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Abstract. Numerical entropy production can be used as a smoothness indicator of

solutions to conservation laws. By definition the entropy production is non-positive.

However some authors, using a finite volume method framework, showed that posi-

tive overshoots of the numerical entropy production were possible for conservation

laws (no source terms involved). Note that the one-and-a-half-dimensional shallow

water equations without source terms are conservation laws. A report has been

published regarding the behaviour of the numerical entropy production of the one-

and-a-half-dimensional shallow water equations without source terms. The main

result of that report was that positive overshoots of the numerical entropy pro-

duction were avoided by use of a modified entropy flux which satisfies a discrete

numerical entropy inequality. In the present article we consider an extension prob-

lem of the previous report. We take the one-and-a-half-dimensional shallow water

equations involving topography. The topography is a source term in the considered

system of equations. Our results confirm that a modified entropy flux which satis-

fies a discrete numerical entropy inequality is indeed required to have no positive

overshoots of the entropy production.
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Abstrak. Produksi entropi numeris dapat digunakan sebagai indikator kehalusan

fungsi penyelesaian hukum-hukum kekekalan. Berdasarkan definisi, produksi entropi

adalah tak-positif. Namun demikian, menggunakan suatu kerangka metode volume

hingga beberapa peneliti menunjukkan bahwa produksi entropi numeris bisa saja

bernilai positif pada titik-titik tertentu untuk hukum-hukum kekekalan (tidak ada

suku sumber dalam persamaan yang diselesaikan). Perlu dicatat bahwa persamaan

air dangkal satu setengah dimensi yang tidak melibatkan suku sumber merupakan

hukum kekekalan. Sebuah laporan tentang perilaku produksi entropi numeris untuk

persamaan air dangkal satu setengah dimensi tanpa suku sumber telah diterbitkan.

Hasil utama laporan tersebut adalah nilai positif produksi entropi numeris dapat

dihindari menggunakan flux entropi termodifikasi yang memenuhi suatu pertidak-

samaan entropi numeris diskret. Dalam artikel saat ini, dipandang suatu masalah

yang lebih umum, yaitu persamaan air dangkal satu setengah dimensi yang meli-

batkan topografi. Topografi ini adalah suatu suku sumber dalam sistem persamaan

yang dipandang. Hasil dalam artikel ini menegaskan bahwa suatu flux entropi ter-

modifikasi yang memenuhi suatu pertidaksamaan entropi numeris diskret memang

sungguh-sungguh diperlukan untuk menghindari timbulnya produksi entropi yang

bernilai positif.

Kata kunci: Produksi entropi numeris, persamaan air dangkal, indikator kehalusan,
metode volume hingga.

1. Introduction

Water flows are governed by a mathematical model, the system of shallow
water equations (SWE). These equations admit discontinuous solutions, even when
a smooth initial condition is given. Therefore, solutions to the SWE can be smooth
and/or rough over a given spatial domain. This behaviour mimics physical phe-
nomena, that is, water waves can be smooth and/or rough.

An indicator for the smoothness of solutions to the SWE is useful. For exam-
ple, a smoothness indicator is always needed for an adaptive numerical method used
to solve the SWE. The smoothness indicator detects which regions of the domain
are smooth and which ones are rough. With this detection the adaptive technique
takes some actions such that accurate solutions are obtained.

The numerical entropy production (NEP) is a well-known smoothness indi-
cator for solutions to the SWE [6]. It is the local truncation error of the entropy.
Its absolute values at rough regions is larger than its absolute values at smooth
regions [10, 11]. On smooth regions, its values are zero analytically. This property
makes the NEP able to detect the smoothness of solutions to the SWE. NEP has
been successfully implemented in gas dynamics and other conservation laws by a
number of authors, such as Ersoy et al. [2], Golay [3] and Puppo [12, 13]. NEP
can also be used to investigate the accuracy of numerical methods [14]. Alternative
types of smoothness indicators were discussed in [8, 9].

This article studies the numerical entropy production as a smoothness indi-
cator of solutions to the one-and-a-half-dimensional shallow water equations (1.5D
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SWE) involving topography. The 1.5D SWE is the one-dimensional SWE with an
additional equation regarding a passive tracer or transverse velocity. The study
follows from our previous results [7] on the homogeneuous 1.5D SWE. This arti-
cle extend the previous results, since a source term (topography) is added in the
system of equations.

