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Abstract. The trajectory matrix transforms univariate time series data into mul-
tivariate form using the structural properties of the Hankel Matrix (HM). Research
on data matrices within Time Series Analysis (T'SA) remains limited. This study
examines AR models with stationary properties and applies Singular Value Decom-
position (SVD) to HM in the Box-Jenkins framework. It focuses on HM properties,
matrix dimension considerations in SVD, and order identification. Numerical simu-
lations of the AR(1) and AR(2) models reveal that the PACF and SVD scree plots
exhibit similar patterns. This indicates that applying SVD to HM could serve as
an alternative to PACF for AR order selection. The findings highlight potential
future research directions by refining, adapting, and generalizing previous studies
to advance the TSA methodology.

Key words and Phrases: Autoregressive (AR) model, Hankel Matrix (HM),
Singular Value Decomposition (SVD), Time Series Analysis (TSA).

1. INTRODUCTION

In TSA, hidden patterns and correlations can be revealed by transforming a
univariate sequence into a multidimensional structure. A crucial step in this process
is the construction of a trajectory matrix, specifically using the HM structure. In
this study, a lag of 1 is chosen to construct the HM, as temporal dependencies
in weakly stationary processes, particularly in AR(1) and AR(2) models, can be
effectively captured. This choice is aligned with PACF interpretation and is utilized
to facilitate SVD-based dimensionality reduction. By structuring the HM in this
way, a balance between information preservation and computational efficiency is
ensured in time series modeling.
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Given a time series {z,t = 1,2,...,T,T € N} generated from a weakly
stationary process, the objective is to transform this series into an HM of dimensions
L x W, constructed by defining a window length L and setting W =T —-L+1 € Z.
Within the HM, there exists an index r such that r < min{L,W}. Each data
point z; is then mapped to a lagged vector of length L, represented as:

Zy = (2t 2141, %142, - - Zpn—1) s, 1<t<W

The resulting trajectory matrix has an HM structure as follows [I], [2], [3]:

Zl Z2 DR ZW

z22 z3 AW
H=(Z1,Z,...,Zw]=|. . . . (1)

2L ZL4+1 zZr

The use of trajectory matrices with H aligns with the Singular Spectrum
Analysis (SSA) method, introduced by Broomhead and King in 1986. SSA has
been extensively studied, covering theoretical and methodological aspects [4],[5],[6],
software implementation [7], [§], and practical applications in research and industry
[9], [10], [II]. SSA, known for its flexibility, comprises four stages: embedding,
SVD, grouping, and reconstruction. This study focuses on embedding and SVD for
dimensionality reduction methods to assess their effectiveness in capturing temporal
patterns in time series data.

SVD involves the factorization of H into three elementary matrices: two
orthogonal matrices (U € CE*E and V € C"*W) and one diagonal matrix (D €
REXW) containing scale factors, termed singular values (\}), arranged in descending
order, from the largest to the smallest value, denoted as A7 > A5 > --- > A¥ >0

[12], [13],[14]. The columns of U and V, referred to as left and right singular
vectors. This decomposition can be expressed as follows:

H=UDV —U[O O}V ()

SSA is a model-free method that disregards weak stationarity and autocorre-
lation assumptions. Given that TSA is inherently stochastic with autocorrelation
behavior, integrating SSA with classical TSA methods would be insightful. Among
these, the Box-Jenkins method remains prominent, influencing diverse fields such as
economics [I5], social sciences [16], healthcare [I7], tourism [I8], industries [19], and
agriculture [20]. Its broad and lasting impact is well-documented [2I], highlighting
its continued relevance.

The Box-Jenkins methodology consists of three main components: Autore-
gressive (AR), Moving Average (MA), and Integrated (I) models, which together
form advanced models like ARIMA (p, d, q) [22],[23],[24],[25],[26], [27]. In TSA, AR
models highlight data dependency, where the order is identified using the autocorre-
lation function, particularly PACF [28], [29], [30]. A PACF plot helps determine the
appropriate lag order p; a sharp drop after lag p suggests an AR(p) process, while
a gradual decline may indicate an ARMA process. Understanding these functions
is essential for selecting an optimal forecasting model.



