphs of certain regular graphs and thus constructs pairs of

CD-equienergetic graphs of same order and having different CD-eigenvalues.

Key words and Phrases: Complementary distance eigenvalues, adjacency eigenval-

ues, line graphs, complementary distance energy.

Abstrak. Matriks complementary distance (CD) dari sebuah graph G didefin-

isikan sebagai CD(G) = [cij ], dimana cij = 1 + D − dij jika i 6= j dan cij = 0,

atau yang lain, dimana D adalah diameter G dan dij adalah jarak antara titik-titik

vi dan vj di G. Energi-CD dari G didefinisikan sebagai jumlahan dari nilai mutlak

nilai-nilai eigen matriks-CD. Dua graf disebut ekuienergetik-CD jika mereka mem-

punyai energi-CD yang sama. Dalam paper ini kami menunjukkan komplemen graf

garis dari graf-graf regular tertentu mempunyai tepat satu nilai eigen-CD positif.

Lebih jauh, kami mendapatkan energi-CD graf garis dari graf-graf regular tertentu

dan selanjutnya mengkonstruksi pasangan graf-graf ekuienergetik-CD-equienergetic

berorde sama dan mempunyai nilai-nilai eigen-CD berbeda.

2000 Mathematics Subject Classification: 05C50, 05C12.

Received: 20-05-2015, revised: 17-02-2016, accepted: 19-02-2016.

27



28 H. S. Ramane and K. C. Nandeesh

Kata kunci: Nilai-nilai eigen complementary distance, Nilai-nilai eigen ketetang-

gaan, graf-graf garis, energi complementary distance.

1. Introduction

Let G be a simple, undirected, connected graph with n vertices and m edges.
Let the vertex set of G be V (G) = {v1, v2, . . . , vn}. The adjacency matrix of a
graph G is the square matrix A = A(G) = [aij ] , in which aij = 1 if vi is adjacent
to vj and aij = 0 , otherwise. The eigenvalues of A(G) are the adjacency eigenval-
ues of G , and they are labeled as λ1 ≥ λ2 ≥ · · · ≥ λn. These form the adjacency
spectrum of G [4].

The distance between the vertices vi and vj , denoted by dij , is the length
of the shortest path joining vi and vj . The diameter of a graph G, denoted by
diam(G) , is the maximum distance between any pair of vertices of G [3]. A graph
G is said to be r-regular graph if all of its vertices have same degree equal to r.

The complementary distance between the vertices vi and vj , denoted by cij
is defined as cij = 1 +D−dij , where D is the diameter of G and dij is the distance
between vi and vj in G.

The complementary distance matrix or CD-matrix [7] of a graph G is an
n× n matrix CD(G) = [cij ], where

cij =

{
1 +D − dij , if i 6= j

0, if i = j.

The complementary distance matrix is an important source of structural de-
scriptors in the quantitative structure property relationship (QSPR) model in chem-
istry [7, 8].

The eigenvalues of CD(G) labeled as µ1 ≥ µ2 ≥ · · · ≥ µn are said to be the
complementary distance eigenvalues or CD-eigenvalues of G and their collection is
called CD-spectra of G. Two non-isomorphic graphs are said to be CD-cospectral
if they have same CD-spectra.

The complementary distance energy or CD-energy of a graph G denoted by
CDE(G) is defined as

CDE(G) =

n∑
i=1

|µi| . (1)
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The Eq. (1) is defined in full analogy with the ordinary graph energy E(G) ,
defined as [5]

E(G) =

n∑
i=1

|λi| . (2)

Two graphs G1 and G2 are said to be equienergetic if E(G1) = E(G2). Re-
sults on non cospectral equienergetic graphs can be found in [1, 2, 12, 13, 17]. For
more details about ordinary graph energy one can refer [9].

Two connected graphs G1 and G2 are said to be complementary distance
equienergetic or CD-equienergetic if CDE(G1) = CDE(G2) . Trivially, the CD-
cospectral graphs are CD-equienergetic. In this paper we obtain the CD-energy of
line graphs of certain regular graphs and thus construct CD-equienergetic graphs
having different CD-spectra.

We need following results.

Theorem 1.1. [4] If G is an r-regular graph, then its maximum adjacency eigen-
value is equal to r.

The line graph of G, denoted by L(G) is the graph whose vertices corresponds
to the edges of G and two vertices of L(G) are adjacent if and only if the corre-
sponding edges are adjacent in G [6]. If G is a regular graph of order n and of
degree r then the line graph L(G) is a regular graph of order nr/2 and of degree
2r − 2.
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Figure 1: The forbidden induced subgraphs

Theorem 1.2. [10, 11] For a connected graph G, diam(L(G)) ≤ 2 if and only if
none of the three graphs F1, F2 and F3 of Fig. 1 is an induced subgraph of G.

Theorem 1.3. [15] If λ1, λ2, . . . , λn are the adjacency eigenvalues of a regular
graph G of order n and of degree r , then the adjacency eigenvalues of L(G) are

λi + r − 2, i = 1, 2, . . . , n, and

−2, n(r − 2)/2 times .

