ON JOINTLY PRIME RADICALS OF (R,S)-MODULES

Dian Ariesta Yuwaningsih ${ }^{1}$ and Indah Emilia Wijayanti ${ }^{2}$
${ }^{1}$ Postgraduate Student of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia
dian.ariesta17@yahoo.com
${ }^{2}$ Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia
ind_wijayanti@ugm.ac.id

Abstract

Let M be an (R, S)-module. In this paper a generalization of the msystem set of modules to (R, S)-modules is given. Then for an (R, S)-submodule N of M, we define $\sqrt[(R, S)]{N}$ as the set of $a \in M$ such that every m-system containing a meets N. It is shown that $\sqrt[(R, S)]{N}$ is the intersection of all jointly prime (R, S) submodules of M containing N. We define jointly prime radicals of an (R, S)-module M as $\operatorname{rad}_{(R, S)}(M)=\sqrt[(R, S)]{0}$. Then we present some properties of jointly prime radicals of an (R, S)-module.

Key words and Phrases: (R, S)-module, jointly prime (R, S)-submodule, m-system, prime radical.

Abstract

Abstrak. Diberikan (R, S)-modul M. Dalam tulisan ini didefinisikan himpunan sistem-m pada suatu (R, S)-modul sebagai perumuman dari himpunan sistemm suatu modul. Didefinisikan $\sqrt[(R, S)]{N}$ sebagai himpunan semua $a \in M$ yang memenuhi sifat setiap sistem-m yang memuat a irisannya dengan N tidak kosong, untuk suatu (R, S)-submodul N di M. Dapat ditunjukkan bahwa $\sqrt[(R, S)]{N}$ merupakan irisan dari semua (R, S)-submodul prima gabungan di M yang memuat N. Didefinisikan radikal prima gabungan dari (R, S)-modul M sebagai himpunan $\operatorname{rad}_{(R, S)}(M)=\sqrt[(R, S)]{0}$. Kemudian, dalam tulisan ini disajikan beberapa sifat dari radikal prima gabungan suatu (R, S)-modul.

Kata kunci: (R, S)-modul, (R, S)-submodul prima gabungan, sistem-m, radikal prima.

[^0]
1. Introduction

All rings in this paper are arbitrary ring unless stated otherwise. Let R and S be arbitrary rings. Khumprapussorn et al. in [3] introduced (R, S)-modules as a generalization of (R, S)-bimodules. An (R, S)-module has an (R, S)-bimodule structure when both rings R and S have central idempotent elements.

In their paper, Khumprapussorn et al. also defined (R, S)-submodules of M as additive subgroups N of M such that $r n s \in N$ for all $r \in R, n \in N$, and $s \in S$. Moreover, a proper (R, S)-submodule P of M is called a jointly prime (R, S) submodule if for each left ideal I of R, right ideal J of S, and (R, S)-submodule N of $M, I N J \subseteq P$ implies $I M J \subseteq P$ or $N \subseteq P$.

A jointly prime (R, S)-submodule P of M is called a minimal jointly prime (R, S)-submodule if it is minimal in the class of jointly prime (R, S)-submodules of M. Based on Goodearl and Warfield [2], we show that every jointly prime (R, S)-submodule of M contains a minimal jointly prime (R, S)-submodule.

Let T be a ring with unity. Lam [4] has defined that a nonempty set $J \subseteq T$ is said to be an m-system if for each pair $a, b \in J$, there exists $t \in T$ such that atb $\in J$. Furthermore, for an ideal I of T, the set $\sqrt{I}:=\{a \in T \mid(\forall$ m-system J of $T) a \in$ $J \Rightarrow J \cap I \neq \emptyset\}$ equals to the intersection of all the prime ideals of T containing I. Based on this definition, Behboodi [1] has generalized the definition of m-system of unitary rings to modules. Let M be an unitary module over a ring T. A nonempty set $X \subseteq M \backslash\{0\}$ is called an m-system if for each (left) ideal I of T and for all submodules K, L of $M,(K+L) \cap X \neq \emptyset$ and $(K+I M) \cap X \neq \emptyset$ imply $(K+I L) \cap X \neq$ \emptyset. It has been shown that the complement of a prime submodule is an m -system, and for any m-system X, a submodule disjoint from X and maximal with respect to this property is always a prime submodule. Moreover, for a submodule N of M, the set $\sqrt{N}:=\{a \in M \mid(\forall$ m-system X of $M) a \in X \Rightarrow X \cap N \neq \emptyset\}$ equals to the intersection of all prime submodules of M containing N.

