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Abstract. This research introduces the quaternion linear canonical S-transform.

This transform is an extension of the linear canonical S-transform within quaternion

algebra. We recall the properties and present the natural link between the quater-

nion linear canonical transform and the quaternion linear canonical S-transform.

We exploit these properties and relation to establish the Lieb and Nazarov inequal-

ities to the quaternion linear canonical S-transform.
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1. Introduction

In recent years, the construction of numerous generalized transformations
within quaternion algebra has received more attention by some researchers like
the quaternion linear canonical wavelet transform [1], the quaternion Wigner-Ville
distribution [2, 3, 4, 5], the quaternion shearlet transform [6], and the quaternion
windowed Fourier transform [7]. Further, the authors of [8] have studied the linear
canonical S-transform (LCST), which is the extension of the traditional S-transform
in the framework of the linear canonical transform (LCT). It is known that several
results of the traditional S-transform are modified in the LCST domain, such as
modulation, translation, uncertainty inequalities and so on (see, e.g., [9, 10, 11]).

Recently, the authors in [12, 13] have studied the quaternion linear canonical
S-transform and obtained the uncertainty relations. However, Lieb and Nazarov in-
equalities for this transformation have not been published to date. Therefore, in the
present work, we will establish Lieb’s inequality for the quaternion linear canonical
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S-transform. To achieve the result, we recall several results of the quaternion linear
canonical S-transform and make a relation between the quaternion linear canonical
transform and the quaternion linear canonical S-transform.

The structure of this work is organized as follows. In Section 2, some basic
facts regarding quaternion algebra are collected. The definition of the quaternion
Fourier transform (QFT) and useful properties are provided in Section 3. Section 4
briefly reviews the definition of the quaternion linear canonical transform (QLCT)
and its connection with the quaternion Fourier transform (QFT). Lastly, Section 5
contains the introduction of the quaternion linear canonical S-transform (QLCST)
and the derivation of Lieb and Nazarov inequalities related to the proposed trans-
formation.

2. Quaternion Algebra

Let H be the associated algebra of real quaternion. The quaternion p ∈ H is
represented as [14]

H = {p = p0 + ip1 + jp2 + kp3 | p0, p1, p2, p3 ∈ R}, (1)

where the three different imaginary quaternion units i, j and k follow the multipli-
cation rules:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1. (2)

Relation (2) shows that quaternion multiplication is not commutative. For every
p ∈ H,

p = p0 + p = Sc(p) + V (p), (3)

where Sc(p) = p0 and V (p) = p = i p1 + j p2 + k p3 denote the scalar component
and vector component, respectively.

The conjugate of quaternion p̄ is defined as

p̄ = p0 − i p1 − j p2 − k p3. (4)

It satisfies the property

rp = p̄r̄, ∀r, p ∈ H.

The scalar and vector parts of a quaternion p are

Sc(p) =
1

2
(p+ p̄) and V(p) =

1

2
(p− p̄). (5)

The modulus of a quaternion p is defined by

|p| =
√
pp̄ =

√
p20 + p21 + p22 + p23. (6)

It is straightforward to verify that, for every r, t, p ∈ H, the followings hold:

Sc(p) ≤ |p|, |p| = |V(p)| ≤ |p|, and Sc(rpt) = Sc(rtp) = Sc(prt). (7)

The inner product for two quaternion functions f, g : R2 −→ H is defined by

(f, g) =

∫
R2

f(x)g(x) dx, dx = dx1dx2, (8)
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with symmetric scalar product

⟨f, g⟩ = Sc(f, g) =
1

2

[
(f, g) + (g, f)

]
. (9)

For f = g in relation (9), we get L2(R2;H) norm, i.e.,

∥f∥L2(R2;H) =

(∫
R2

|f(x)|2 dx
)1/2

. (10)

3. Two-Sided Quaternion Fourier Transform

This part recalls the definition of two-sided quaternion Fourier transform
(QFT). We list properties which will be needed in the next section. For more
information about the QFT and its properties, we refer the reader to [15, 16, 17,
18, 19].

Definition 3.1. Let f ∈ L2(R2;H), the two-sided quaternion Fourier transform of
f is defined as

FH{f}(w) =

∫
R2

e−i2πw1x1f(x)e−j2πw2x2 dx. (11)

The following shows that the function f(x) in (11) can be recovered using its
QFT.

