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Abstract. Building upon the works proposed in [1] and [2], we introduce an ad-

vanced version of regularized proximal point methods to solve nonlinear complemen-

tarity problems (NCP). Our contribution is characterized by two key innovations.

Firstly, we introduce an innovative square root quadratic term as part of the regu-

larized subproblem framework, replacing the commonly used logarithmic quadratic

term. Secondly, we implement the conjugate gradient algorithm in two stages: the

intermediate step and the correction step. This dual approach employs two op-

timal descent directions with two step lengths to achieve multiplicative progress

in each iteration, significantly accelerating convergence. We establish the global

convergence of our innovative algorithm, under the condition that F exhibits mono-

tonicity. Initial numerical experiments are presented to confirm the algorithm’s

practical effectiveness.
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1. Introduction

NCP seeks to identify a vector x ∈ Rn satisfying

x ≥ 0, F (x) ≥ 0 and xTF (x) = 0, (1)

F represents a nonlinear function from Rn onto itself. This study considers
F (x) to be continuous and monotone with respect to Rn

+. Additionally, it is as-
sumed that the solution set for (1), represented by Ω∗, is not empty.
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Richard W. Cottle’s introduction of NCP marked in his Ph.D. thesis during
the early 1960s. Since then, complementarity problems have captured the interest of
researchers, leading to numerous publications that lay down the essential theoretical
foundations of this field (see [3, 4]). A standard approach to addressing the NCP
involves identifying a vector x∗ ∈ Rn

+ such that 0 ∈ O(x∗), where the operator
O(x) = F (x) + CRn

+
(x). Here, CRn

+
(.) denotes the normal cone to the nonnegative

orthant.

A widely adopted strategy for tackling the NCP is the PPA method. This
method starts with an arbitrary x0 ∈ Rn

+ and βk ≥ β > 0, generates xk+1 for
solving :

(PPA) 0 ∈ βkO(x) +∇xq
(
x, xk

)
. (2)

with

q
(
x, xk

)
=

1

2

∥∥x− xk
∥∥2 (3)

Recently, numerous studies have focused on developing innovative interior
point methods to address NCP. These methods share a common characteristic
which enforce the new iterates {xk+1} to stay in the interior of Rn

++. Auslender,
et al. [5] have proposed a new type of proximal interior algorithms via replacing
the quadratic function (3) by distϕ(x, x

k) which could be defined as

distϕ(x, y) =

n∑
j=1

y2jϕ
(
y−1
j xj

)
.

Let ν > µ > 0 be two predetermined constants, let

ϕ(t) =

{ν
2
(t− 1)2 + µφ(t) if t > 0

+∞ otherwise

where φ(t) is a φ-divergence function that respects these necessary aspects:

1) The function φ is assumed to be twice continuously differentiable within
the interior of Rn.

2) The function φ exhibits strict convexity throughout its defined domain

3) lim
x→0+

dφ(x)

dx
= −∞.

4) φ(1) =
dφ(1)

dx
= 0 and

d2φ(1)

dx2
> 0.

5) There exists ν ∈
(
1

2

d2φ(1)

dx2
,
d2φ(1)

dx2

)
such that(

1− 1

t

)(
d2φ(1)

dx2
+ ν(t− 1)

)
≤ dφ(t)

dx
≤ d2φ(1)

dx2
(t− 1) ∀t > 0.

In [6], Auslender, et al. A specialized logarithmic-quadratic proximal (LQP) al-
gorithm has been employed by leveraging by using φ1(t) = t − log(t) − 1 in the
definition of ϕ(t) (with ν = 2, µ = 1).
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Later on, Noor and Bnouhachem [7] and [8], have proposed a new modified
LQP method by using φ2(t) = t log(t) − t + 1 as a φ-divergence function (with
ν = 1, µ ∈ (0, 1))

Let ν =
1

2
and µ ∈

(
0,

1

2

)
, in our contribution, we used the φ function

φ3(t) = (
√
t− 1)2 as proposed in [9] and [2], we get

ϕ(t) =

{
1

4
(t− 1)2 + µ(

√
t− 1)2 if t > 0

+∞ otherwise.

