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Abstract. Bourbaki developed the concept of a proper map in topological spaces
and proved that a continuous map between topological spaces is proper if and only
if it is perfect, known as Bourbaki theorem. Clementino and Tholen extended this
concept to lax algebras, formulating a generalized Bourbaki theorem applicable to
a special type of category called a (S, Q)-category. Their theorem states that, un-
der certain conditions, a (S, Q)-functor is proper if and only if both pullbacks of the
functor are closed and a specific transformation is closed. They also provide an equi-
valent characterization using compactness of fibers. Clementino and Tholen then
posed a question: If we slightly modify the conditions in their generalized theorem,
do the equivalences still hold? This paper aims to answer this question, investigat-
ing the impact of these modifications on the relationship between properness and
closure properties.

Key words and Phrases: Bourbaki theorem, Lax Extension of Functor, Lax
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1. INTRODUCTION

The notion of a (S, Q)-category was first introduced by Clementino, Hofmann and Tholen
(see [1] and [2]). A (S, Q)-category is a lax Eilenberg-Moore algebra of S in the category of sets
and Q-relations where S is a monad and Q is a unital quantale. Taking S as the identity monad,
this notion captures ordered sets for Q = 2. Further, when S is the ultrafilter monad, one obtains
topological spaces for Q = 2 (see [3]).

A (S, Q)-functor is a lax homomorphism between (S, Q)-categories and (S, Q)-Cat is the
category of (S, Q)-categories and (S, Q)-functors (see [3]). As an example if | is identity monad
then (I,2)-Cat is the category Prost of preordered sets and monotone maps.

Morever, if U is an ultrafilter monad, then the category (U, 2)-Cat is isomorphic to the
category Top of topological spaces and continuous functions. Since Top is an example of (S, Q)-
Cat, we can say that (S, Q)-Cat is a generalization of Top in category theoretical setting. Hence
we can analyze what properties existing in the topological spaces and continuous functions can
be generalized to (S, Q)-categories and (S, Q)-functors.

Clementino and Tholen generalized the Bourbaki theorem in the context of topological
spaces to the category (S, Q)-Cat (see [4]). The Bourbaki theorem states that a continuous map
between topological spaces is perfect iff it is proper (see [5, Theorem 10.2.1] and [6, Theorem 10]).
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The generalized Bourbaki theorem then states that, under a certain condition, the statement that
a (S, Q)-functor g is proper is equivalent to the statement that every pullback of g is closed and
Sg is closed which in turn is equivalent to the statement that all fibres of g are compact and Sg
is closed.

In Remark 6.2 (2) of their paper [4], a question is raised: is the statement that a (S, Q)-
functor ¢ is proper, also equivalent to the statement that g is closed? Furthermore, is the
statement that a (S, Q)-functor g is proper still equivalent to the statement that all fibers of g
are compact and g is closed? The aim of this paper is to answer that questions.

In this paper, the basic category theory, quantale and the category (S, Q)-Cat are taken
from [7], [8], [9], [3], [10], [6], [11], [I2] and [13]. The basic general topology is taken from [5], [6],
[14] and [I5].

2. PRELIMINARIES

1. Eilenberg-Moore Category.

This session kicks off with a discussion of monads. We will then leverage this concept to
define the Eilenberg-Moore category. For foundational details on monads, please refer to [3] and
[13]. In the following, we will recall specific details pertinent to this work.