Definition 3.2. Let f in L1(R2;H) and FH{f} in L1(R2;H). The inversion for-
mula of the quaternion Fourier transform for f is calculated by

F−1
H [FH{f}](x) = f(x) =

∫
R2

ei2πw1x1FH{f}(w) ej2πw2x2 dw. (12)

The next, from relation (12), one obtains

FH [FH{f}](x) = f(−w). (13)

4. Quaternion Linear Canonical Transform (QLCT)

In the sequel, we introduce the two-sided quaternion linear canonical trans-
form (shortly QLCT) and its relationship to the quaternion Fourier transform
(QFT). For a detailed information on this transformation, the reader may con-
sult to [20, 21].

Definition 4.1. Let A1 = (a1, b1, c1, d1) =

[
a1 b1
c1 d1

]
and A2 = (a2, b2, c2, d2) =[

a2 b2
c2 d2

]
belong to the special linear group SL(2,R). The QLCT of a suitable

function f ∈ L1(R2;H) ∩ L2(R2;H) is defined as

LH
A1,A2

{f}(w) =

∫
R2

KA1
(x1, w1)f(x)KA2

(x2, w2) dx, b1b2 ̸= 0, (14)
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and

LH
A1,A2

{f}(w) =
√
d1 e

i
(

c1d1
2

)
w2

1f(d1w1, d2w2)
√
d2 e

j
(

c2d2
2

)
w2

2 , b1b2 = 0,

where

KA1
(x1, w1) =

1√
2πb1

e
i
2

(
a1
b1

x2
1− 2

b1
x1w1+

d1
b1

w2
1−π

2

)

KA2
(x2, w2) =

1√
2πb2

e
j
2

(
a2
b2

x2
2− 2

b2
x2w2+

d2
b2

w2
2−π

2

)
. (15)

In this research, we always assume the QLCT with b1b2 ̸= 0. It is obvious
that when A1 = A2 = (ai, bi, ci, di) = (0, 1,−1, 0) with i = 1, 2, the QLCT (14)
changes to QFT

LH
A1,A2

{f}(w) =

∫
R2

e−iπ4
√
2π

e−iw1x1 f(x)e−jw2x2
e−jπ4
√
2π

dx

=
e−iπ4
√
2π

FH{f}
(w

2π

) e−jπ4
√
2π

, (16)

where FH{f} is defined by (11).

Definition 4.2. For any quaternion signal f ∈ L1(R2;H) with LH
A1,A2

{f} ∈
L(R2;H), the inversion of the QLCT is described by

f(x) =
(
LH
A1,A2

)−1[LH
A1,A2

{f}
]
(x)

=

∫
R

1√
2πb1

e−
i
2

(
a1
b1

x2
1− 2

b1
x1w1+

d1
b1

w2
1−π

2

)
LH
A1,A2

{f}(w)

× 1√
2πb2

e−
j
2

(
a2
b2

x2
2− 2

b2
x2w2+

d2
b2

w2
2−π

2

)
dw. (17)

According to the QLCT definition (14), we obtain

LH
A1,A2

{f}(w)

=

∫
R2

1√
2πb1

e
i
2

(
a1
b1

x2
1− 2

b1
x1w1+

d1
b1

w2
1−π

2

)
f(x)

1√
2πb2

e
j
2

(
a2
b2

x2
2− 2

b2
x2w2+

d2
b2

w2
2−π

2

)
dx

=

∫
R2

e−iπ4
√
2πb1

ei
d1
2b1

w2
1e−i

x1w1
b1 ei

a1
2b1

x2
1f(x)

e−jπ4
√
2πb2

ej
d2
2b2

w2
2e−j

x2w2
b2 ej

a2
2b2

x2
2 dx. (18)

Hence,√
2πb1 e

iπ4 e−i
d1
2b1

w2
1LH

A1,A2
{f}(w)e−j

d2
2b2

w2
2

√
2πb2 e

jπ4

=

∫
R2

e−i
x1w1
b1 ei

a1
2b1

x2
1f(x)ej

a2
2b2

x2
2e−j

x2w2
b2 dx

= FH{h}
( w

2πb

)
= FH{h}

(
w1

2πb1
,
w2

2πb2

)
, (19)
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where

h(x) = ei
a1
2b1

x2
1f(x)ej

a2
2b2

x2
2 . (20)

By equation (19), we can easily derive for every f ∈ L2(R2;H)∫
R2

|f(x)|2 dx =

∫
R2

∣∣LH
A1,A2

{f}(w)
∣∣2 dw, (21)

which is known as Parseval’s formula for the QLCT.

