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Abstract. Let M be an (R,S)-module. In this paper a generalization of the m-

system set of modules to (R,S)-modules is given. Then for an (R,S)-submodule N

of M , we define (R,S)
√
N as the set of a ∈ M such that every m-system containing

a meets N . It is shown that (R,S)
√
N is the intersection of all jointly prime (R,S)-

submodules of M containing N . We define jointly prime radicals of an (R,S)-module

M as rad(R,S)(M) = (R,S)
√

0. Then we present some properties of jointly prime

radicals of an (R,S)-module.
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Abstrak. Diberikan (R,S)-modul M . Dalam tulisan ini didefinisikan himpunan

sistem-m pada suatu (R,S)-modul sebagai perumuman dari himpunan sistem-

m suatu modul. Didefinisikan (R,S)
√
N sebagai himpunan semua a ∈ M yang

memenuhi sifat setiap sistem-m yang memuat a irisannya dengan N tidak kosong,

untuk suatu (R,S)-submodul N di M . Dapat ditunjukkan bahwa (R,S)
√
N meru-

pakan irisan dari semua (R,S)-submodul prima gabungan di M yang memuat

N . Didefinisikan radikal prima gabungan dari (R,S)-modul M sebagai himpunan

rad(R,S)(M) = (R,S)
√

0. Kemudian, dalam tulisan ini disajikan beberapa sifat dari

radikal prima gabungan suatu (R,S)-modul.

Kata kunci: (R,S)-modul, (R,S)-submodul prima gabungan, sistem-m, radikal

prima.
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1. Introduction

All rings in this paper are arbitrary ring unless stated otherwise. Let R and
S be arbitrary rings. Khumprapussorn et al. in [3] introduced (R,S)-modules as
a generalization of (R,S)-bimodules. An (R,S)-module has an (R,S)-bimodule
structure when both rings R and S have central idempotent elements.

In their paper, Khumprapussorn et al. also defined (R,S)-submodules of M
as additive subgroups N of M such that rns ∈ N for all r ∈ R, n ∈ N , and s ∈ S.
Moreover, a proper (R,S)-submodule P of M is called a jointly prime (R,S)-
submodule if for each left ideal I of R, right ideal J of S, and (R,S)-submodule N
of M , INJ ⊆ P implies IMJ ⊆ P or N ⊆ P .

A jointly prime (R,S)-submodule P of M is called a minimal jointly prime
(R,S)-submodule if it is minimal in the class of jointly prime (R,S)-submodules
of M . Based on Goodearl and Warfield [2], we show that every jointly prime
(R,S)-submodule of M contains a minimal jointly prime (R,S)-submodule.

Let T be a ring with unity. Lam [4] has defined that a nonempty set J ⊆ T is
said to be an m-system if for each pair a, b ∈ J , there exists t ∈ T such that atb ∈ J .
Furthermore, for an ideal I of T , the set

√
I := {a ∈ T | (∀ m-system J of T ) a ∈

J ⇒ J ∩ I 6= ∅} equals to the intersection of all the prime ideals of T containing I.
Based on this definition, Behboodi [1] has generalized the definition of m-system of
unitary rings to modules. Let M be an unitary module over a ring T . A nonempty
set X ⊆ M \ {0} is called an m-system if for each (left) ideal I of T and for all
submodules K,L of M , (K+L)∩X 6= ∅ and (K+IM)∩X 6= ∅ imply (K+IL)∩X 6=
∅. It has been shown that the complement of a prime submodule is an m-system,
and for any m-system X, a submodule disjoint from X and maximal with respect
to this property is always a prime submodule. Moreover, for a submodule N of M ,
the set

√
N := {a ∈M | (∀ m-system X of M) a ∈ X ⇒ X ∩N 6= ∅} equals to the

intersection of all prime submodules of M containing N .

In Section 2, we extend these facts to (R,S)-modules. In fact, we give a ge-
neralization of the notion of m-systems of modules to (R,S)-modules. Then for an

(R,S)-submodule N of M , we define (R,S)
√
N := {a ∈M | (∀ m-system X of M) a ∈

X ⇒ X ∩N 6= ∅}. And then we define jointly prime radicals of an (R,S)-module

M as rad(R,S)(M) = (R,S)
√

0. It is shown that rad(R,S)(M) is the intersection of
all jointly prime (R,S)-submodules of M (note that, if M has no any jointly prime
(R,S)-submodule, then rad(R,S)(M) := M). In Section 3, we present some pro-
perties of jointly prime radicals of (R,S)-modules. These properties are as follows:
every jointly prime radicals of (R,S)-submodules is contained in a jointly prime
radical of its (R,S)-module; jointly prime radicals of (R,S)-modules M is either
equal to M or the intersection of all minimal jointly prime (R,S)-submodules of