Definition 2.1. A monad S on a category C is a triple (S,7,e) where S : C — C is a functor,
and n: S5 — 5, e:1c — S are natural transformations, which make the following diagrams

588 —— S8 — S5 S
lnS lﬁ \S’) l /
S§ —1— 8
commute. Namely fulfilling
n-nS=mn-Spand lg =n-eS=n-Se.
Example 2.2. Given the category Set of sets and functions. Then there exists the identity

monad | = (1get, 1,1) on Set with 1get : Set — Set is a identity functor on Set and 1 : 1get —
1set is a natural transformation given by
1y Y Y
Yy

for every set Y.
To elucidate the theory of monads, we present an application involving ultrafilters.
Definition 2.3. Given a set Y, a filter on Y is a family F C 2¥ such that
1) YeF
(2) ABe F=ANBeF
3) Ae F,ACB= BeF.
A filter F is called proper provided that 0 ¢ F. An ultrafilter on a set Y is a maximal element
in the set of proper filters on Y, ordered by inclusion.
For the category Set, there exists the ultrafilter functor
U :Set — Set
Y —»UY
g:Y=>Z—=Ug:UY -UZ

where UY = {V C2Y | Visanultrafilteron X} and Ug(W) = {BC Z | g~ (B) € W}, for
every set Y, every map g: Y — Z and W € UY.
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Example 2.4. There exists the ultrafilter monad U = (U,n,e) on Set, with U : Set — Set is a
ultrafilter functor and n: UU — U, € : 1ge¢ — U are natural transformations given by

ny :UUY - UY ey : Y = UY
W {ACY | A e} y=y

where AY ={V eUY |AeV}and y={ACY |y € A} for every set Y.

We now formally define the Eilenberg-Moore category. From the Eilenberg-Moore category
SetS, we will later define the (S, Q)-Cat category on Set to Q-Rel. We will start by defining
an Eilenberg-Moore algebra.

Definition 2.5. Given a monad S = (5,7, ¢) on a category C. A S-algebra (or Eilenberg-Moore
algebra) is a pair (Y, a), where Y is a C-object, and a : SY — Y is a C-morphism, which makes
the diagrams

SSYy " Sy Yy = SY
a 1Y a
Je ] N
SY —*—Y Y
commute. Namely fulfilling
a-Sa=a-ny and ly =a-¢ey.
A S-homomorphism g : (Y,a) — (Z,b) is a C-morphism ¢ : Y — Z, which makes the following
diagram
Sy -9, 57
= b
y 2527
commutes, i.e., g-a="5b-95g.
The Eilenberg-Moore category of S (or CS) is the category of S-algebras and S-homomorphisms.

2.2. Category (S,Q)-CAT.

In the (S, Q)-Cat category, S is a monad and Q is a unital quantale. So in this session, we
will first discuss the concept of a quantale. For basic facts about quantale we refer to [7] and [9].
Definition 2.6. A quantale Q is a complete lattice, which is equipped with an associative binary
operation ® : Q x Q — Q (multiplication) such that

(1) vo (VW)= \/W(UGw)
we
2) (VW)ov=V (wow)
weW
for every v € Q and every W C Q. Moreover a quantale Q is said to be unital provided that its
multiplication has a unit k € Q.
Example 2.7. Consider the complete lattice two-element
(J—v T7 g) = (false, truea g) )
where L < T. The complete lattice (L, T, <) becomes a unital quantale with © = A and k =T,
where

A(v,w) = irglf {v,w}

for every v,w € {1, T}. We will denote this quantale by 2 = ({L, T}, A, T).
In defining the (S, Q)-Cat category on Set to Q-Rel, Q-Rel is a category of sets and
Q-relations. So now we will discuss a Q-relation which is a generalization of a relation.
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Definition 2.8. Given a unital quantale 2 = ({1, T}, A, T). A relation r from a set Y to a set
Z is a map

r:Y xZ — 2 (denoted r: Y + Z ).