5. Quaternion Linear Canonical S-Transform

In the sequel, we start with a definition of the quaternion linear canonical
S-transform (QLCST). We collect its essential properties, which will be useful for
deriving the main results in this research.

5.1. Definition.

Definition 5.1 (QLCST definition). Let ϕ ∈ L2(R2;H) be a non-zero quaternion
window function. The QLCST SH

ϕ for function h ∈ L2(R2;H) with respect to ϕ is
defined by

SH
ϕ h(u,w) =

∫
R2

KA1
(x1, w1)h(x)ϕ(u− x,w)KA2

(x2, w2) dx. (22)

Definition 5.2 (QLCST inversion formula). Let ϕ ∈ L2(R2;H) be a quaternion
window function that satisfies the following∫

R2

|ϕ(u,w)|2 du = ϕu,w, 0 < ϕu,w < ∞. (23)

Then, every quaternion signal h ∈ L2(R2;H) can be reconstructed using inversion
formula for the QLCST, that is,

h(x) =
1

ϕu,w

∫
R2

∫
R2

SH
ϕ h(u,w)ϕ(u− x,w)KA1

(x1, w1)KA2
(x2, w2) du dw. (24)

According to the reference [13], we have the following facts:

SH
ϕ h(u,w) = LH

A1,A2

{
h(x)ϕ(u− x,w)

}
. (25)

This implies that

h(x)ϕ(u− x,w) =
(
LH
A1,A2

)−1[SH
ϕ h(u,w)

]
. (26)

The following result will be useful for proving Lieb’s inequality related to the
QLCST in the next section.
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Theorem 5.3 (QLCST sharp Hausdorff-Young relation [13]). Let r ∈ [1, 2] and
1
r + 1

s = 1. Then for all f ∈ Lr(R2;H), we have(∫
R2

∣∣SH
ϕ {f}(u,w)

∣∣s dwdu

) 1
s

≤ C2
r (2π)

2
s−1(|b1||b2|)

1
s−

1
2

(∫
R2

∣∣ϕ(u,w)
∣∣r du) 1

r

∥f∥Lr(R2;H), (27)

where

Cr =
(
r

1
r s−

1
s

) 1
2 .

5.2. Lieb’s Inequality.

Below, we utilize the sharp Hausdorff-Young inequality stated in Theorem
5.3 to derive Lieb’s inequality for the QLCST. We then obtain the following result.

Theorem 5.4 (QLCST Lieb’s inequality). For any functions f, ϕ ∈ L2(R2;H) and
2 ≤ s < ∞, one gets(∫

R2

∫
R2

∣∣SH
ϕ {f}(u,w)

∣∣s dwdu

) 1
s

≤
(
2

s

) 2
s π

2
s−1

s
2
s

|b1b2|
1
s−

1
2 ∥f∥L2(R2;H)∥ϕ∥L2(R2;H).

Proof. From equation (72) in [13], it is easily seen that(∫
R2

∣∣SH
ϕ {f}(u,w)

∣∣s dw) 1
s

≤ C2
r (2π)

2
s−1(|b1||b2|)

1
s−

1
2

(∫
R2

∣∣f(x)ϕ(u− x,w)
∣∣r dx) 1

r

= C2
r (2π)

2
s−1(|b1||b2|)

1
s−

1
2

((
|f(x)|r ∗

∣∣ϕw(x)
∣∣r) (u)) 1

r

,

(28)

where ϕw(x) = ϕ(x,w). Here, the convolution operator for f, g ∈ L2(R2;H) is
given by (

f ∗ g
)(
x
)
=

∫
R2

f(y)g(x− y)dy. (29)

Writing relation (28) above as∫
R2

∣∣SH
ϕ {f}(u,w)

∣∣s dw ≤ C2s
r

(
(2π)

2
s−1(|b1||b2|)

1
s−

1
2

)s((
|f(x)|r ∗

∣∣ϕw(x)
∣∣r) (u)) s

r

.