M ; and jointly prime radicals of quotient (R,S)-modules M
/
rad(R,S)(M) is zero.
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2. Jointly Prime Radicals of (R,S)-Modules

Before we define m-systems of an (R,S)-module, we describe first the jointly
prime (R,S)-submodule. As we have already stated earlier, a proper (R,S)-
submodule P of M is called a jointly prime (R,S)-submodule if for each left ideal
I of R, right ideal J of S, and (R,S)-submodule N of M , INJ ⊆ P implies
IMJ ⊆ P or N ⊆ P . The following are some characterizations of jointly prime
(R,S)-submodules given in [3].

Theorem 2.1. Let M be an (R,S)-module satisfying a ∈ RaS for all a ∈M , and
P a proper (R,S)-submodule of M . The following statements are equivalent:

(1) P is a jointly prime (R,S)-submodule.
(2) For every right ideal I of R, m ∈ M , and left ideal J of S, ImJ ⊆ P

implies IMJ ⊆ P or m ∈ P .
(3) For every right ideal I of R, (R,S)-submodule N of M , and left ideal J of

S, INJ ⊆ P implies IMJ ⊆ P or N ⊆ P .
(4) For every left ideal I of R, m ∈M , and right ideal J of S, (IR)m(SJ) ⊆ P

implies IMJ ⊆ P or m ∈ P .
(5) For every a ∈ R, m ∈M , and b ∈ S, (aR)m(Sb) ⊆ P implies aMb ⊆ P or

m ∈ P .

If the (R,S)-module M satisfies M = RMS, the necessary and sufficient
condition for a proper (R,S)-submodule P of M to be a jointly prime (R,S)-
submodule is for all ideal I of R, ideal J of S, and (R,S)-submodule N of M ,
INJ ⊆ P implies IMJ ⊆ P or N ⊆ P .

Now, we define the notion of m-systems of (R,S)-modules.

Definition 2.2. Let M be an (R,S)-module. A nonempty set X ⊆M \{0} is called
an m-system if for each left ideal I of R, right ideal J of S, and (R,S)-submodules
K,L of M , (K + L) ∩X 6= ∅ and (K + IMJ) ∩X 6= ∅ imply (K + ILJ) ∩X 6= ∅.

Based on Behboodi [1], we can show that the complement of a jointly prime
(R,S)-submodule is an m-system.

Proposition 2.3. Let P be a proper (R,S)-submodule of M . Then P is a jointly
prime (R,S)-submodule of M if and only if X = M \ P is an m-system.

Proof. (⇒). Suppose that P is a jointly prime (R,S)-submodule of M . Let I
be a left ideal of R, J be a right ideal of S, and K,L be (R,S)-submodules of M
such that (K + L) ∩ X 6= ∅ and (K + IMJ) ∩ X 6= ∅. If (K + ILJ) ∩ X = ∅,
then K + ILJ ⊆ P . Then, ILJ ⊆ P and K ⊆ P . Since P is a jointly prime
(R,S)-submodule of M , we have L ⊆ P or IMJ ⊆ P . Thus (K + L) ∩X = ∅ or
(K + IMJ) ∩X = ∅, a contradiction. Therefore, X is an m-system of M .
(⇐). Suppose that X is an m-system of M . Let I be a left ideal of R, J be a right
ideal of S, and L be an (R,S)-submodule of M such that ILJ ⊆ P . If L * P
and IMJ * P , then L ∩ X 6= ∅ and IMJ ∩ X 6= ∅. Since X is an m-system,
ILJ ∩ X 6= ∅ so that ILJ * P , a contradiction. Therefore, P is a jointly prime
(R,S)-submodule of M . �
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Example 2.4. Let Z be the ring of integers taken as an (2Z, 3Z)-module. First,
we show that 6Z is a jointly prime (2Z, 3Z)-submodule of Z. Consider a left ideal
I = (2m)Z of 2Z, a right ideal J = (3n)Z of 3Z, and an (2Z, 3Z)-submodule
N = kZ of Z, for some m,n, k ∈ N. It is true that INJ = ((2m)Z)(kZ)((3n)Z) =
(6mkn)Z ⊆ 6Z and N = kZ =* 6Z. Then for each m,n ∈ N, it is clear that
IZJ = ((2m)Z)(Z)((3n)Z) = (6mn)Z ⊆ 6Z. Hence, 6Z is a jointly prime (2Z, 3Z)-
submodule of Z. Therefore, Z \ 6Z is an m-system of (2Z, 3Z)-module Z.