Inspired by this method, this study explores data matrix fields through tra-
jectory matrices with HM structures, providing a novel analytical approach. Inves-
tigating SVD on HM is particularly intriguing, as singular values may offer crucial
insights into variance within AR models. Therefore, adhering to the principle of
parsimony, the study initiates with the simplest mean-centred AR(1) and AR(2)
model structure for 7, = Z; — 0, with a general form of

AR(l) : Zt = ¢Zt_1 + &
AR(2): Zi=¢1Zi 1+ ¢p2Zs o+

This model provides a foundational framework for understanding dynam-
ics and variance captured by the HM structure and SVD. Implementing SVD for
dimensionality reduction presents challenges, from optimizing matrix size to ana-
lyzing singular value sequences in AR models. Addressing these challenges, this
study examines the properties and conditions of H in SVD to enhance its imple-
mentation. Insights from this exploration are applied to simulated AR model data,
enabling a comprehensive evaluation of SVD’s effectiveness.

2. PROPERTIES OF H

Since this method applies to all types of observational data, the notation X
is used for generality. A dataset {X,},n € Z with N observations represents one-
dimensional data and is transformed into a matrix H with elements x; ;. From this
formulation, several properties of H can be deduced. Literature on matrix analysis
[3],[14],[31] provides the basis for constructing lemmas and theorems in this study.
These results are broadly applicable to observational data, including time series.

Definition 2.1. Matrix H has the following properties:

i. A notable property of the matriz H is its anti-diagonal, which remains constant
from left to right. This property is defined by the condition ¢ < j, where the
element ; j = Titm,j4+m for m = 0,...,7 —i. H exhibits a characteristic
structure known as the Hankel Matrix.

ii. As a consequence of point (i), the elements of H exhibit similarity to the el-
ements of its conjugate transpose matriz (ﬁ) Mathematically, this can be
expressed as H = H = H*. In other words, each element x; ; = %;;. This
property is characterized as a Hermitian matrixz, which is self-adjoint.

iii. Due to points (i) and (ii), it follows that HH* = H*H. This property is
characterized as a Normal Matrix.

The structure of HM for time series data, as defined in Definition
progresses either downwards or rightwards along its columns or rows as time moves
forward [32]. This structural property aligns the columns of the HM as delayed
versions of the time series, effectively capturing a lag-one relationship within a
weak stationary process. Given the unique characteristics of HM in time series,
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it is crucial to understand their general properties, as outlined in the following
lemma. This lemma will lead to the properties and conditions for sufficient SVD
in HM which is a benchmark for processing time series data

Lemma 2.2. Based on Definition point (i), H = H = H*, hence \* € R.

Proof. Let A\* be an eigenvalue of H and y be the corresponding eigenvector. Then:
A y,y) = (Hy,y) = (y, Hy)
= (y. H'y) = (y, Hy) = (y, \"y) = Ay, y)

Thus, X*(y) = H(y) = H'(y) = M(y).
Consequently, it follows that A* = A*, and hence A* € R. O

Lemma 2.3. According to Definition point (iit), HH* = H*H are self
adjoint and thus share the same X, including multiplicities.

Proof. Given (HH*) = H*(H*)* = H*H, it is concluded that H* is self-adjoint.
Similarly, (HH*)* = (H*)*H* = H*H is obtained, hence HH* is also self-adjoint.
Let X be an eigenvalue of HH* with eigenspace Fy; for v € E), it is found that:
H*Hv = M
Multiply both sides by H:
HH"Hv = H\v = AHv

Thus, Hv is an eigenvector of HH* with eigenvalue A, because:

H(H*v) = A(Hv)
If XA #£ 0, then each eigenvector v from HH* maps to an eigenvector Hv of one-to-
one. This is because if v,w € E\ with Hv = Huw:

Hvo=Hw=Hv—-Hw=0

which implies Av = Aw, thus v = w. Similarly, every eigenvalue of HH* maps to
an eigenvalue of H*H with eigenvector H*v, mapping from the eigenspace E) of
HH*, one to one, for A # 0. For each A # 0 of HH* and H*H, the associated
eigenspaces have the same dimension. Because HH* and H*H are self-adjoint and
have the same dimension, the associated eigenvalues for A = 0 also have the same
dimension. Consequently, the multiplicities are also the same. O

The matrix H in Eq. , which consists of {z;} reflects its properties through
in the multiplication with its transpose, namely HH* and H*H, resulting in a
matrix that resembles the autocovariance matrix (C). The {¢;;} of (C) represents
the covariance between {z;} at different lags defined as:

Cij = (i = jl) = Cov(Zt, Zyji—j|) = ElZeZe41i—j|] (3)
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Since the process is weakly stationary, the {c;;} only depend on the lag |i — j|. The
multiplication of the HH* results in an L x L matrix:

w
(HH");; = > Zit-1Z40-1
t=1
Meanwhile, the multiplication H*H produces a W x W matrix:

L
(H'H),; = E Ztti—12t+5—1
t=1

When normalized by the length L or W, these forms approximate Cj; as follows:
1

w

Although HH* and H*H have different dimensions, they exhibit similar spec-

tra of eigenvalues and share the same eigenvalues (\,) as stated in Lemma
Since they are symmetric and positive semi-definite, A\, are guaranteed to be non-

negative real numbers, as described in Lemma Moreover, the singular values
of H (\}) are directly related to these eigenvalues, as

Ar=+/Ar, with r=min(L,W).

This implies that the choice of L or W does not affect the fundamental spectral
properties of the matrices. Both matrices capture essential statistical properties of
TSA. For instance, in autocorrelation behavior, the autocorrelation matrix (R) is
obtained by normalizing equation (3) based on its variance:

. R
(HH")i; = Cij = y(|i = j|) = 7 (H'H)y;

pl{C]))

~7(0)
with p(k) is the autocorrelation function at lag k and (0) is the time series variance.
The relationship between C and R is summarized as:

Cij
Cis

Since Cy; = ¥(0) for all 4, each element R;; is obtained by normalizing C;; with
the variance 7(0), yielding a correlation value within [-1,1], i.e., =1 < p(i — j) < 1.
To analyze the relationship between singular value sequences and autocorrelation
behavior, it is crucial to consider implications from Definition , point (74),
and Lemma [2.3] Given that H is a normal matrix, the following theorem applies
in the SVD process.

Rij =p(i—j) =

Rij =

Theorem 2.4.
H=UDV*" < H'H = HH".

Proof. (=)
H'H = (UDV*")*UDV* = VDU"UDV" = VDIDV* = VDDV*
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Similarly, using the same approach, we obtain HH* = UDDU*.According to
Lemma H*H and HH* have the same \,, and both are self-adjoint, thus
dimC(H*H) = C(HH*) = dim C(H) = r.

Considering D = DD = diag(A1, Az, ..., A.) both can be unitarily diagonalized as
follows.

MO0 0 A0 0 0
0 A 0 -+ 0 0 A 0 - 0
HH-V|0 0 X 0 0

V* and HH*=U |0 0 A

0O 0 0 - X o 0 0 - X
with the same eigenvalues and possibly different unitary matrices U and V, it is
obtained that:

A 00 0
0 Xy 0 0

VHHV = |0 0 X3 0| = yHH*U*
0 0 0 - A\

Thus,

H*H = V*UHH'U*V
with V*U and U*V being unitary matrices, if we move one of these unitary ma-
trices to the right-hand side, it is obtained that:

V*UH'H = V*UHH" - H'H = HH"

(<)
Let HH* = UDU* with U being a unitary matrix that diagonalizes HH*. Based

on (4), it is obtained that H*U = VD. If D = ﬁ is considered and

1

is chosen, it will be checked whether v;,v; are orthogonal for i # j. It should be
noted that:

V; = H*ui

(vi,v5) = viv; = \/IE\/{\TU;"HH*W
Since

HH* = UDU* —» HH*u; = w;)\;.
Additionally,

1, i=j
0, 1#J

1 1 V'
(v, v5) = uw;HH u; = Ai (i, uj) =
NoYRvey v
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based on the unitary property of U. Since {vi,vs,...,v,} forms an orthonormal
set, a unitary matrix