In Section 2, we extend these facts to (R, S)-modules. In fact, we give a generalization of the notion of m-systems of modules to (R, S)-modules. Then for an (R, S)-submodule N of M, we define $\sqrt[(R, S)]{N}:=\{a \in M \mid(\forall$ m-system X of $M) a \in$ $X \Rightarrow X \cap N \neq \emptyset\}$. And then we define jointly prime radicals of an (R, S)-module M as $\operatorname{rad}_{(R, S)}(M)=\sqrt[(R, S)]{0}$. It is shown that $\operatorname{rad}_{(R, S)}(M)$ is the intersection of all jointly prime (R, S)-submodules of M (note that, if M has no any jointly prime (R, S)-submodule, then $\left.\operatorname{rad}_{(R, S)}(M):=M\right)$. In Section 3, we present some properties of jointly prime radicals of (R, S)-modules. These properties are as follows: every jointly prime radicals of (R, S)-submodules is contained in a jointly prime radical of its (R, S)-module; jointly prime radicals of (R, S)-modules M is either equal to M or the intersection of all minimal jointly prime (R, S)-submodules of M; and jointly prime radicals of quotient (R, S)-modules $M / \operatorname{rad}_{(R, S)}(M)$ is zero.

2. Jointly Prime Radicals of (R,S)-Modules

Before we define m-systems of an (R, S)-module, we describe first the jointly prime (R, S)-submodule. As we have already stated earlier, a proper (R, S) submodule P of M is called a jointly prime (R, S)-submodule if for each left ideal I of R, right ideal J of S, and (R, S)-submodule N of $M, I N J \subseteq P$ implies $I M J \subseteq P$ or $N \subseteq P$. The following are some characterizations of jointly prime (R, S)-submodules given in [3].
Theorem 2.1. Let M be an (R, S)-module satisfying $a \in R a S$ for all $a \in M$, and P a proper (R, S)-submodule of M. The following statements are equivalent:
(1) P is a jointly prime (R, S)-submodule.
(2) For every right ideal I of $R, m \in M$, and left ideal J of S, $I m J \subseteq P$ implies $I M J \subseteq P$ or $m \in P$.
(3) For every right ideal I of $R,(R, S)$-submodule N of M, and left ideal J of $S, I N J \subseteq P$ implies $I M J \subseteq P$ or $N \subseteq P$.
(4) For every left ideal I of $R, m \in M$, and right ideal J of $S,(I R) m(S J) \subseteq P$ implies $I M J \subseteq P$ or $m \in P$.
(5) For every $a \in R, m \in M$, and $b \in S,(a R) m(S b) \subseteq P$ implies $a M b \subseteq P$ or $m \in P$.

If the (R, S)-module M satisfies $M=R M S$, the necessary and sufficient condition for a proper (R, S)-submodule P of M to be a jointly prime (R, S) submodule is for all ideal I of R, ideal J of S, and (R, S)-submodule N of M, $I N J \subseteq P$ implies $I M J \subseteq P$ or $N \subseteq P$.

Now, we define the notion of m-systems of (R, S)-modules.
Definition 2.2. Let M be an (R, S)-module. A nonempty set $X \subseteq M \backslash\{0\}$ is called an m-system if for each left ideal I of R, right ideal J of S, and (R, S)-submodules K, L of $M,(K+L) \cap X \neq \emptyset$ and $(K+I M J) \cap X \neq \emptyset$ imply $(K+I L J) \cap X \neq \emptyset$.

Based on Behboodi [1], we can show that the complement of a jointly prime (R, S)-submodule is an m-system.
Proposition 2.3. Let P be a proper (R, S)-submodule of M. Then P is a jointly prime (R, S)-submodule of M if and only if $X=M \backslash P$ is an m-system.