It is easy to prove that every maximal (R,S)-submodule of M is a jointly
prime (R,S)-submodule. Furthermore, we prove a proposition that states that a
maximal (R,S)-submodule P of M which is disjoint from an arbitrary m-system
of M is a jointly prime (R,S)-submodule.

Proposition 2.5. Let M be an (R,S)-module, X an m-system of M , and P a
proper (R,S)-submodule of M maximal with respect to the property that P ∩X = ∅.
Then, P is a jointly prime (R,S)-submodule of M .

Proof. Let I be a left ideal of R, J a right ideal of S, and N an (R,S)-submodule
of M such that INJ ⊆ P . Suppose that N * P and IMJ * P . Since P is
maximal with respect to the property that P ∩X = ∅, we have (P + N) ∩X 6= ∅
and (P + IMJ)∩X 6= ∅. Since X is an m-system of M , then (P + INJ)∩X 6= ∅.
Since INJ ⊆ P , it follows that P ∩X 6= ∅, a contradiction. Therefore, P must be
a jointly prime (R,S)-submodule of M . �

We recall the set introduced by Behboodi in [1],
√
N := {a ∈M | (∀ m-system X of M) a ∈ X ⇒ X ∩N 6= ∅}.

Now, we present a generalization of the notion of
√
N for any (R,S)-submodules

N of M and we denote it as (R,S)
√
N .

Definition 2.6. Let M be an (R,S)-module. For an (R,S)-submodule N of M , if

there is a jointly prime (R,S)-submodule containing N , then we define (R,S)
√
N :=

{a ∈M | (∀ m-system X of M) a ∈ X ⇒ X ∩N 6= ∅}. If there is no jointly prime

(R,S)-submodules containing N , then we define (R,S)
√
N := M .

Let M be an (R,S)-module. Then, the jointly prime spectrum of M is the
set Specjp(M) := {P | P is a jointly prime (R,S)-submodule of M}. If N be an
(R,S)-submodule of M , then we define V jp(N) := {P ∈ Specjp(M) | N ⊆ P}.
Next, we show that (R,S)

√
N equals to the intersection of all jointly prime (R,S)-

submodules of M .

Theorem 2.7. Let M be an (R,S)-module and N be an (R,S)-submodule of M .

Then either (R,S)
√
N = M or (R,S)

√
N =

⋂
P∈V jp (N)

P .

Proof. Suppose that (R,S)
√
N 6= M . It follows from Definition 2.6 that V jp(N) 6= ∅.

We will show that (R,S)
√
N =

⋂
P∈V jp (N)

P . Let m ∈ (R,S)
√
N and P ∈ V jp(N).
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Consider the m-system X := M \ P in M . Since N ⊆ P , we have X ∩ N = ∅.
Consequently, we get m 6∈ X so that m ∈ P . Thus, we obtain (R,S)

√
N ⊆

⋂
P∈V jp (N)

P .

Conversely, let a ∈
⋂

P∈V jp (N)

P . If a 6∈ (R,S)
√
N , then there exists an m-system X

such that a ∈ X but N ∩X = ∅. Consider the following set:

J = {J | N ⊆ J, J is an (R,S)-submodule of M and J ∩X = ∅}.
By Zorn’s Lemma, J has a maximal element, which is an (R,S)-submodule K ⊇ N
maximal with respect to the property K ∩ X = ∅. By Proposition 2.5, K is a
jointly prime (R,S)-submodule of M , so K ∈ V jp(N). Therefore, we have a ∈ K.

Whereas a ∈ X, so we get K ∩X 6= ∅, a contradiction. Thus, a ∈ (R,S)
√
N and it

follows that
⋂

P∈V jp (N)

P ⊆ (R,S)
√
N . Hence, (R,S)

√
N =

⋂
P∈V jp (N)

P . �

Example 2.8. Let Z be an (2Z, 2Z)-module and 8Z be an (2Z, 2Z)-submodule of
Z. We obtain the set V jp(8Z) = {P ∈ Specjp(Z) | 8Z ⊆ P} = {2Z, 4Z}. Therefore,
(2Z,2Z)
√

8Z =
⋂

P∈V jp (8Z)

P = 4Z ∩ 2Z = 4Z.