(30)

Integrating both sides of relation (30) with respect to the measure du we immedi-
ately obtain∫

R2

∫
R2

∣∣SH
ϕ {f}(u,w)

∣∣s dw du ≤ C2s
r (2π)

2
s−1(|b1||b2|)

1
s−

1
2

×
(∫

R2

(
|f(x)|r ∗

∣∣ϕw(x)
∣∣r) (u)du) s

r

. (31)
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Therefore,

(∫
R2

∫
R2

∣∣SH
ϕ {f}(u,w)

∣∣s dwdu

) 1
s

≤ C2
r (2π)

2
s−1|b1b2|

1
s−

1
2

(∫
R2

((
|f(x)|r ∗

∣∣ϕw(x)
∣∣r)(u)) s

r

du

) 1
s

= C2
r (2π)

2
s−1|b1b2|

1
s−

1
2

(∫
R2

((
|f(x)|r ∗

∣∣ϕw(x)
∣∣r)(u)) s

r

du

) 1
s
r
· 1r

= C2
r (2π)

2
s−1|b1b2|

1
s−

1
2

((∫
R2

((
|f(x)|r ∗

∣∣ϕw(x)
∣∣r)(u)) s

r

du

) 1
s
r

) 1
r

= C2
r (2π)

2
s−1|b1b2|

1
s−

1
2 ∥(|f(x)|r ∗

∣∣ϕw(x)
∣∣r)∥ 1

r

L
s
r (R2;H)

. (32)

Since f, ϕ ∈ L2(R2;H) then |f |r, |ϕw|r ∈ L2(R2;H) and applying Young
inequality with (p, p, t) = (2r ,

2
r ,

s
r ) and

1
p + 1

p = 1
t + 1, then we get

∥(|f(x)|r ∗ |ϕw(x)|r)∥Lt(R2;H) ≤ C
4
r
p C

2
r
t ∥|f |r∥rLp(R2;H)∥|ϕ|

r∥rLp(R2;H). (33)

Now observe that

C2
rC

4
r
p C

2
r
t =

(
r

1
r

s
1
s

)(
p

1
p

p
′ 1
p′

) 2
r
(
t′

1
t′

t
1
t

) 1
r

=

(
r

1
r

s
1
s

)(
p

2
pr

p
′ 2
p′r

)(
t′

1
t′r

t
1
tr

)

=

(
r

1
r

s
1
s

)(
p

p
′ 2
p′r

)(
t′

1
t′r

( sr )
1
s

)

=

(
r

1
r+

1
s

s
2
s

)(
2

r

)(
t′

1
t′r

p
′ 2
p′r

)

=

(
2r

1
r+

1
s−1

s
2
s

)(
1

2

) 1
r−

1
s

, (34)

where in the fourth inequality, we have chosen p′ = 2t′. Hence,

C2
rC

4
r
p C

2
r
t =

2
1
s−

1
r+1r

1
r+

1
s−1

s
2
s

=
2

2
s

s
2
s

=

(
2

s

) 2
s

. (35)
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Consequently,(∫
R2

∫
R2

∣∣SH
ϕ {f}(u,w)

∣∣s dw du

) 1
s

≤
(
2

s

) 2
s

(2π)
2
s−1|b1b2|

1
s−

1
2

(
∥|f |r∥Lp(R2;H)∥|ϕ|r∥Lp(R2;H)

) 1
r

≤
(
2

s

) 2
s

(2π)
2
s−1|b1b2|

1
s−

1
2

((∫
R2

(∣∣f(x)∣∣r)p

dx

) 1
p

×
(∫

R2

(∣∣ϕ(x)∣∣r)p

dx

) 1
p
) 1

r

≤
(
2

s

) 2
s

(2π)
2
s−1|b1b2|

1
s−

1
2

((∫
R2

∣∣f(x)∣∣r· 2r dx) r
2

×
(∫

R2

∣∣ϕ(x)∣∣r· 2r dx) r
2
) 1

r

. (36)

We finally arrive at(∫
R2

∫
R2

∣∣SH
ϕ {f}(u,w)

∣∣s dwdu

) 1
s

≤
(
2

s

) 2
s

(2π)
2
s−1|b1b2|

1
s−

1
2 ∥f∥L2(R2;H)∥ϕ∥L2(R2;H),

which completes the proof. □

Remark 1.

• As far as we know, Lieb inequality for the QLCST in Theorem 5.4 is derived
using the sharp-Hausdorff Young inequality, so the proposed Lieb inequality
is sharp.

• Similar to [22], the future research will explore that Gabor quaternion filter
minimizes Lieb inequality involving the QLCST for s = 2.