Proof. (\Rightarrow). Suppose that P is a jointly prime (R, S)-submodule of M. Let I be a left ideal of R, J be a right ideal of S, and K, L be (R, S)-submodules of M such that $(K+L) \cap X \neq \emptyset$ and $(K+I M J) \cap X \neq \emptyset$. If $(K+I L J) \cap X=\emptyset$, then $K+I L J \subseteq P$. Then, $I L J \subseteq P$ and $K \subseteq P$. Since P is a jointly prime (R, S)-submodule of M, we have $L \subseteq P$ or $I M J \subseteq P$. Thus $(K+L) \cap X=\emptyset$ or $(K+I M J) \cap X=\emptyset$, a contradiction. Therefore, X is an m-system of M.
(\Leftarrow). Suppose that X is an m-system of M. Let I be a left ideal of R, J be a right ideal of S, and L be an (R, S)-submodule of M such that $I L J \subseteq P$. If $L \nsubseteq P$ and $I M J \nsubseteq P$, then $L \cap X \neq \emptyset$ and $I M J \cap X \neq \emptyset$. Since X is an m-system, $I L J \cap X \neq \emptyset$ so that $I L J \nsubseteq P$, a contradiction. Therefore, P is a jointly prime (R, S)-submodule of M.

Example 2.4. Let \mathbb{Z} be the ring of integers taken as an ($2 \mathbb{Z}, 3 \mathbb{Z}$)-module. First, we show that $6 \mathbb{Z}$ is a jointly prime ($2 \mathbb{Z}, 3 \mathbb{Z}$)-submodule of \mathbb{Z}. Consider a left ideal $I=(2 m) \mathbb{Z}$ of $2 \mathbb{Z}$, a right ideal $J=(3 n) \mathbb{Z}$ of $3 \mathbb{Z}$, and an $(2 \mathbb{Z}, 3 \mathbb{Z})$-submodule $N=k \mathbb{Z}$ of \mathbb{Z}, for some $m, n, k \in \mathbb{N}$. It is true that $I N J=((2 m) \mathbb{Z})(k \mathbb{Z})((3 n) \mathbb{Z})=$ $(6 m k n) \mathbb{Z} \subseteq 6 \mathbb{Z}$ and $N=k \mathbb{Z}=\nsubseteq 6 \mathbb{Z}$. Then for each $m, n \in \mathbb{N}$, it is clear that $I \mathbb{Z} J=((2 m) \mathbb{Z})(\mathbb{Z})((3 n) \mathbb{Z})=(6 m n) \mathbb{Z} \subseteq 6 \mathbb{Z}$. Hence, $6 \mathbb{Z}$ is a jointly prime $(2 \mathbb{Z}, 3 \mathbb{Z})-$ submodule of \mathbb{Z}. Therefore, $\mathbb{Z} \backslash 6 \mathbb{Z}$ is an m-system of $(2 \mathbb{Z}, 3 \mathbb{Z})$-module \mathbb{Z}.

It is easy to prove that every maximal (R, S)-submodule of M is a jointly prime (R, S)-submodule. Furthermore, we prove a proposition that states that a maximal (R, S)-submodule P of M which is disjoint from an arbitrary m-system of M is a jointly prime (R, S)-submodule.

Proposition 2.5. Let M be an (R, S)-module, X an m-system of M, and P a $\operatorname{proper}(R, S)$-submodule of M maximal with respect to the property that $P \cap X=\emptyset$. Then, P is a jointly prime (R, S)-submodule of M.

Proof. Let I be a left ideal of R, J a right ideal of S, and N an (R, S)-submodule of M such that $I N J \subseteq P$. Suppose that $N \nsubseteq P$ and $I M J \nsubseteq P$. Since P is maximal with respect to the property that $P \cap X=\emptyset$, we have $(P+N) \cap X \neq \emptyset$ and $(P+I M J) \cap X \neq \emptyset$. Since X is an m-system of M, then $(P+I N J) \cap X \neq \emptyset$. Since $I N J \subseteq P$, it follows that $P \cap X \neq \emptyset$, a contradiction. Therefore, P must be a jointly prime (R, S)-submodule of M.

We recall the set introduced by Behboodi in [1],

$$
\sqrt{N}:=\{a \in M \mid(\forall \text { m-system } X \text { of } M) a \in X \Rightarrow X \cap N \neq \emptyset\} .
$$

Now, we present a generalization of the notion of \sqrt{N} for any (R, S)-submodules N of M and we denote it as $\sqrt[(R, S)]{N}$.

Definition 2.6. Let M be an (R, S)-module. For an (R, S)-submodule N of M, if there is a jointly prime (R, S)-submodule containing N, then we define $\sqrt[(R, S)]{N}:=$ $\{a \in M \mid(\forall m$-system X of $M) a \in X \Rightarrow X \cap N \neq \emptyset\}$. If there is no jointly prime (R, S)-submodules containing N, then we define $\sqrt[(R, S)]{N}:=M$.

