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The paper contains typing errors.

Theorem 2 Let µ1, µ2 ∈ (−2,∞), r < 1. If µ1 ≤ 4
1−r

≤ µ2, then

gnµ2,r
(a, b) ≤ L(a, b) ≤ Gnµ1,r

(a, b). (12)

Furthermore µ1 = µ2 = 4
1−r

is the best possibility for inequality (12). Also for
r = 0,

gnµ2,0(a, b) ≤ L(a, b) ≤ Gnµ1,0(a, b). (13)

Furthermore µ1 = µ2 = 4 is the best possibility for inequality (13).

Theorem 3 For µ1, µ2 ∈ (−2,∞), r 6= 2
3 , r < 1 and if µ1 ≤ 2

2−3r ≤ µ2, then

gnµ2,r
(a, b) ≤ I(a, b) ≤ Gnµ1,r

(a, b). (15)

Furthermore µ1 = µ2 = 2
2−3r is the best possibility for inequality (15). Also for

r = 0,

gnµ2,0(a, b) ≤ I(a, b) ≤ Gnµ1,0(a, b). (16)

Furthermore µ1 = µ2 = 1 is the best possibility for inequality (16).

Theorem 4 For µ1, µ2 ∈ (−2,∞), r 6= 0 and if µ2 ≤ 2
r
− 2 ≤ µ1, then

gnµ2,0(a, b) ≤ Mr(a, b) ≤ Gnµ1,0(a, b). (17)

Furthermore µ1 = µ2 = 2
r
− 2 is the best possibility for inequality (17)
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The above Theorems should be corrected to as follows:

Theorem 2 For r 6= 1
3 and µ1, µ2 ∈ (−2,∞) such that µ1 ≤ 4

1−3r ≤ µ2, then

gnµ2,r
(a, b) ≤ L(a, b) ≤ Gnµ1,r

(a, b). (12)

Furthermore µ1 = µ2 = 4
1−3r is the best possibility for inequality (12). Also for

r = 0,

gnµ2,0(a, b) ≤ L(a, b) ≤ Gnµ1,0(a, b). (13)

Furthermore µ1 = µ2 = 4 is the best possibility for inequality (13).

Theorem 3 For r 6= 2
3 and µ1, µ2 ∈ (−2,∞) such that µ1 ≤ 2

2−3r ≤ µ2, then

gnµ2,r
(a, b) ≤ I(a, b) ≤ Gnµ1,r

(a, b). (15)

Furthermore µ1 = µ2 = 2
2−3r is the best possibility for inequality (15). Also for

r = 0,

gnµ2,0(a, b) ≤ I(a, b) ≤ Gnµ1,0(a, b). (16)

Furthermore µ1 = µ2 = 1 is the best possibility for inequality (16).

Theorem 4 For r 6= 1 and µ1, µ2 ∈ (−2,∞) such that µ2 ≤ r

1−r
≤ µ1, then

gnµ2,0(a, b) ≤ Mr(a, b) ≤ Gnµ1,0(a, b). (17)

Furthermore µ1 = µ2 = r

1−r
is the best possibility for inequality (17).

Remark. Carlson [1] and Lin [2] gave some inequalities on mean and logarithmic
mean.
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