Assume xk ∈ Rn
+, βk ≥ β > 0, the updated iteration xk+1 of the problem (2)

becomes the unique solution of the following set-valued equation:

(SRQP) 0 ∈ βkO(x) +∇xdistϕ
(
x, xk

)
, (4)

where

distϕ
(
x, xk

)
=


1

4
∥x− xk∥2 + µ

n∑
j=1

(
xkjxj − 2

(
xkj
)2√xj

xkj
+
(
xkj
)2)

if x ∈ Rn
++,

+∞ otherwise.
(5)

It is evident to see that

∇xdistϕ(x, x
k) =

1

2

(
x− xk

)
+ µ

n∑
j=1

xkj −
(
xkj
)2√
xkj

1
√
xj


=

1

2
(x− xk) + µ

(
xk −Xk

(√
x
)−1
)
. (6)

Xk = diag
(√

xk1
3
, ...,

√
xkn

3
)
and

√
x =

(√
x1, ...,

√
xn
)
.

Now, the problem (4) is equivalent to :

βkF (x) +
1

2

(
x− xk

)
+ µ

(
xk −Xk

(√
x
)−1
)
= 0. (7)

Solving the subproblem (7) exactly presents significant challenges in practice,
often excluding practical applications. To mitigate this issue, it is advisable to
pursue approximate solutions x̃k instead of exact ones. For this reason, we introduce
ξk such that :

0 ≈ βkF (x) +
1

2

(
x− xk

)
+ µ

(
xk −Xk

(√
x
)−1
)
= ξk (8)

and ξk := βk
(
F
(
x̃k
)
− F

(
xk
))

satisfies

∥ξk∥ ≤ η∥xk − x̃k∥, 0 < µ, η <
1

2
. (9)

In this paper, we proposed a prediction-correction method to solve (7) ap-
proximately. Numerical results are provided to substantiate the efficacy of the
proposed method.
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2. Preliminaries

Key properties are essential for our subsequent analysis.
First, we denote PrRn

+
(.) as : PrRn

+
(z) = min

{
∥z − x∥| x ∈ Rn

+

}
.

A fundamental characteristic of this projection mapping is :(
y − PrRn

+
(y)
)T (

PrRn
+
(y)− x

)
≥ 0, ∀y ∈ Rn, ∀x ∈ Rn

+. (10)

From (10), one can readily confirm that :

∥PrRn
+
(v)− u∥2 ≤ ∥v − u∥2 − ∥v − PrRn

+
(v)∥2, ∀v ∈ Rn, u ∈ Rn

+. (11)

Definition 2.1. The operator F : Rn → Rn is said to be monotone, if

∀u, v ∈ Rn, (v − u)T (F (v)− F (u)) ≥ 0.

3. The proposed method and convergence results

At the kth iteration, Using a three-step SRQP approach, compute the exact
solution for the system of equations specified below:

βkF (x) +
1

2
(x− xk) + µ(xk −Xk(

√
x)−1) = 0. (12)

We now introduce an SRQP approach for solving problem (1). For given

x1 > 0, D0 = 0 and D̃0 = 0, the suggested approach comprises three steps.

Step 1 : Find x̃k of (12), such that

0 ≈ βkF (x) +
1

2
(x− xk) + µ(xk −Xk(

√
x)−1) = ξk (13)

and ξk := βk(F (x̃
k)− F (xk)) satisfies

∥ξk∥ ≤ η∥xk − x̃k∥, 0 < µ, η <
1

2
. (14)

Step 2: For αk > 0. Compute

d(xk) =
1

2
(xk − x̃k) +

1

1 + µ
ξk, (15)

and

Dk = d(xk) + θkDk−1, (16)

where

θk = max

(
0,

−d(xk)TDk−1

∥Dk−1∥2

)
(17)

x̄k(αk) is defined by

x̄k(αk) = PRn
+

[
xk − αkDk

]
, (18)

where

αk =
ψ(xk)