Let M be an (R, S)-module. Then, the jointly prime spectrum of M is the set $\operatorname{Spec}^{j_{p}}(M):=\{P \mid P$ is a jointly prime (R, S)-submodule of $M\}$. If N be an (R, S)-submodule of M, then we define $V^{j_{p}}(N):=\left\{P \in \operatorname{Spec}^{j_{p}}(M) \mid N \subseteq P\right\}$. Next, we show that $\sqrt[(R, S)]{N}$ equals to the intersection of all jointly prime (R, S) submodules of M.

Theorem 2.7. Let M be an (R, S)-module and N be an (R, S)-submodule of M. Then either $\sqrt[(R, S)]{N}=M$ or $\sqrt[(R, S)]{N}=\bigcap_{P \in V^{j_{p}}(N)} P$.

Proof. Suppose that $\sqrt[(R, S)]{N} \neq M$. It follows from Definition 2.6 that $V^{j_{p}}(N) \neq \emptyset$. We will show that $\sqrt[(R, S)]{N}=\bigcap_{P \in V^{j_{p}}(N)} P$. Let $m \in \sqrt[(R, S)]{N}$ and $P \in V^{j_{p}}(N)$.

Consider the m-system $X:=M \backslash P$ in M. Since $N \subseteq P$, we have $X \cap N=\emptyset$. Consequently, we get $m \notin X$ so that $m \in P$. Thus, we obtain $\sqrt[(R, S)]{N} \subseteq \bigcap_{P \in V^{j_{p}}(N)} P$. Conversely, let $a \in \bigcap_{P \in V^{j_{p}}(N)} P$. If $a \notin \sqrt[(R, S)]{N}$, then there exists an m-system X such that $a \in X$ but $N \cap X=\emptyset$. Consider the following set:

$$
\mathfrak{J}=\{J \mid N \subseteq J, J \text { is an }(R, S) \text {-submodule of } M \text { and } J \cap X=\emptyset\} .
$$

By Zorn's Lemma, \mathfrak{J} has a maximal element, which is an (R, S)-submodule $K \supseteq N$ maximal with respect to the property $K \cap X=\emptyset$. By Proposition 2.5, K is a jointly prime (R, S)-submodule of M, so $K \in V^{j_{p}}(N)$. Therefore, we have $a \in K$. Whereas $a \in X$, so we get $K \cap X \neq \emptyset$, a contradiction. Thus, $a \in \sqrt[(R, S)]{N}$ and it follows that $\bigcap_{P \in V^{j_{p}}(N)} P \subseteq \sqrt[(R, S)]{N}$. Hence, $\sqrt[(R, S)]{N}=\bigcap_{P \in V^{j_{p}}(N)} P$.

Example 2.8. Let \mathbb{Z} be an ($2 \mathbb{Z}, 2 \mathbb{Z}$)-module and $8 \mathbb{Z}$ be an $(2 \mathbb{Z}, 2 \mathbb{Z})$-submodule of \mathbb{Z}. We obtain the set $V^{j_{p}}(8 \mathbb{Z})=\left\{P \in \operatorname{Spec}^{j_{p}}(\mathbb{Z}) \mid 8 \mathbb{Z} \subseteq P\right\}=\{2 \mathbb{Z}, 4 \mathbb{Z}\}$. Therefore, $\sqrt[(2 \mathbb{Z}, 2 \mathbb{Z})]{8 \mathbb{Z}}=\bigcap_{P \in V^{j_{p}}(8 \mathbb{Z})} P=4 \mathbb{Z} \cap 2 \mathbb{Z}=4 \mathbb{Z}$.

Let I be an ideal of an unitary ring T. By Lam [4], \sqrt{I} is equal to T or the intersection of all prime ideals of T containing I. From Khumprapussorn et al. [3], we know that the annihilator from M / N of the ring R, that is $(N: M)_{R}:=\{r \in$ $R \mid r M S \subseteq N\}$, is an ideal of R when the ring S satisfies $S^{2}=S$. Therefore, when $S^{2}=S, \sqrt{(N: M)_{R}}$ is equal to R or the intersection of all prime ideals of R containing $(N: M)_{R}$. Next, we present a connection between $\sqrt{(N: M)_{R}} M S$ and $\sqrt[(R, S)]{N}$.