Theorem 1.4. [14] Let G be an r-regular graph of order n. If r, λ2, . . . , λn are the
adjacency eigenvalues of G , then the adjacency eigenvalues of G, the complement
of G, are n− r − 1 and −λi − 1, i = 2, 3, . . . , n.
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Lemma 1.5. [16] If for any two adjacent vertices u and v of a graph G, there
exists a third vertex w which is not adjacent to either u or v, then
(i) G is connected and
(ii) diam

(
G
)

= 2.

2. CD-eigenvalues

Theorem 2.1. Let G be an r-regular graph on n vertices and diam(G) = 2. If
r, λ2, . . . , λn are the adjacency eigenvalues of G , then CD-eigenvalues of G are
n+ r − 1 and λi − 1, i = 2, 3, . . . , n.

Proof. Since G is an r-regular graph, 1 = [1, 1, . . . , 1]′ is an eigenvector of A = A(G)
corresponding to the eigenvalue r. Set z = 1√

n
1 and let P be an orthogonal

matrix with its first column equal to z such that P ′AP = diag(r, λ2, . . . , λn). Since
diam(G) = 2, the CD-matrix CD(G) can be written as CD(G) = J + A − I,
where J is the matrix whose all entries are equal to 1 and I is an identity matrix.
Therefore

P ′(CD)P = P ′(J +A− I)P

= P ′JP + P ′AP − I

= diag(n+ r − 1, λ2 − 1, . . . , λn − 1),

where we have used the fact that any column of P other than the first column
is orthogonal to the first column. Hence the eigenvalues of CD(G) are n + r − 1
and λi − 1, i = 2, 3, . . . , n. �

Theorem 2.2. Let G be an r-regular graph of order n. Let L(G) be the line graph
of G such that for any two adjacent vertices u and v of L(G), there exists a third

vertex w in L(G) which is not adjacent to either u or v. Then L(G), the complement
of L(G), has exactly one positive CD-eigenvalue, equal to r(n− 2).

Proof. Let the adjacency eigenvalues of G be r, λ2, . . . , λn. From Theorem 1.3 , the
adjacency eigenvalues of L(G) are

2r − 2, and

λi + r − 2, i = 2, 3, . . . , n, and

−2, n(r − 2)/2 times.

 (3)

From Theorem 1.4 and the Eq. (3), the adjacency eigenvalues of L(G) are

(nr/2)− 2r + 1, and

−λi − r + 1, i = 2, 3, . . . , n, and

1, n(r − 2)/2 times.

 (4)
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The graph L(G) is a regular graph of order nr/2 and of degree (nr/2)−2r+1.
Since for any two adjacent vertice u and v of L(G) there exists a third vertex w

which is not adjacent to either u or v in L(G), by Lemma 1.5, diam
(
L(G)

)
= 2.

Therefore by Theorem 2.1 and Eq. (4), the CD-eigenvalues of L(G) are

nr − 2r, and

−λi − r, i = 2, 3, . . . , n, and

0, n(r − 2)/2 times.

 (5)

All adjacency eigenvalues of a regular graph of degree r satisfy the condition
−r ≤ λi ≤ r [4]. Therefore λi + r ≥ 0 , i = 1, 2, . . . , n . The theorem follows from
Eq. (5). �

3. CD-energy

Theorem 3.1. Let G be an r-regular graph of order n. Let L(G) be the line graph of
G such that for any two adjacent vertices u and v of L(G), there exists a third vertex

w in L(G) which is not adjacent to either u or v. Then CDE
(
L(G)

)
= 2r(n− 2).

Proof. Bearing in mind Theorem 2.2 and Eq. (5), the CD-energy of L(G) is com-
puted as:

CDE
(
L(G)

)
= nr − 2r +

n∑
i=2

(λi + r) + |0| × n(r − 2)

2

= 2r(n− 2) since

n∑
i=2

λi = −r.

�

Theorem 3.2. Let G be a connected, r-regular graph with n > 3 vertices and let
none of the three graphs F1, F2 and F3 of Fig. 1 is an induced subgraph of G.
(i) If the smallest adjacency eigenvalue of G is greater than or equal to 3− r, then
CDE(L(G)) = 3n(r − 2).
(ii) If the second largest adjacency eigenvalue of G is smaller than 3 − r, then
CDE(L(G)) = nr + 4r − 6.

Proof. Let r, λ2, λ3, . . . , λn be the adjacency eigenvalues of a regular graphG . Then
from Theorem 1.3, the adjacency eigenvalues of L(G) are

2r − 2 and

λi + r − 2, i = 1, 2, . . . , n, and

−2, n(r − 2)/2 times.

 (6)
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The graph G is regular of degree r and has order n . Therefore L(G) is
a regular graph on nr/2 vertices and of degree 2r − 2. As none of the three
graphs F1, F2 and F3 of Fig. 1 is an induced subgraph of G , from Theorem 1.2,
diam(L(G)) = 2 . Therefore from Theorem 2.1 and Eq. (6), the CD-eigenvalues of
L(G) are

(nr + 4r − 6)/2, and

λi + r − 3, i = 2, 3, . . . , n and

−3, n(r − 2)/2 times.