5.3. Nazarov’s Inequality.

In the following we establish an analogue of Nazarov’s inequality for the
QLCST.

Theorem 5.5. Let ϕ ∈ L2(R2;H) be a non-zero quaternion window function. Let
f ∈ L2(R2;H), and A,B be two subsets of R2 with finite measure, then there exists
a constant k > 0 such that:

ϕu,w

∫
R2

∣∣f(x)∣∣2 dx
≤ ke|A||B|

(
ϕu,w

∫
R2\A

∣∣f(x)∣∣2 dx+

∫
R2

∫
R2\Bb

∣∣SH
ϕ {f}(u,w)

∣∣2 dw du

)
, (37)

where |A| and |B| denote the Lebesgue measures of A and B.
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Proof. Based on the Nazarov’s inequality for the two-sided quaternion linear canon-
ical transform, we have∫

R2

∣∣f(x)∣∣2dx ≤ ke|A||B|
(∫

R2\A

∣∣f(x)∣∣2dx+

∫
R2\Bb

∣∣LH
A {f}(w)

∣∣2dw)
. (38)

An application of relation (25) into both sides of identity (38), we get∫
R2

∣∣∣∣(LH
A

)−1[LH
A {f}(x)

]∣∣∣∣2dx
≤ ke|A||B|

(∫
R2\A

∣∣∣∣(LH
A

)−1[LH
A {f}(x)

]∣∣∣∣2dx+

∫
R2\Bb

∣∣LH
A {f}(w)

∣∣2dw)
. (39)

Therefore,∫
R2

∣∣f(x)ϕ(u− x,w)
∣∣2 dx

≤ ke|A||B|
(∫

R2\A

∣∣f(x)ϕ(u− x,w)
∣∣2dx+

∫
R2\Bb

∣∣SH
ϕ {f}(u,w)

∣∣2dw)
. (40)

Integrating both sides of equation (40) with respect to du we obtain∫
R2

∫
R2

∣∣f(x)∣∣2∣∣ϕ(u− x,w)
∣∣2 dx du

≤ ke|A||B|
(∫

R2

∫
R2\A

∣∣f(x)ϕ(u− x,w)
∣∣2dxdu+

∫
R2

∫
R2\Bb

∣∣SH
ϕ {f}(u,w)

∣∣2dwdu

)
.

(41)

Or, equivalently,∫
R2

∣∣f(x)∣∣2(∫
R2

∣∣ϕ(u− x,w)
∣∣2 du) dx

≤ ke|A||B|
(∫

R2\A

∣∣f(x)∣∣2(∫
R2

∣∣ϕ(u− x,w)
∣∣2 du)dx+

∫
R2

∫
R2\Bb

∣∣SH
ϕ {f}(u,w)

∣∣2dwdu

)
.

(42)

Hence,

ϕu,w

∫
R2

∣∣f(x)∣∣2 dx
≤ ke|A||B|

(
ϕu,w

∫
R2\A

∣∣f(x)∣∣2 dx+

∫
R2

∫
R2\Bb

∣∣SH
ϕ {f}(u,w)

∣∣2 dw du

)
,

which finishes the proof. □

Now let us implement the above properties by providing a simple example.

Example 1. Consider the Gaussian functions

f(x) = e−a|x|2 , a > 0
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and

ϕ(x) =

{
1, −1 ≤ x1, x2 ≤ 1

0, elsewhere.

Its quaternion linear canonical S-transform is derived as follows.

In view of equation (22), we obtain

SH
ϕ {f}

(
u,w

)
=

∫
R2

1√
2πb1

e
i
2

(
a1
b1

x2
1− 2

b1
x1w1+

d1
b1

w2
1−π

2

)
e−a|x|2ϕ

(
u− x,w

)
× 1√

2πb2
e

j
2

(
a2
b2

x2
2− 2

b2
x2w2+

d2
b2

w2
2−π

2

)
dx

=
1√
2πb1

e
i
2

(
d1
b1

w2
1−π

2

) ∫
R2

e
i
2

(
a1
b1

x2
1− 2

b1
x1w1

)
−ax2

1ϕ
(
u− x,w

)
× e−ax2

2+
i
2

(
a2
b2

x2
2− 2

b2
x2w2

)
1√
2πb2

e
j
2

(
d2
b2

w2
2−π

2

)
dx

=
1√
2πb1

e
i
2

(
d1
b1

w2
1−π

2

) ∫ u1+1

u1−1

e−ax2
1+

i
2

(
a1
b1

x2
1− 2

b1
x1w1

)
dx1

×
∫ u2+1

u2−1

e−ax2
2+

i
2

(
a2
b2

x2
2− 2

b2
x2w2

)
dx2

1√
2πb2

e
j
2

(
d2
b2

w2
2−π

2

)
. (43)