∥Dk∥2
and ψ(xk) =

1

2(1 + µ)
∥xk − x̃k∥2 + 1

1 + µ

(
xk − x̃k

)T
ξk. (19)
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Step 3: For 0 < ρ < 1 Compute

g(xk) = xk − x̄k, (20)

and

D̃k = g(xk) + λkD̃k−1, (21)

where

θ̃k = max

(
0,

−g(xk)T D̃k−1

∥D̃k−1∥2

)
(22)

The new updated xk+1(δk) is

xk+1(δk) = ρxk + (1− ρ)PRn
+

[
xk − δkD̃k

]
, (23)

where

δk =
ψ̃(xk)

∥D̃k∥2
and ψ̃(xk) =

∥xk − x̄k∥2 + αkψ(x
k)

2
. (24)

Remark 3.1. (14) Leads to the conclusion that

|(xk − x̃k)T ξk| ≤ η∥xk − x̃k∥2, η <
1

2
. (25)

Remark 3.2. Consider the case where ξk = βk(F (x̃
k)− F (xk)). If F is Lipschitz

continuous within Rn
+, with L > 0, i.e.,

∥F (xk)− F (x̃k)∥ ≤ L∥xk − x̃k∥.

If βk satisfying 0 < βk ≤ η
L , then the above inequalities (14) are satisfied.

This Lemma is essential in analyzing convergence and plays a pivotal role in
this regard.

Lemma 3.3. if we let x > 0 and q ∈ Rn, Let x be the positive solution of the
following equation :

q +
1

2
(x− xk) + µ(xk −Xk(

√
x)−1) = 0, (26)

and Xk = diag(
√
xk1

3
, ...,

√
xkn

3
) where

√
x = (

√
x1, ...,

√
xn),

then ∀y ≥ 0 we have

(x− y)T (−q) ≥ 1 + µ

4

(
∥x− y∥2 − ∥xk − y∥2

)
+

1− µ

4
∥xk − x∥2. (27)

Proof. [2] ⊓⊔

Lemma 3.4. [10] Using the definition of d(xk), g(xk), Sk and Dk, then

∥Dk∥ ≤ ∥d(xk)∥. (28)

Proof. [2] ⊓⊔
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Lemma 3.5. [10] For any k ≥ 1, we have

DT
k−1

(
xk − x∗

)
≥ 0

Proof. [2] ⊓⊔

Theorem 3.6. [11] Let x∗ represent any solution of (1). For given xk ∈ Rn
++ and

βk > 0, let x̃k and ξk satisfy the condition (14), then it holds(
xk − x∗

)T
Dk ≥ ψ(xk) ≥ 1− 2η

2(1 + µ)
∥xk − x̃k∥2 ≥ 0. (29)

Proof. [2] ⊓⊔

To guarantee that x̄k(αk) moves closer to the solution set compared to xk,
we introduce the following definition:

Θ(αk) = ∥xk − x∗∥2 − ∥x̄k(αk)− x∗∥2, (30)

Theorem 3.7. Let Θ(αk), Dk and ψ(xk) be defined by (30), (21) and (24) respec-
tively, then ∀x∗ ∈ Ω∗ and αk > 0, we have

Θ(αk) ≥ Φ(αk), (31)

where

Φ(αk) = 2αkψ(x
k)− α2∥Dk∥2 (32)

Proof.