Proposition 2.9. Let M be an (R, S)-module and N be an (R, S)-submodule of M. If $S^{2}=S$, then $\sqrt{(N: M)_{R}} M S \subseteq \sqrt[(R, S)]{N}$.

Proof. Since $S^{2}=S$, by [3] $(N: M)_{R}$ is an ideal of R. Also $\sqrt{(N: M)_{R}}$ is equal to R or equal to the intersection of all prime ideals of R that contain $(N: M)_{R}$. Suppose that $\sqrt[(R, S)]{N}=M$. Since $\sqrt{(N: M)_{R}} \subseteq R$, so

$$
\sqrt{(N: M)_{R}} M S \subseteq R M S \subseteq M=\sqrt[(R, S)]{N}
$$

Suppose that $\sqrt[(R, S)]{N} \neq M$. Then $\sqrt[(R, S)]{N}=\bigcap_{P \in V^{j_{p}}(N)} P$. Let $P \in V^{j_{p}}(N)$, then P is a jointly prime (R, S)-submodule of M and $N \subseteq P$. Moreover, by Proposition 2.12 of [3], $(P: M)_{R}$ is a prime ideal of R. Furthermore, since $N \subseteq P$, it is clear that $(N: M)_{R} \subseteq(P: M)_{R}$. Since $(P: M)_{R}$ is a prime ideal of R and contains $(N: M)_{R}$, we obtain

$$
\sqrt{(N: M)_{R}} \subseteq(P: M)_{R}
$$

Thus,

$$
\sqrt{(N: M)_{R}} M S \subseteq(P: M)_{R} M S \subseteq P
$$

Therefore, this shows that $\sqrt{(N: M)_{R}} M S \subseteq \bigcap_{P \in V^{j_{p}}(N)} P=\sqrt[(R, S)]{N}$.
The definition of jointly prime radicals of an (R, S)-module is given below.
Definition 2.10. Let M be an (R, S)-module. If there is a jointly prime (R, S) submodule of M, then we define jointly prime radicals of M as:

$$
\operatorname{rad}_{(R, S)}(M)=\sqrt[(R, S)]{0}:=\bigcap_{P \in \operatorname{Spec}^{j_{p}}(M)} P
$$

If there is no jointly prime (R, S)-submodule of M, then we define jointly prime radicals of M as $\operatorname{rad}_{(R, S)}(M):=M$.

Example 2.11. Let \mathbb{Z} be an ($2 \mathbb{Z}, 2 \mathbb{Z}$)-module. It is easy to show that $\{0\}$ is a jointly prime $(2 \mathbb{Z}, 2 \mathbb{Z})$-submodule of \mathbb{Z}. Since every jointly prime $(2 \mathbb{Z}, 2 \mathbb{Z})$-submodule of \mathbb{Z} contains $\{0\}$, then jointly prime radical of $(2 \mathbb{Z}, 2 \mathbb{Z})$-module \mathbb{Z} is $\operatorname{rad}_{(2 \mathbb{Z}, 2 \mathbb{Z})}(\mathbb{Z})=\{0\}$.

3. Some Properties of Jointly Prime Radicals of (R, S)-Modules

In this section, we present some properties of jointly prime radicals of (R, S) modules. Let N be an (R, S)-submodule of M. We show that the jointly prime radical of N is contained in the jointly prime radical of M.

Proposition 3.1. Let N be an (R, S)-submodule of M. Then, $\operatorname{rad}_{(R, S)}(N) \subseteq$ $\operatorname{rad}_{(R, S)}(M)$.

Proof. Let $P \in \operatorname{Spec}^{j_{p}}(M)$. If $N \subseteq P$ then $\operatorname{rad}_{(R, S)}(N) \subseteq P$. If $N \nsubseteq P$ then it is easy to check that $N \cap P$ is a jointly prime (R, S)-submodule of N, and hence $\operatorname{rad}_{(R, S)}(N) \subseteq N \cap P \subseteq P$. So, in any case we get $\operatorname{rad}_{(R, S)}(N) \subseteq P$. Thus, it follows that $\operatorname{rad}_{(R, S)}(N) \subseteq \operatorname{rad}_{(R, S)}(M)$.