V= va ... U Upp1 ... OW]
can be constructed. Thus, for a matrix H € C*"W | a diagonal matrix D € R™*" a
unitary matrix U € CI*F and V € CW*W exist. O

Referring to Lemma Lemma and [2:4] there are general conse-
quences that apply to the H as follows:

Corollary 2.5. The bounds for L;W in H € CE*W qare
2< L;W < %

The commonly used value of L; W is often about half the length of the time
series, namely L; W = T'/2. However, in practice, for very large T, it is believed
that selecting L; W according to Corollary is not effective. Therefore, to
explore the possibility of an optimal limit L; W on time series data, especially with
the AR(1) and AR(2) model through a sequence of singular values on SVD, the
following procedure is developed for further analysis.

3. EXPERIMENTAL PROCEDURE

The simulation process of AR(1) and AR(2) model is executed through an
algorithm designed to generate time series data closely resembling the actual AR
process. The generated simulation data undergoes analysis using the SVD tech-
nique, which decomposes the data matrix into fundamental components, facilitating
insights into the intrinsic structure of the data. The entire simulation process is
implemented using the R programming language, structured into three procedural
components.

3.1. Monte Carlo Simulation to Construct AR(1) and AR(2) model.

First, initialization is performed by setting a seed for data replication to
ensure consistency in repeated experiments. The number of data values used in
the simulation is defined as T and the AR(1) and AR(2) parameter value (¢;) is
assigned to the model. In addition, the standard deviation of the white noise (o)
added to the model is determined and the number of repetitions (M) of the Monte
Carlo experiment is specified.

In this procedure, T'= 100, ¢ = 1 are used, and M is set to 1500 repetitions.
¢1 is varied from 0.1 < |¢1| < 0.9 for the AR(1) model, and several choices of ¢4
and ¢9 are considered for the AR(2) model according to its stationarity conditions.
During the simulation process, Z; is generated using the model Z; = ¢17;_1 + ¢
for AR(1) and Z; = ¢1Z; 1+ paZy_o+e4 for AR(2) with e, ~ N(0,1) for each time
point t = 1,2,...,T. This process is repeated M times to obtain a series Zt(m) for
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each repetition m = 1,2,..., M. The mean at each time point is calculated from
all repetitions, i.e.,

1 M
_ :MZZt(m)

m=1

for t =1,2,...,T. The output of this procedure includes Zt(m) fort=1,2,...,T

and each time repetition m = 1,2,..., M (each m depicted with different color),
along with Z; (depicted with dashed red lines) for M = 1500 in the example of
¢1 = —0.9 as illustrated in Figure[]] This process accommodates randomness and

produces data centered around the mean with E(Z;) = 0. The resulting data is
then structured into H, which serves as a crucial step for subsequent analysis

AR(1) Simulation Process and Its Average
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Ficure 1. Illustration zt(m) fort =1,2,...,T and m = 1,2,..., M (each m de-
picted with different color), along with z; for t = 1,2,...,T (depicted with dashed

red lines) for M = 1500 in the example of ¢; = —0.9. The data zt(m) will then be
structured into H, which serves as the basis for further analysis.




9

The AR(1) model simulation algorithm produces 18 data models with ¢;
presented in Table |1 Meanwhile, 4 simulated data from the AR(2) model, with
¢; shown in Table |2, will be analyzed. Each of these AR(2) simulation data will
also be referred to as Data A, B, C, and D. These results show how the chosen ¢;
influence the time series characteristics from the simulation.

TABLE 1. The estimated parameter values for the AR(1) model
with 0.1 < |¢y| < 0.9.