Let I be an ideal of an unitary ring T . By Lam [4],
√
I is equal to T or the

intersection of all prime ideals of T containing I. From Khumprapussorn et al. [3],

we know that the annihilator from M
/
N of the ring R, that is (N : M)R := {r ∈

R | rMS ⊆ N}, is an ideal of R when the ring S satisfies S2 = S. Therefore,

when S2 = S,
√

(N : M)R is equal to R or the intersection of all prime ideals of R

containing (N : M)R. Next, we present a connection between
√

(N : M)RMS and
(R,S)
√
N .

Proposition 2.9. Let M be an (R,S)-module and N be an (R,S)-submodule of

M . If S2 = S, then
√

(N : M)RMS ⊆ (R,S)
√
N .

Proof. Since S2 = S, by [3] (N : M)R is an ideal of R. Also
√

(N : M)R is equal
to R or equal to the intersection of all prime ideals of R that contain (N : M)R.

Suppose that (R,S)
√
N = M . Since

√
(N : M)R ⊆ R, so√

(N : M)RMS ⊆ RMS ⊆M =
(R,S)
√
N.

Suppose that (R,S)
√
N 6= M . Then (R,S)

√
N =

⋂
P∈V jp (N)

P . Let P ∈ V jp(N), then P

is a jointly prime (R,S)-submodule of M and N ⊆ P . Moreover, by Proposition
2.12 of [3], (P : M)R is a prime ideal of R. Furthermore, since N ⊆ P , it is clear
that (N : M)R ⊆ (P : M)R. Since (P : M)R is a prime ideal of R and contains
(N : M)R, we obtain √

(N : M)R ⊆ (P : M)R.

Thus, √
(N : M)RMS ⊆ (P : M)RMS ⊆ P.
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Therefore, this shows that
√

(N : M)RMS ⊆
⋂

P∈V jp (N)

P = (R,S)
√
N . �

The definition of jointly prime radicals of an (R,S)-module is given below.

Definition 2.10. Let M be an (R,S)-module. If there is a jointly prime (R,S)-
submodule of M , then we define jointly prime radicals of M as:

rad(R,S)(M) =
(R,S)
√

0 :=
⋂

P∈Specjp (M)

P.

If there is no jointly prime (R,S)-submodule of M , then we define jointly prime
radicals of M as rad(R,S)(M) := M .

Example 2.11. Let Z be an (2Z, 2Z)-module. It is easy to show that {0} is a jointly
prime (2Z, 2Z)-submodule of Z. Since every jointly prime (2Z, 2Z)-submodule of Z
contains {0}, then jointly prime radical of (2Z, 2Z)-module Z is rad(2Z,2Z)(Z) = {0}.

3. Some Properties of Jointly Prime Radicals of (R,S)-Modules

In this section, we present some properties of jointly prime radicals of (R,S)-
modules. Let N be an (R,S)-submodule of M . We show that the jointly prime
radical of N is contained in the jointly prime radical of M .

Proposition 3.1. Let N be an (R,S)-submodule of M . Then, rad(R,S)(N) ⊆
rad(R,S)(M).

Proof. Let P ∈ Specjp(M). If N ⊆ P then rad(R,S)(N) ⊆ P . If N * P then it
is easy to check that N ∩ P is a jointly prime (R,S)-submodule of N , and hence
rad(R,S)(N) ⊆ N ∩ P ⊆ P . So, in any case we get rad(R,S)(N) ⊆ P . Thus, it
follows that rad(R,S)(N) ⊆ rad(R,S)(M). �

In module theory, we know that if T -module M is a direct sum of its sub-
modules then the prime radicals of M is also a direct sum of prime radicals of
its submodules. Evidently, this property is still maintained on (R,S)-modules M
when M satisfies a ∈ RaS for all a ∈M .

Proposition 3.2. Let M be an (R,S)-module and {Ni}i∈I be a collection of (R,S)-
submodules of M . If M satisfies a ∈ RaS for all a ∈ M and M =

⊕
i∈I

Ni then we

have rad(R,S)(M) =
⊕
i∈I

rad(R,S)(Ni).