The rest of this article is organised as follows. We recall the 1.5D SWE and
the numerical method used to solve the 1.5D SWE in Section 2. Numerical results
are presented in Section 3. Conclusions are given in Section 4.

2. Governing Equations and Numerical Methods

In this section we recall the 1.5D SWE and the numerical method that we
use to solve the 1.5D SWE.

The 1.5D SWE involving a topography source term are

ht + (hu)x = 0 , (1)

(hu)t +

(

hu2 +
1

2
gh2

)

x

= −ghzx , (2)

(hv)t + (huv)x = 0 . (3)

Here, x is the one-dimensional space variable, t is the time variable, g represents
the acceleration due to gravity, h = h(x, t) denotes the water height, u = u(x, t)
denotes the water velocity in the x-direction, and v(x, t) is the transverse velocity
or the concentration of the passive tracer. The mass or water height h , momentum
hu , and tracer-mass or transverse momentum hv are conserved.

According to Bouchut [1] the entropy inequality for (1)–(3) is

ηt + ψx ≤ 0 , (4)

where

η (q(x, t)) =
1

2
h(u2 + v2) +

1

2
gh2 + ghz , (5)

ψ (q(x, t)) =

(

1

2
h(u2 + v2) + gh2

)

u+ ghzu , (6)

are the entropy and the entropy flux respectively. The variable q(x, t) = [h hu hv]T

is the vector of conserved quantities of the 1.5D SWE. Note that the entropy in-
equality (4) is understood in the weak sense [4, 5].

To solve the 1.5D SWE we use the same method described in our previous
work [7]. In this article we focus on the numerical method with a double-sided
(local Lax-Friedrichs) flux for the mass and momentum evolutions, a single-sided
(upwind) flux for the tracer-mass evolution, and the modified entropy flux for the
entropy evolution. This was called Combination C in our previous work [7]. From
our previous work [7] we have obtained that the use of a double-sided (local Lax-
Friedrichs) stencil flux for the mass and momentum together with a single-sided
stencil (upwind) flux for the tracer-mass results in a more accurate solution than
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the use of double-sided stencil fluxes for all conserved quantity. In addition, an
entropy flux satisfying a discrete numerical entropy inequality leads to no positive
overshoots of the NEP.

The 1.5D SWE form balance laws

qt + f(q)x = s , (7)

where q is the analytical quantity and f is the analytical flux function. We solve
the considered equations using a first order finite volume method

Qn+1
j = Qn

j − λ
(

Fn
j+ 1

2

− Fn
j− 1

2

)

+ Sn
j . (8)

Here numerical fluxes Fj+ 1

2

and Fj− 1

2

of the conserved quantities are computed in

such a way that the method is stable with λ = ∆t/∆x is the mesh ratio. Variable
∆t is the time step and ∆x is the uniform cell-width. Variable Qn

j approximates the
average of the exact analytical quantity qj (x, t

n) in the jth cell (position x = xj)
at the nth time step (time t = tn). In addition, variable Sn

j approximates s at
position x = xj at time t = tn . Note that tn = n∆t and xi = i∆x , where n and
i are finite nonnegative integers. More detailed explanation about finite volume
methods can be found in a textbook of LeVeque [5].

The modified entropy flux, which is the focus of this article, is [1]

Ψn
j+ 1

2

= Ψn,1D

j+ 1

2

+Ψn,hv

j+ 1

2

. (9)

Variable Ψn,1D

j+ 1

2

is a numerical entropy flux Ψ of the 1D SWE part at position

x = xj+ 1

2

and time t = tn . We compute Ψn,1D

j+ 1

2

using the Lax-Friedrichs entropy

flux. Variable Ψn,hv

j+ 1

2

is a numerical entropy flux Ψ of the tracer (hv) at position

x = xj+ 1

2

and time t = tn . We compute Ψn,hv

j+ 1

2

using the upwind entropy flux

Ψn,hv

j+ 1

2

=











1
2F

n,h

j+ 1

2

v2j if Fn,h

j+ 1

2

≥ 0 ,

1
2F

n,h

j+ 1

2

v2j+1 otherwise .

(10)

Variable Fn,h

j+ 1

2

is the numerical flux F for the h quantity at position x = xj+ 1

2

and time t = tn . Note that if we simply used Ψn
j+ 1

2

= Ψn,1.5D

j+ 1

2

instead of the

modified entropy flux (9), then we could have positive overshoots of the NEP, as
demonstrated in our previous work [7].