¢1 %o ¢1 ¢1 %o $1

-0.9 | -0.0007 | -0.9143 || 0.9 | 0.0258 | 0.9039
-0.8 | -0.0077 | -0.8049 || 0.8 | 0.0216 | 0.8128
-0.7 | -0.0018 | -0.7111 || 0.7 | 0.0179 | 0.7092
-0.6 | -0.0006 | -0.5986 || 0.6 | 0.0105 | 0.5120
-0.5 | -0.0033 | -0.5092 || 0.5 | 0.0096 | 0.4986
-0.4 | -0.0005 | -0.4108 || 0.4 | 0.0033 | 0.3946
-0.3 | -0.0026 | -0.3108 || 0.3 | 0.0023 | 0.2919
-0.1 | 0.0042 | -0.0921 || 0.1 | 0.0021 | 0.0917

TABLE 2. The estimated parameter values qA507 g?)l, and gZA)Q for the
AR(2) model with ¢1 = £0.5 and ¢ = +0.4.

Data | ¢1 | ¢ bo o1 $2
A 0.5 | 0.4 | -0.0006 | 0.5584 | 0.3180
B -0.5|-0.4 | 0.0014 | -0.5093 | -0.4814
C 0.5 | -0.4 | -0.0075 | 0.4854 | -0.4133
D -0.5 | 0.4 | -0.0031 | -0.5059 | 0.3380

3.2. Descriptive Statistics and Testing of the Model.

This procedure is designed to ensure that the constructed model meets the
desired assumptions, including stationarity, normal distribution, and the absence
of autocorrelation among residuals. Consequently, the model can be considered ap-
propriate for the data as long as all residual assumptions are satisfied. Additionally,
statistical tests are conducted to ensure that the constructed model is acceptable
according to the data, as no residual assumptions are violated. Furthermore, by
examining the correlogram of ACF and PACF, autocorrelation behavior can be
investigated.

3.3. SVD and Its Convergence.

To initiate this analysis, {Z;} is converted into a vector form. This sequence is
then arranged into a matrix H and the SVD is then constructed in Eq. where U
and V are orthogonal matrices and 3 contains {Af}. According to Corollary [2.5
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the A¥ remain unchanged for 2 < L < 50 and 51 < L < 99. Therefore, setting the
upper limit of L to 50 suffices, A} can be arranged in descending order as

AL Z A3 2 = A5

in the form of a scree plot graph. The cumulative proportions of each A} is calcu-
lated as

A*
A= =2
TN
providing insights into the contribution of each A} to the overall data structure.
Scree plots of {Af} and {%A!} are observed to assess the significance of each A}
and to identify any convergence patterns.

Identifying convergence in{A!} is used to determine the optimal bound of
window length (L.) in simulated data constructed from an AR model. Let L be
the lower limit of L and L the upper limit of L, then the difference in the %\! is
expressed as

A = [%A7 - %N <&

where i = L,...,L—1and s =i+ 1,..., L. By choosing ¢, determining L. for the
case of simulated AR(1) model data can be made more efficient.

4. NUMERICAL RESULT

The autocorrelation behavior and {A}} from SVD in the simulated data model
are analyzed numerically through ACF and PACF. Figure 2] and Figure [3]illustrate
the correlogram patterns for AR(1) and AR(2) models, respectively. The ACF plot
exhibits a mix of damped exponential and sinusoidal waves, forming an organized
pattern. However, ACF provides limited insight into autocorrelation across lag
intervals and is more useful for identifying the MA model order ’¢’. In contrast,
PACEF helps determine the AR model order 'p’.

PACF reveals partial correlations after accounting for shorter time intervals.
In an AR model, PACF typically cuts off beyond a certain lag. For simulated AR(1)
data, this cutoff occurs after lag 1 unless |$1| ~ 0. Ensuring data accuracy becomes
challenging as past values heavily influence predictions. Thus, alternative models
or external factors beyond the AR(1) model may need further investigation.