In module theory, we know that if T-module M is a direct sum of its submodules then the prime radicals of M is also a direct sum of prime radicals of its submodules. Evidently, this property is still maintained on (R, S)-modules M when M satisfies $a \in R a S$ for all $a \in M$.

Proposition 3.2. Let M be an (R, S)-module and $\left\{N_{i}\right\}_{i \in I}$ be a collection of (R, S) submodules of M. If M satisfies $a \in R a S$ for all $a \in M$ and $M=\bigoplus_{i \in I} N_{i}$ then we have $\operatorname{rad}_{(R, S)}(M)=\bigoplus_{i \in I} \operatorname{rad}_{(R, S)}\left(N_{i}\right)$.

Proof. Since each N_{i} is an (R, S)-submodule of M, we get $\operatorname{rad}_{(R, S)}\left(N_{i}\right) \subseteq$ $\operatorname{rad}_{(R, S)}(M)$ for each $i \in I$. Thus, it follows that

$$
\begin{equation*}
\bigoplus_{i \in I} \operatorname{rad}_{(R, S)}\left(N_{i}\right) \subseteq \operatorname{rad}_{(R, S)}(M) \tag{1}
\end{equation*}
$$

Now, let $m \in M$. Then, $m=\sum_{i \in I} m_{i}$ with $m_{i} \in N_{i}$ for each $i \in I$ and $m_{i}=0$ except for finitely many indices $i \in I$. Suppose that $m \notin \bigoplus_{i \in I} \operatorname{rad}_{(R, S)}\left(N_{i}\right)$. We will prove that $m \notin \operatorname{rad}_{(R, S)}(M)$. Since $m \notin \bigoplus_{i \in I} \operatorname{rad}_{(R, S)}\left(N_{i}\right)$, then there exists $k \in I$ such that $m_{k} \notin \operatorname{rad}_{(R, S)}\left(N_{k}\right)$. Thus, there exists a jointly prime (R, S)-submodule N_{k}^{*} of N_{k} such that $m_{k} \notin N_{k}^{*}$. Consider $K=N_{k}^{*} \bigoplus\left(\underset{i \neq k}{\bigoplus} N_{i}\right)$. First, we prove that K is a jointly prime (R, S)-submodule of M. Let I be a right ideal of R, J be a left ideal of S, and $a \in M$ such that $I a J \subseteq K$. Since M satisfies $a \in R a S$ for all $a \in M$, then based on Theorem 2.1 we will prove that $I M J \subseteq K$ or $a \in K$. Since $a \in M, a=\sum_{i \in I} a_{i}$ where $a_{i} \in N_{i}$ for each $i \in I$ and $a_{i}=0$ except for finitely many indices $i \in I$. Thus we get $I a J=I\left(\sum_{i \in I} a_{i}\right) J=I a_{k} J+I\left(\sum_{i \neq k} a_{i}\right) J \subseteq K$, so that $I a_{k} J \subseteq N_{k}^{*}$. Since N_{k}^{*} is a jointly prime (R, S)-submodule of N_{k}, we have $I N_{k} J \subseteq N_{k}^{*}$ or $a_{k} \in N_{k}^{*}$. Since $a_{i} \in N_{i}$ for each $i \in I, \sum_{i \neq k} a_{i} \in \bigoplus_{i \neq k} N_{i}$. Since for all $i \in I, N_{i}$ is an (R, S)-submodule of $M, I\left(\bigoplus_{i \neq k} N_{i}\right) J \subseteq \bigoplus_{i \neq k} N_{i}$. Thus, it follows that $a=\sum_{i \in I} a_{i} \in K$ or $I\left(\bigoplus_{i \in I} N_{i}\right) J=I M J \subseteq K$. Hence, K is a jointly prime (R, S)-submodule of M. Furthermore, because $m_{k} \notin N_{k}^{*}$ then $m \notin K$. Since K is a jointly prime (R, S)-submodule of $M, m \notin \operatorname{rad}_{(R, S)}(M)$. Thus, it follows that

$$
\begin{equation*}
\operatorname{rad}_{(R, S)}(M) \subseteq \bigoplus_{i \in I} \operatorname{rad}_{(R, S)}\left(N_{i}\right) \tag{2}
\end{equation*}
$$

From (1) and (2), we obtain $\operatorname{rad}_{(R, S)}(M)=\bigoplus_{i \in I} \operatorname{rad}_{(R, S)}\left(N_{i}\right)$.
It is easy to show that every jointly prime (R, S)-submodule of M contains a minimal jointly prime (R, S)-submodule of M. Based on this property, we get a relationship between jointly prime radicals of (R, S)-modules and minimal jointly prime (R, S)-submodules.