Proof. Since each Ni is an (R,S)-submodule of M , we get rad(R,S)(Ni) ⊆
rad(R,S)(M) for each i ∈ I. Thus, it follows that⊕

i∈I
rad(R,S)(Ni) ⊆ rad(R,S)(M). (1)
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Now, let m ∈ M . Then, m =
∑
i∈I

mi with mi ∈ Ni for each i ∈ I and mi = 0

except for finitely many indices i ∈ I. Suppose that m 6∈
⊕
i∈I

rad(R,S)(Ni). We will

prove that m 6∈ rad(R,S)(M). Since m 6∈
⊕
i∈I

rad(R,S)(Ni), then there exists k ∈ I

such that mk 6∈ rad(R,S)(Nk). Thus, there exists a jointly prime (R,S)-submodule

N∗k of Nk such that mk 6∈ N∗k . Consider K = N∗k
⊕(⊕

i 6=k

Ni

)
. First, we prove

that K is a jointly prime (R,S)-submodule of M . Let I be a right ideal of R, J
be a left ideal of S, and a ∈ M such that IaJ ⊆ K. Since M satisfies a ∈ RaS
for all a ∈M , then based on Theorem 2.1 we will prove that IMJ ⊆ K or a ∈ K.
Since a ∈M , a =

∑
i∈I

ai where ai ∈ Ni for each i ∈ I and ai = 0 except for finitely

many indices i ∈ I. Thus we get IaJ = I
( ∑

i∈I
ai

)
J = IakJ + I

( ∑
i 6=k

ai

)
J ⊆ K,

so that IakJ ⊆ N∗k . Since N∗k is a jointly prime (R,S)-submodule of Nk, we have
INkJ ⊆ N∗k or ak ∈ N∗k . Since ai ∈ Ni for each i ∈ I,

∑
i 6=k

ai ∈
⊕
i 6=k

Ni. Since for

all i ∈ I, Ni is an (R,S)-submodule of M , I
( ⊕

i 6=k

Ni

)
J ⊆

⊕
i6=k

Ni. Thus, it follows

that a =
∑
i∈I

ai ∈ K or I
(⊕

i∈I
Ni

)
J = IMJ ⊆ K. Hence, K is a jointly prime

(R,S)-submodule of M . Furthermore, because mk 6∈ N∗k then m 6∈ K. Since K is
a jointly prime (R,S)-submodule of M , m 6∈ rad(R,S)(M). Thus, it follows that

rad(R,S)(M) ⊆
⊕
i∈I

rad(R,S)(Ni). (2)

From (1) and (2), we obtain rad(R,S)(M) =
⊕
i∈I

rad(R,S)(Ni). �

It is easy to show that every jointly prime (R,S)-submodule of M contains
a minimal jointly prime (R,S)-submodule of M . Based on this property, we get a
relationship between jointly prime radicals of (R,S)-modules and minimal jointly
prime (R,S)-submodules.

Proposition 3.3. Let M be an (R,S)-module. The jointly prime radical of M is
equal to M or the intersection of all minimal jointly prime (R,S)-submodules of
M .

Proof. Since every jointly prime (R,S)-submodule of M contains a minimal
jointly prime (R,S)-submodule then for each P ∈ Specjp(M) there exists a minimal
jointly prime (R,S)-submodule P ′ ∈ Specjp(M) such that P ′ ⊆ P . Furthermore,
we can form the set:

= = {P ′ | P ′ is a minimal jointly prime (R,S)-submodule}.
Suppose that rad(R,S)(M) 6= M . We will prove that rad(R,S)(M) =

⋂
P ′∈=

P ′. Since

= ⊆ Specjp(M), we get rad(R,S)(M) ⊆
⋂

P ′∈=
P ′. On the other hand, for any
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P ∈ Specjp(M) there is P ∗ ∈ = with P ∗ ⊆ P . Thus
⋂

P ′∈=
P ′ ⊆ P ∗ ⊆ P , which

implies that
⋂

P ′∈=
P ′ ⊆ rad(R,S)(M). Hence rad(R,S)(M) =

⋂
P ′∈=

P ′. Therefore,

this shows that rad(R,S)(M) is equal to the intersection of all minimal jointly prime
(R,S)-submodules of M . �

Now, we give an important lemma which will be used in the proof of the next
property of jointly prime radicals of an (R,S)-module.

Lemma 3.4. Let P1 and P2 be jointly prime (R,S)-submodules of M , and let
P1

/
rad(R,S)(M) and P2

/
rad(R,S)(M) be (R,S)-submodules of M

/
rad(R,S)(M). Then,

P1

/
rad(R,S)(M) ∩ P2

/
rad(R,S)(M) = (P1 ∩ P2)

/
rad(R,S)(M).