The ACF and PACF in the AR(2) model simulation data is analyzed to ob-
serve correlogram patterns with varying values of ngﬁl and </32, rather than correlating
it with parameter magnitudes. When (;31 and (1/52 are both positive (Data A), the
ACF pattern is more regular and systematic, starting with positive autocorrelation
followed by negative values, repeating in a consistent manner. Conversely, when
both parameters are negative (Data B), the ACF pattern alternates between posi-
tive and negative values. Further examination shows that when $1 is positive and
(;32 is negative (Data C), the ACF pattern resembles Data A. On the other hand,
when q{31 is negative and (232 is positive (Data D), the ACF pattern resembles Data B
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but is more systematic. The PACF correlogram however, shows a cut-off pattern
after lag 2, corresponding to the signs of ¢1 and ¢2
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FIGURE 2. Correlogram illustration using ACF and PACF for sev-
eral simulated AR(1) data, highlighting significant autocorrelation
patterns to be identified. The PACF plot serves as a reference for
comparison with the scree plot SVD of {\!} obtained from H.
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Interestingly, the PACF patterns in the simulated AR(1) and AR(2) models
show a cut-off pattern similar to the scree plot pattern observed in the SVD shown
in Figure [d] In the AR(1) model, the PACF cut-off pattern resembles the ’elbow’
in the SVD scree plot, especially when |g2>1| ~ 1, the cut-off appears after the 1%
lag/Af. Conversely, when |¢;| ~ 0, the variance contribution from the A* is more
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evenly distributed, the ’elbow’ becomes less distinct, indicating weaker and more
dispersed correlations within the data. Thus, the data structure in the AR(1)
model changes with different values, highlighting the importance of selecting an

appropriate ¢, value to accurately capture significant patterns in the AR(1) model.
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FIGURE 5. An illustration of %A} (left) and |A)| obtained from
H in several AR(1) data model simulations for 2 < L < 50. The
plot reveals a convergence pattern at a specific value of L.

In the simulated AR(2) model data, A} and A5 contribute the most signifi-
cantly to explaining the variance in the data compared to other A;. This ’elbow’
pattern is similar to the PACF pattern, which shows a cut-off after the 2" lag.
The cut-off pattern observed in the PACF, which mirrors the pattern in the SVD,
suggests that these methods can complement each other for a comprehensive view
of TSA. Meanwhile, convergence is evaluated by determining if the %A} remains
consistent or varies with the addition of more L. As L increases, there is a greater
absorption of data information. The L; represents the maximum number of L
to be considered in the analysis. This helps in understanding the data structure
and ensures that the SVD analysis captures enough information from the simu-
lated AR(1) and AR(2) model data. Observations focus on changes in variance
proportions (|A2i|) explained by %A}, as shown in Figures and El

In the AR(1) model, the focus will be on |A| for A} (Figure 5), while in the
AR(2) model, the focus will be on A} and A3 denoted by |A21| and |A2| respectively
(Figure 6). The sequence {|A;|} decreases monotonically with |Asi1| < |Ag| as
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the size of L increases. This allows for the selection of e such that |A4| < e for
L > L.. By choosing ¢, determining L. for the simulated data can be done more
efficiently. If € is chosen as 5% or 1%, the L. for each simulated AR(1) and AR(2)
model data can be summarized as shown in Table Bl and Table
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FIGURE 6. |AA5| (left) and |AA| (right) represent the variance
differences in the AR(2) data model simulations for 2 < L < 50.
These {A;} are derived from H, revealing structural variations
within the simulated data.
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TABLE 3. The optimal bound of window length (L. ) for the AR(1)
model fall within the range of 0.1 < ¢ < 0.9 for € 5% and 1%.

Left Table Right Table

o1 5% 1% b1 5% 1%

0.9 |7 (-4.50) | 18 (-0.99) || 0.9 | 7 (-4.50) | 18 (-0.99)
08 6 (-4.73) | 16 (-0.98) |[0.8 | 7 (-4.15) ( 0.93)
-0.7 ] 6 (-4.87) | 14 (-0.98) || 0.7 | 7 (-4.12) 5 (-0.87)
0.6 6 (-4.05) | 13 (-0.86) |[ 0.6 | 7 (-3.80) 15 (-0.91)
05| 6 (-421) | 14 (-0.97) |[0.5 | 6 (-4.48) | 13 (-0.62)
0.4 6 (-4.10) | 12(-0.99) |[0.4 | 6 (-4.33) | 12 (-0.95)
-0.3 | 6(-4.20) | 11 (-0.63) || 0.3 | 6 (-3.96) (-0.97)
0.2 6 (-353) | 12 (-0.48) [[0.2| 6 (-3.61) | 12 (-0.99)
-0.1] 6(-3.59) | 10 (-0.94) || 0.1 | 6 (-2.78) (-0.96)

TABLE 4. The optimal bound of window length (L.) for the sim-
ulated AR(2) model data based on |[AM| (left) and |A2| (right)
for & values of 5% and 1%.