Proposition 3.3. Let M be an (R, S)-module. The jointly prime radical of M is equal to M or the intersection of all minimal jointly prime (R, S)-submodules of M.

Proof. Since every jointly prime (R, S)-submodule of M contains a minimal jointly prime (R, S)-submodule then for each $P \in \operatorname{Spec}^{j_{p}}(M)$ there exists a minimal jointly prime (R, S)-submodule $P^{\prime} \in \operatorname{Spec}^{j_{p}}(M)$ such that $P^{\prime} \subseteq P$. Furthermore, we can form the set:

$$
\Im=\left\{P^{\prime} \mid P^{\prime} \text { is a minimal jointly prime }(R, S) \text {-submodule }\right\} .
$$

Suppose that $\operatorname{rad}_{(R, S)}(M) \neq M$. We will prove that $\operatorname{rad}_{(R, S)}(M)=\bigcap_{P^{\prime} \in \Im} P^{\prime}$. Since $\Im \subseteq \operatorname{Spec}^{j_{p}}(M)$, we get $\operatorname{rad}_{(R, S)}(M) \subseteq \bigcap_{P^{\prime} \in \Im} P^{\prime}$. On the other hand, for any
$P \in \operatorname{Spec}^{j_{p}}(M)$ there is $P^{*} \in \Im$ with $P^{*} \subseteq P$. Thus $\bigcap_{P^{\prime} \in \Im} P^{\prime} \subseteq P^{*} \subseteq P$, which implies that $\bigcap_{P^{\prime} \in \Im} P^{\prime} \subseteq \operatorname{rad}_{(R, S)}(M)$. Hence $\operatorname{rad}_{(R, S)}(M)=\bigcap_{P^{\prime} \in \Im} P^{\prime}$. Therefore, this shows that $\operatorname{rad}_{(R, S)}(M)$ is equal to the intersection of all minimal jointly prime (R, S)-submodules of M.

Now, we give an important lemma which will be used in the proof of the next property of jointly prime radicals of an (R, S)-module.

Lemma 3.4. Let P_{1} and P_{2} be jointly prime (R, S)-submodules of M, and let $P_{1} / \operatorname{rad}_{(R, S)}(M)$ and $P_{2} / \operatorname{rad}_{(R, S)}(M)$ be (R, S)-submodules of $M / \operatorname{rad}_{(R, S)}(M)$. Then,

$$
P_{1} / r a d_{(R, S)}(M) \cap P_{2} / \operatorname{rad}_{(R, S)}(M)=\left(P_{1} \cap P_{2}\right) / r a d_{(R, S)}(M)
$$

Given an (R, S)-module M and (R, S)-submodules A, P of M with $A \subset P$. Then, it is easy to check that the necessary and sufficient condition for P to be a jointly prime (R, S)-submodule of M is P / A being a jointly prime (R, S)-submodule of M / A. By using this property, we can show that the jointly prime radical of the quotient (R, S)-module $M / \operatorname{rad}_{(R, S)}(M)$ is zero.
Proposition 3.5. Let M be an (R, S)-module. Then,

$$
\operatorname{rad}_{(R, S)}\left(M / \operatorname{rad}_{(R, S)}(M)\right)=\overline{0}
$$

Proof. Suppose that M has no jointly prime (R, S)-submodules, then we get that quotient (R, S)-modules $M / \operatorname{rad}_{(R, S)}(M)$ also has no jointly prime (R, S) submodules. Thus, $\operatorname{rad}_{(R, S)}(M)=M$ and then we obtain

$$
\operatorname{rad}_{(R, S)}\left(M / \operatorname{rad}_{(R, S)}(M)\right)=\operatorname{rad}_{(R, S)}(M / M)=\operatorname{rad}_{(R, S)}(\overline{0})=\overline{0}
$$

Suppose that M has a jointly prime (R, S)-submodule, then we obtain that quotient (R, S)-module $M / \operatorname{rad}_{(R, S)}(M)$ also has a jointly prime (R, S)-submodule. From the definition,

$$
\operatorname{rad}_{(R, S)}\left(M / \operatorname{rad}_{(R, S)}(M)\right)=\bigcap_{\bar{P} \in \operatorname{Spec}^{j_{p}}}\left(M / \operatorname{rad}_{(R, S)}(M)\right)
$$