 (7)

Therefore

CDE(L(G)) =

∣∣∣∣nr + 4r − 6

2

∣∣∣∣+

n∑
i=2

|λi + r − 3|+ | − 3|n(r − 2)

2
. (8)

(i) By assumption, λi + r − 3 ≥ 0, i = 2, 3, . . . n, then from Eq. (8)

CDE(L(G)) =
nr + 4r − 6

2
+

n∑
i=2

(λi + r − 3) +
3n(r − 2)

2

=
nr + 4r − 6

2
+

n∑
i=2

λi + (n− 1)(r − 3) +
3n(r − 2)

2

= 3n(r − 2) since

n∑
i=2

λi = −r.

(ii) By assumption, λi + r − 3 < 0, i = 2, 3, . . . n, then from Eq. (8)

CDE(L(G)) =
nr + 4r − 6

2
−

n∑
i=2

(λi + r − 3) +
3n(r − 2)

2

=
nr + 4r − 6

2
−

n∑
i=2

λi − (n− 1)(r − 3) +
3n(r − 2)

2

= nr + 4r − 6 since

n∑
i=2

λi = −r.

�

Corollary 3.3. Let G be a connected, cubic graph with n vertices and let none
of the three graphs F1, F2 and F3 of Fig. 1 is an induced subgraph of G. Then
CDE(L(G)) = 3n+ E(G).

Proof. Substituting r = 3 in Eq. (8) we get
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CD(L(G)) =

∣∣∣∣3n+ 6

2

∣∣∣∣+

n∑
i=2

|λi|+ | − 3|n
2

=
3n+ 6

2
+ (E(G)− 3) +

3n

2
= 3n+ E(G).

�

4. CD-equienergetic graphs

Lemma 4.1. Let G1 and G2 be regular graphs of the same order and of the same
degree. Then following holds:
(i) L(G1) and L(G2) are of the same order, same degree and have the same number
of edges.
(ii) L(G1) and L(G2) are of the same order, same degree and have the same number
of edges.

Proof. Statement (i) follows from the fact that the line graph of a regular graph
is a regular and that the number of edges of G is equal to the number of vertices
of L(G) . Statement (ii) follows from the fact that the complement of a regular
graph is a regular and that the number of vertices of a graph and its complement
is equal. �

Lemma 4.2. Let G1 and G2 be regular graphs of the same order and of the same
degree. Let for i = 1, 2, L(Gi) be the line graph of Gi such that for any two adjacent
vertices ui and vi of L(Gi), there exists a third vertex wi in L(Gi) which is not

adjacent to either ui or vi. Then L(G1) and L(G2) are CD-cospectral if and only
if G1 and G2 are cospectral.

Proof. Follows from Eqs. (3), (4) and (5). �

Lemma 4.3. Let G1 and G2 be connected, regular graphs of the same order n > 3
and of the same degree. Let none of the three graphs F1, F2 and F3 of Fig. 1 be
an induced subgraph of Gi , i = 1, 2 . Then L(G1) and L(G2) are CD-cospectral if
and only if G1 and G2 are cospectral.

Proof. Follows from Eqs. (6) and (7). �

Theorem 4.4. Let G1 and G2 be regular, non CD-cospectral graphs of the same
order and of the same degree. Let for i = 1, 2, L(Gi) be the line graph of Gi such
that for any two adjacent vertices ui and vi of L(Gi), there exists a third vertex

wi in L(Gi) which is not adjacent to either ui or vi. Then L(G1) and L(G2) form
a pair of non CD-cospectral, CD-equienergetic graphs of equal order and of equal
number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.2 and Theorem 3.1. �
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Theorem 4.5. Let G1 and G2 be connected, regular, non CD-cospectral graphs of
the same order n > 3 and of the same degree r. Let none of the three graphs F1,
F2 and F3 of Fig. 1 be an induced subgraph of Gi , i = 1, 2.
(i) If the smallest adjacency eigenvalue of Gi, i = 1, 2 is greater than or equal to
3 − r, then line graphs L(G1) and L(G2) form a pair of non CD-cospectral, CD-
equienergetic graphs of equal order and of equal number of edges.
(ii) If the second largest adjacency eigenvalue of Gi, i = 1, 2 is smaller than
3 − r, then line graphs L(G1) and L(G2) form a pair of non CD-cospectral, CD-
equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.3 and Theorem 3.2. �

Theorem 4.6. Let G1 and G2 be connected, non CD-cospectral, cubic, equiener-
getic graphs of the same order. Let none of the three graphs F1, F2 and F3 of Fig. 1
be an induced subgraph of Gi , i = 1, 2. Then line graphs L(G1) and L(G2) form
a pair of non CD-cospectral, CD-equienergetic graphs of equal order and of equal
number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.3 and Corollary 3.3. �
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[2] Brankov, V., Stevanović, D. and Gutman, I., “Equienergetic chemical trees”, J. Serb. Chem.

Soc., 69 (2004), 549–553.
[3] Buckley, F. and Harary, F., Distance in Graphs, Addison–Wesley, Redwood, 1990.
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