AN A%
Data — % 5% %
A |7 (-4.26) 19 (-0.81) |4 (-1.25) 5 (-0.19)
B | 6(481) 13 (0.67) | 5 (3.81) 14 (0.59)
C 5 (481) 12 (:0.76) | 6 (-252) 13 (-0.60)
D | 6 (443) 18 (:0.91) | 4 (-1.54) 6 (-0.75)

Referring to Table [3] it can be inferred that to effectively use the SVD scree
plot pattern in the matrix H for simulated AR (1) model data with 0.1 < |é;| < 0.9,
selecting L. 6 or 7 for ¢ = 5% and L. between 10 and 18 for ¢ = 1% would be
appropriate. For example, in the case of the AR(1) model with (;31 = —0.9, if
e = 5% is chosen, the optimal bound L. is 7 with |A)| = 4.50. Meanwhile, for
¢ = 1%, the optimal bound L. is 18 with |A}| = 0.99. Similarly, for é1 = 0.5, if
e = 5% is chosen, the size L. is 6 with |[A)1| = 4.48, and if e = 1% is chosen, the
size L is 13 with |A)| = 0.62.

In the simulation of the AR(2) data model, the plots of |[A2*| and |A22| based
on Figure [6]exhibit similar patterns, both showing convergence to 0 as L approaches
L, with the sequence {|A,|} decreasing monotonically. For example, referring to
Table 4l in Data A, if € is set at 5%, the optimal boundary size is L. = 7 with
|AX| = 4.26, and L. = 4 with |A2?| = 1.2. In contrast, when ¢ is set at 1%, the
optimal boundary size is L. = 19 with |A21| = 0.81, and L. = 5 with |A2| = 0.19.
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5. RESULT AND DISCUSSION

Matrix-based analysis becomes particularly relevant when applied to estab-
lished TSA methods such as the Box-Jenkins approach, particularly within the AR
model framework. In AR(1) and AR(2) models, the PACF exhibits a characteristic
cut-off after lag 1 for AR(1) and lag 2 for AR(2), indicating that PACF values
remain significant up to the corresponding model order before declining sharply
toward zero. This pattern closely resembles the scree plot in SVD, where the
largest singular values decrease markedly after the dominant components, forming
an ”elbow” shape. In SVD, only the first few singular values retain most of the
information, analogous to how PACF retains significant values only up to the AR
model order.

This similarity suggests that PACF and the SVD scree plot can complement
each other in identifying key structures in time-series data. PACF helps determine
the order of an AR model by identifying where the partial correlations are cut off,
while the scree plot in SVD reveals the number of significant components in the
decomposition of the data structure. Furthermore, SVD sensitivity to AR parame-
ters depends on the magnitude of (él / (/32 ) due to stationarity requirements, but it
is not affected by the sign of the parameter (4/-). This can be explained by con-
sidering that stationarity depends on the modulus of the characteristic polynomial
roots of the AR model rather than the individual coefficient signs.

Other findings indicate that the lower and upper limits of Corollary are
not effective in the adhesion process of HM (H), which requires an analytical study
of the optimal boundary L. that improves efficiency by selecting a specific €. It is
hypothesized that an optimal limit of L. = 20 may be sufficient for time series data.
The numerical results obtained in this study suggest promising directions for future
research by revealing potential patterns and relationships in time series data. While
these findings provide valuable insights, reinforcing them with analytical proofs
would enhance their theoretical foundation. Therefore, future studies could focus
on developing formal mathematical validations to complement these results. By
integrating the SVD approach with trajectory matrices into existing TSA methods,
this framework can evolve to be more adaptive and objective, strengthening its
applicability in TSA.
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