Since Lemma 3.4 can be generalized for infinite number of P_{i} jointly prime (R, S) submodules of M, then we get

$$
\bigcap_{\bar{P} \in \operatorname{Spec}^{j_{p}}}\left(M / \operatorname{rad}_{(R, S)}(M)\right) \quad \bar{P}=\left(\bigcap_{P \in \text { Spec }^{j_{p}}(M)} P\right) / \operatorname{rad}_{(R, S)}(M) .
$$

So,

$$
\operatorname{rad}_{(R, S)}\left(M / \operatorname{rad}_{(R, S)}(M)\right)=\operatorname{rad}_{(R, S)}(M) / \operatorname{rad}_{(R, S)}(M)=\overline{0}
$$

Hence, it's proved that $\operatorname{rad}_{T}\left(M / \operatorname{rad}_{T}(M)\right)=\overline{0}$.
Given an (R, S)-module M and an ideal I of R such that $I \subseteq A n n_{R}(M)$. We can show that an (R, S)-module M is also an $(R / I, S)$-module under the scalar multiplication operation that defined as follows:

$$
\begin{aligned}
-_{-} \cdot \cdot_{-}: R / I \times M \times S & \longrightarrow M \\
(\bar{a}, m, s) & \longrightarrow \bar{a} \cdot m \cdot s:=a m s
\end{aligned}
$$

for all $\bar{a} \in R / I, m \in M$, and $s \in S$.
Moreover, it is easy to check that P is a jointly prime (R, S)-submodule of M if and only if P is a jointly prime $(R / I, S)$-submodule of M.
Proposition 3.6. Let M be an (R, S)-module and I be an ideal of R such that $I \subseteq A n n_{R}(M)$. Then, $\operatorname{rad}_{(R, S)}(M)=\operatorname{rad}_{(R / I, S)}(M)$.

Proof. Let $a \in \operatorname{rad}_{(R, S)}(M)$ and P be a jointly prime (R, S)-submodule of M. Then, $a \in P$. Since P is also a jointly prime $(R / I, S)$-submodule of M, $a \in \operatorname{rad}_{(R / I, S)}(M)$. Thus, we obtain

$$
\begin{equation*}
\operatorname{rad}_{(R, S)}(M) \subseteq \operatorname{rad}_{(R / I, S)}(M) \tag{3}
\end{equation*}
$$

Furthermore, let $b \in \operatorname{rad}_{(R / I, S)}(M)$ and N a jointly prime $(R / I, S)$-submodule of M. Then, $b \in N$. Since N is also a jointly prime (R, S)-submodule of M, $b \in \operatorname{rad}_{(R, S)}(M)$. Thus, we get

$$
\begin{equation*}
\operatorname{rad}_{(R / I, S)}(M) \subseteq \operatorname{rad}_{(R, S)}(M) \tag{4}
\end{equation*}
$$

Based on (3) and (4), it's proved that $\operatorname{rad}_{(R, S)}(M)=\operatorname{rad}_{(R / I, S)}(M)$.

4. Concluding Remarks

Further work on the properties of jointly prime radicals of an (R, S)-module can be carried out. For example, the investigation of properties of jointly prime radicals can be done on any left multiplication (R, S)-module. The concept of left multiplication (R, S)-modules has been described by Khumprapussorn et al. [3].

Acknowledgement This work is a part of first author's thesis. We are thankful to the referees for the useful comments and feedbacks.

References

[1] Behboodi, M., "On the Prime Radical and Baer's Lower Nilradical of Modules", Acta Mathematica Hungarica, 122 (2009), 293-306.
[2] Goodearl, K., R. and Warfield, R.B., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 2004.
[3] Khumprapussorn, T., Pianskool, S., and Hall, M., (R,S)-Modules and their Fully and Jointly Prime Submodules, International Mathematical Forum, 7 (2012), 1631-1643.
[4] Lam, T.Y., A First Course in Noncommutative Rings, Springer-Verlag New York, Inc., 2001.

[^0]: 2000 Mathematics Subject Classification: 16S90.
 Received: 23-05-2013, revised: 01-11-2014, accepted: 24-11-2014.