3. Numerical Results

In this section we present our numerical results using a test case to demon-
strate that the modified entropy flux (9) indeed leads to no positive overshoots of
the NEP. In the simulation we use SI units for all quantities. Therefore we omit
the units as they are already clear.
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Figure 1. Initial condition of the dam-break problem.

As the test case we set up a dam break problem on a non-flat topography
involving a passive tracer, as follows. The non-flat topography with x ∈ [0, 2000] is

z(x) =

{

2− 0.005 (x− 1050)
2

if 1030 ≤ x ≤ 1070,
0 otherwise.

(11)

The initial condition is

u(x, 0) = 0, (12)

v(x, 0) =

{

1 if 0 < x < 1000,
0 if 1000 < x < 2000,

(13)

w(x, 0) =

{

10 if 0 < x < 1000,
5 if 1000 < x < 2000.

(14)

Here w(x, t) := h(x, t) + z(x) is the absolute water level and is called the stage.
The initial condition of this dam-break problem is shown in Figure 1.

Figures 2 and 3 show the simulation results at time t = 30 and t = 90,
respectively, using the first order finite volume method described in Section 2. The
implemented CFL number is 1.0 . The acceleration due to gravity is g = 9.81 . Here
the spatial domain is descretised into 1600 cells uniformly. In each figure, the first
subfigure contains the free water surface (stage) and bed topography. The second
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Figure 2. Dam-break results on a non-flat topography at t = 30
using a first order method and 1600 cells.

and third subfigures are the results for velocity u(x, t) and tracer concentration
v(x, t) respectively. The fourth subfigure shows the NEP. We see that the NEP
clearly detects the position of the shock discontinuity moving to the right. From
these rusults, no positive overshoots of the NEP occur. This confirms that the
modified entropy flux satisfying a discrete numerical entropy inequality is able to
overcome positive overshoots of the entropy production.

Now we present our results on the behaviour of the NEP in relation to the
mesh ratio λ = ∆t/∆x of the time step ∆t and the cell width ∆x. The mesh ratio
is fixed and taken as λ = 0.08. The time step ∆t and the cell width ∆x are varied.
The maximum values of |NEP| at time t = 30 are recorded in Table 1.

We observe that for a fixed mesh ratio the values of ∆t max |NEP| and
∆x max |NEP| are about constant. This behaviour suggests that the NEP can
be used as an effective refinement or coarsening indicator in adaptive mesh numer-
ical methods. Here the fixed mesh ratio is chosen in such away that the numerical
method is consistent and stable.

The NEP actually measures the error introduced at every time step of the
finite volume method [10]. The positions of large values of NEP are the positions
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Figure 3. Dam-break results on a non-flat topography at t = 90
using a first order method and 1600 cells.

Table 1. The NEP in relation to a fixed value of the mesh ratio
λ = 0.08, but varying ∆t and varying ∆x.

∆t ∆x max |NEP| ∆t max |NEP| ∆x max |NEP|
0.8 10 1.502 1.201 15.018
0.4 5 3.027 1.211 15.135
0.2 2.5 5.645 1.129 14.113
0.1 1.25 12.410 1.241 15.513
0.05 0.625 24.605 1.230 15.378

of the most dissipative regions in the space domain. The entropy is the energy
dispersal of the flow. Therefore, the positions or regions with large values of NEP
are the positions where some physical energy has lost due to flow mechanism. If
an adaptive method were used, the method should have taken action at these
dissipative regions, so that better accuracy of the solution to the SWE could be
obtained. However, the topic of adaptive method is beyond the scope of this article.
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4. Concluding Remarks

We have presented a study of the numerical entropy production as a smooth-
ness indicator for the one-and-a-half-dimensional shallow water equations involving
topography. In our study, no positive overshoots of the NEP occur and this is
correct by definition of the numerical entropy production. To solve the one-and-a-
half-dimensional shallow water equations, we recommend the use of the following
flux combinations: (1) a double-sided (such as, local Lax-Friedrichs) stencil flux for
the mass and momentum, (2) a single-sided stencil (such as, upwind) flux for the
tracer-mass, and (3) an entropy flux defined in such a way that a discrete numerical
entropy inequality is satisfied. In we only need to find the conserved quantities,
then only fluxes (1) and (2) should be used. These results are promising to be
extended to higher dimensional problems.
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