Given an (R,S)-module M and (R,S)-submodules A, P of M with A ⊂ P .
Then, it is easy to check that the necessary and sufficient condition for P to be a

jointly prime (R,S)-submodule of M is P
/
A being a jointly prime (R,S)-submodule

of M
/
A. By using this property, we can show that the jointly prime radical of the

quotient (R,S)-module M
/
rad(R,S)(M) is zero.

Proposition 3.5. Let M be an (R,S)-module. Then,

rad(R,S)

(
M
/
rad(R,S)(M)

)
= 0̄.

Proof. Suppose that M has no jointly prime (R,S)-submodules, then we get

that quotient (R,S)-modules M
/
rad(R,S)(M) also has no jointly prime (R,S)-

submodules. Thus, rad(R,S)(M) = M and then we obtain

rad(R,S)

(
M
/
rad(R,S)(M)

)
= rad(R,S)

(
M
/
M

)
= rad(R,S)(0̄) = 0̄.

Suppose that M has a jointly prime (R,S)-submodule, then we obtain that quotient

(R,S)-module M
/
rad(R,S)(M) also has a jointly prime (R,S)-submodule. From the

definition,

rad(R,S)

(
M
/
rad(R,S)(M)

)
=

⋂
P̄∈Specjp

(
M
/
rad(R,S)(M)

) P̄ .

Since Lemma 3.4 can be generalized for infinite number of Pi jointly prime (R,S)-
submodules of M , then we get⋂

P̄∈Specjp

(
M
/
rad(R,S)(M)

) P̄ =

( ⋂
P∈Specjp (M)

P
)/
rad(R,S)(M).
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So,

rad(R,S)

(
M
/
rad(R,S)(M)

)
= rad(R,S)(M)

/
rad(R,S)(M) = 0̄.

Hence, it’s proved that radT

(
M
/
radT (M)

)
= 0̄. �

Given an (R,S)-module M and an ideal I of R such that I ⊆ AnnR(M).

We can show that an (R,S)-module M is also an (R
/
I, S)-module under the scalar

multiplication operation that defined as follows:

− ·− ·− : R
/
I ×M × S −→ M

(ā,m, s) −→ ā ·m · s := ams

for all ā ∈ R
/
I, m ∈M , and s ∈ S.

Moreover, it is easy to check that P is a jointly prime (R,S)-submodule of

M if and only if P is a jointly prime (R
/
I, S)-submodule of M .

Proposition 3.6. Let M be an (R,S)-module and I be an ideal of R such that
I ⊆ AnnR(M). Then, rad(R,S)(M) = rad(R/I,S)(M).

Proof. Let a ∈ rad(R,S)(M) and P be a jointly prime (R,S)-submodule of

M . Then, a ∈ P . Since P is also a jointly prime (R
/
I, S)-submodule of M ,

a ∈ rad(R/I,S)(M). Thus, we obtain

rad(R,S)(M) ⊆ rad(R/I,S)(M). (3)

Furthermore, let b ∈ rad(R/I,S)(M) and N a jointly prime (R
/
I, S)-submodule

of M . Then, b ∈ N . Since N is also a jointly prime (R,S)-submodule of M ,
b ∈ rad(R,S)(M). Thus, we get

rad(R/I,S)(M) ⊆ rad(R,S)(M). (4)

Based on (3) and (4), it’s proved that rad(R,S)(M) = rad(R/I,S)(M). �

4. Concluding Remarks

Further work on the properties of jointly prime radicals of an (R,S)-module
can be carried out. For example, the investigation of properties of jointly prime
radicals can be done on any left multiplication (R,S)-module. The concept of left
multiplication (R,S)-modules has been described by Khumprapussorn et al. [3].

Acknowledgement This work is a part of first author’s thesis. We are thankful
to the referees for the useful comments and feedbacks.



34 D. A. Yuwaningsih and I. E. Wijayanti

References

[1] Behboodi, M., ”On the Prime Radical and Baer’s Lower Nilradical of Modules”, Acta Math-

ematica Hungarica, 122 (2009), 293–306.

[2] Goodearl, K., R. and Warfield, R.B., An Introduction to Noncommutative Noetherian Rings,
Cambridge University Press, 2004.

[3] Khumprapussorn, T., Pianskool, S., and Hall, M., (R,S)-Modules and their Fully and Jointly

Prime Submodules, International Mathematical Forum, 7 (2012), 1631–1643.
[4] Lam, T.Y., A First Course in Noncommutative Rings, Springer-Verlag New York, Inc., 2001.