∥x̄k(αk)− x∗∥2 = ∥PRn
+
[xk − αkDk]− x∗∥2

≤ ∥xk − x∗ − αkDk∥2

≤ ∥xk − x∗∥2 − 2αkψ(x
k) + α2

k∥Dk∥2.
(33)

Using the definition of Θ(αk) and Φ(αk), then (31) is proved. ⊓⊔

The function Φ(α) evaluates the progress achieved during the kth iteration.
A logical choice is to select a step length αk that maximizes this progress. It is
important to note that Φ(αk) represents a quadratic function of α, achieving its
maximum at

α∗
k =

ψ(xk)

∥Dk∥2
(34)

and

Φ(α∗
k) = α∗

kψ(x
k). (35)

In the following theorem, we demonstrate that both α∗
k and Φ(α∗

k) maintain
bounds strictly greater than zero. This result plays a pivotal role in establishing
the proof of global convergence.
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Theorem 3.8. Given xk ∈ Rn
+ and βk > 0, let x̃k and ξk satisfy the condition

(14). Under these assumptions, we arrive at the following results :

α∗
k ≥ 1− 2η

4(1 + µ)
(36)

and

Φ(α∗
k) ≥

(1− 2η)2

8(1 + µ)2
∥xk − x̃k∥2. (37)

Proof. If (xk − x̃k)T ξk ≤ 0, since µ > 0 it follows from (14), (20), (21) and (28)
that

∥Dk∥2 ≤ ∥d(xk)∥2

≤ 1

4
∥xk − x̃k∥2 + 1

(1 + µ)2
∥ξk∥2

≤ ∥xk − x̃k∥2 + ∥ξk∥2

≤ 2∥xk − x̃k∥2, (38)

from (29) and (38), we obtain

α∗
k =

ψ(xk)

∥Dk∥2
≥ 1− 2η

4(1 + µ)
.

Otherwise, if (xk − x̃k)T ξk ≥ 0, it follows that

ψ(xk) =
1

2(1 + µ)
∥xk − x̃k∥2 + 1

1 + µ
(xk − x̃k)T ξk

≥ 1

1 + µ
{1
4
∥xk − x̃k∥2 + 1

1 + µ
(xk − x̃k)T ξk

1

4
∥xk − x̃k∥2}

≥ 1

1 + µ
{ 1

16
∥xk − x̃k∥2 + 1

4(1 + µ)
(xk − x̃k)T ξk +

1

4(1 + µ)2
∥ξk∥2}

=
1

4(1 + µ)
∥d(xk)∥2

≥ 1

4(1 + µ)
∥Dk∥2

and thus

α∗
k ≥ 1

4(1 + µ)
≥ 1− 2η

4(1 + µ)
.

⊓⊔

To ensure that xk+1(δk) is closer to the solution set than xk. For this purpose,
we define

Θ̃(δk) = ∥xk − x∗∥2 − ∥xk+1(δk)− x∗∥2, (39)
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Theorem 3.9. Let x∗ ∈ Ω∗, then we have

Θ̃(δk) ≥ Φ̃(δk), (40)

where

Φ̃(δk) = (1− ρ)(δk
{
∥g(xk)∥2 + ∥xk − x∗∥2 − ∥x̄k − x∗∥2

}
− δ2∥D̃k∥2) (41)

Proof. [1].⊓⊔

Remark 3.10. By using Theorem 3 and Theorem 1 in the reference [1], we get

δk ≥ 1

2
,

and

Θ̃(δk) ≥
(1− η)2

(1 + µ)2
∥xk − x̃k∥2 (42)

From the computational point of view, a relaxation factor γ ∈ [1, 2) is prefer-
able in the new iteration. It follows from (39) and (42) that there is a constant
c > 0 such that

∥xk+1(γδk)− x∗∥2 ≤ ∥xk − x∗∥2 − c∥xk − x̃k∥2 ∀x∗ ∈ Ω∗́

The following result can be proved by similar arguments as those in [1]. Hence the
proof will be omitted.

Theorem 3.11. [1, 7] If
∞
inf
k=0

βk = β > 0, then the sequence {xk} generated by the

proposed method converges to some x∞ which is a solution of the NCP.