Further we get

SH
ϕ {f}(u,w)

=
1√
2πb1

e
i
2

(
d1
b1

w2
1−π

2

) ∫ u1+1

u1−1

e
−
(
a− ia1

2b1

)
x2
1−

ix1w1
b1 dx1

×
∫ u2+1

u2−1

e
−
(
a− ja2

2b2

)
x2
2−

jx2w2
b2 dx2

1√
2πb2

e
j
2

(
d2
b2

w2
2−π

2

)

=
1√
2πb1

e
i
2

(
d1
b1

w2
1−π

2

) ∫ u1+1

u1−1

e
−
(
a− ia1

2b1

)(
x2
1−

i
w1
b1

(a−i
a1
2b1

)
x1

)
dx1

×
∫ u2+1

u2−1

e
−
(
a− ja2

2b2

)(
x2
2−

j
w2
b2

(a−j
a2
2b2

)
x2

)
dx2

1√
2πb2

e
j
2

(
d2
b2

w2
2−π

2

)

=
1√
2πb1

e
i
2

(
d1
b1

w2
1−π

2

) ∫ u1+1

u1−1

e
−(a−i

a1
2b1

)

((
x1−

i
w1
b1

2(a−i
a1
b1

)

)2

−
(

i
w1
b1

2(a−i
a1
2b1

)

)2
)
dx1

×
∫ u2+1

u2−1

e
−
(
a−j

a2
2b2

)((
x2−

j
w2
b2

2(a−j
a2
b2

)

)2

−

(
j
w2
b2

2(a−j
a2
2b2

)

)2)
dx2

1√
2πb2

e
j
2

(
d2
b2

w2
2−π

2

)
.

(44)
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Therefore,

SH
ϕ {f}(w)

=
1√
2πb1

e

i
2

(
d1
b1

w2
1−π

2

)
−

(w1
b1
)
2

4(a−i
a1
2b1

)
∫ u1+1

u1−1

e
−
(
a−i

a1
2b1

)(
x1−

i
w1
b1

2(a−i
a1
b1
)

)2

dx1

×
∫ u2+1

u2−1

e
−
(
a−j

a2
2b2

)(
x2−

j
w2
b2

2(a−j
a2
b2

)

)2

dx2
1√
2πb2

e

j
2

(
d2
b2

w2
2−π

2

)
−

(w2
b2
)
2

4(a−j
a2
2b2

)

=
1√
2πb1

e

i
2

(
d1
b1

w2
1−π

2

)
− w2

1

4b1(a−i
a1
2b1

)
∫ u1+1

u1−1

e
−

(√
a−i

a1
2b1

(
x1−i

w1

2b1(a−i
a1
2b1

)

))2

dx1

×
∫ u2+1

u2−1

e
−

(√
a−j

a2
2b2

(
x2−j

w2

2b2

(
a−j

a2
2b2

)))2

dx2
1√
2πb2

e

j
2

(
d2
b2

w2
2−π

2

)
− w2

2

4b2(a−j
a2
2b2

) .

This equation simplifies to

SH
ϕ {f}(u,w)

=
1

4
√
2πb1 − ia1

e

i
2

(
d1
b1

w2
1−π

2

)
− w2

1

4b1(a−i
a1
2b1

)

× (erf

√
a− i

a1
2b1

u1 + 1− i
w1

2b1

(
a− i a1

2b1

)


− erf

√
a− i

a1
2b1

u1 − 1− i
w1

2b1

(
a− i a1

2b1

)


× erf

√
a− j

a2
2b2

u2 + 1− j
w2

2b2

(
a− j a2

2b2

)
−

erf

√
a− j

a2
2b2

u2 − 1− j
w2

2b2

(
a− j a2

2b2

)
 1√

2πb2 − ja2
e

j
2

(
d2
b2

w2
2−π

2

)
− w2

2

4b2(a−j
a2
2b2

) .
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