4. Preliminary Computational Results

In numerical experiments, determining the value of the approximate solution
x̃k is essential. In the specific scenario where

ξk = βk(F (x̃
k)− F (xk)),

equation (13) can be rewritten as an equivalent system of nonlinear equations

βkF (x
k) +

1

2
(x̃k − xk) + µ(xk −Xk(

√
x̃k)−1) = 0, (43)

hence

1

2
x̃kj − µ

(√
xkj

)3
√
x̃kj

+

(
βkFj(x

k)− 1

2
xkj + µxkj

)
= 0, j = 1, ..., n.

Then

1

2
x̃kj − µ

(√
xkj

)3
√
x̃kj

+

βkFj(x
k)− 1

2
xkj + µ

(√
xkj

)3
√
xkj

 = 0, j = 1, ..., n.
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The iterative procedure of the Newton method for addressing the specified problem
can be outlined as follows:

x̃j
k := xj

k − 2βk
1 + µ

Fj

(
xk
)

The solution satisfies x̃k > 0. To prevent non-positive values of x̃j
k during the

iteration process, we implement the following approach

x̃j
k := max

{
xj

k − 2βk
1 + µ

Fj

(
xk
)
, 0

}
, j = 1, ..., n.

To test the suggested algorithm, we consider the NCP :

x ≥ 0, F (x) ≥ 0, xTF (x) = 0, (44)

where

F (x) = D(x) +Mx+ q,

with D(x) representing the nonlinear component and Mx + q denoting the linear
component of F (x).

The linear component of the test problems is constructed in a manner similar
to the approach outlined by Harker and Pang [4]. Specifically, the matrix M
is formed as M = ATA + B, with A being an n × n matrix whose entries are
randomly selected within the range (−5,+5). Additionally, B is a skew-symmetric
matrix generated under the same conditions. The vector q is drawn from a uniform
distribution within the interval (−500, 500). Regarding D(x), which represents the
nonlinear part of F (x), its components are defined as Dj(x) = dj ∗ arctan(xj),
where dj is a random variable within the range (0, 1). Problems of a similar nature
have been previously explored in [12] and [13].

The iterations begin with x1 = (1, . . . , 1)T and are terminated once the con-
dition

∥min(xk, F (xk))∥∞ ≤ 10−7,

is satisfied. All codes were implemented in Matlab, and the proposed method
is compared with those presented in [14]. The test results for problem (44) are
summarized in Tables 4.1 and 4.2. Here, k represents the number of iterations, and
l refers to the count of mapping calculations for F .

Comparison to the method in [14] using only the first and second step of the
proposed method:
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Table 4.1 Numerical results for problem (44)
with q ∈ (−500, 500)

Algorithm in [14] Suggested approach
n k l CPU time in seconds k l CPU time in seconds
200 371 792 0.105 243 496 0.035
300 410 875 0.087 269 548 0.048
400 417 886 0.125 290 595 0.081
500 455 952 0.197 318 646 0.142
700 441 922 0.841 294 598 0.475
800 376 800 0.942 264 544 0.645
1000 426 895 1.687 287 586 1.107

Comparison to the method in [1] using the three-steps proposed method:

Table 4.2 Numerical results for problem (44)
with q ∈ (−500, 500)

Algorithm in [1] Suggested approach
n k l CPU time in seconds k l CPU time in seconds
200 264 572 0.065 135 278 0.007
300 259 561 0.07 144 297 0.011
400 333 720 0.13 162 333 0.015
500 336 726 0.18 180 367 0.021
700 279 605 0.31 165 339 0.03
1000 295 638 1.17 168 345 0.15

5. Concluding remarks

Tables 4.1 and 4.2 illustrate the enhanced efficiency of the proposed method.
The numerical findings reveal that this method substantially decreases the iteration
count and computational effort needed to compute the function F . This paper
introduces a novel category of proximal algorithms aimed at addressing nonlinear
complementarity problems, utilizing a novel SRQP term and a two-stage conjugate
gradient algorithm. This approach integrates two refined descent directions with
two optimal step sizes to achieve multiplicative improvements in each iteration,
considerably speeding up the convergence process.
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