Given y € Y and z € Z, one uses yr z as a shorthand for r(y,z) = T. The opposite (or dual) of
a relation 7 : Y + Z is the relation r° : Z + Y defined by
zrey s yrz

2-Rel (or Rel) is the category, whose objects are sets, and whose morphisms are relations.
Definition 2.9. Let (Q,®, k) be a unital quantale. A Q-relation r from a set Y to a set Z is a
map

r:Y xZ— Q (denoted r: Y = Z).
The opposite (or dual) of a Q-relation r : Y + Z is the Q-relation r° : Z - Y defined by

r° (z,y) =7 (y, 2).
Q-Rel is the category, whose objects are sets, and whose morphisms are Q-relations. Composition
of Q-relations 7 : Y - Z and t : Z ++ W is defined by
(t-r)(y,w) =V (r(y,2) ©s(zw)).
z€EZ
Given a set Y, the identity Q-relations 1y : Y + Y is defined by
|k Jify=v

Iy (y,v) = { Lq, otherwise

for every y,v € Y.

As a stepping stone, we can construct a lax extension of any functor S : Set — Set into the
category of Q-relations. This lax extension will be crucial later when we define the lax extension
of monads on Set to the category of Q-relations.

Definition 2.10. Let (Q,®, k) be a unital quantale and S : Set — Set a functor. A laz
extension S : Q-Rel — Q-Rel of S to Q-Rel is a pair of maps So : Og_Rrel =+ Oq-Rel and
Sy Mqg-ret &+ Mq-Rrel (both denoted 5’)7 where Oq_Rrel is class of objects in Q-Rel,
Mq-_Rel is class of morphisms in Q-Rel, S(Y) = SY, S(r:Y -+ Z) = Sr: SY + SZ and
satisfy the following axioms:

1) r<i=S(r)<S()

(2) St-Sr<S(t-r)

(3) Sg < Sgand (Sg)° <5 (¢g°)
for every set Y, V-relations r,l:Y + Z,t: Z + W and map g: Y — Z.

In order to fully articulate this concept, we will now analyze the ensuing two examples.

Example 2.11. The identity functor
1Q—Rel : Q — Rel — Q — Rel
Y=Y
T T

is a lax extension of the identity functor lget : Set — Set.
Example 2.12. The ultrafilter functor U : Set — Set has a lax extension which is a functor

U : Rel — Rel
Y —-UY

r:Y s Z—=Ur:UY »UZ



given by
VUrWeVAeV,VBeW,Jye A,3z€ B yrz,

for every relation r : Y + Z and all YV e UY, W e UZ.

Having established lax extensions for functors, we can now define lax extensions for monads

on Set to Q-Rel. We will further solidify this concept with examples. The concept of lax
extensions for monads is detailed in [§], [3] and [13].
Definition 2.13. Given a unital quantale Q and a monad S on Set. A lax extension Sof S
to Q-Rel is a triple (5’,77,5), where S is a lax extension of S to Q—Rel, and 7 : SS — S,
€:1g-Rel = S are oplax natural transformations, which means that 77 and € make the following
diagrams

Ssy Xy Sy y =5 Sy
Ssz 125 5z Z 2,87

lax commute, for every Q—relation r : Y + Z. Namely fulfilling
UZ'SST:ST~HY andszorggrof:y,
for every Q—relation r : Y + Z.

Example 2.14. The identity monad | on Set has a lax extension to Q-Rel given by the identity
monad

| = (1g—Re1,1,1)
where 1 : 1g_Rel = 1Q—Rel is & natural transformation with
v : Y =Y
yr—=y
for every set Y.

Example 2.15. The lax extension U of the ultrafilter funqtczr U provide a lax extension U=
(U,n,e) of the ultrafilter monad U on Set to Rel, with n: UU — U and € : 1rel — U given by

nx :UUY - UY ey Y - UY
W {ACY |AY ew} y—=y

where AY ={V eUY |AcV}and y={ACY |y € A} for every set Y.
To generalize Bourbaki’s theorem, we will subsequently define a flat lax extension of a
monad on Set to Q-Rel.
Definition 2.16. A lax extension S to Q-Rel of a functor S on Set is flat provided that
Sly = Sly, for every set Y.
A lax extension S to Q-Rel of a monad S on Set is flat provided that the lax extension Sof S
is flat.
Example 2.17. The lax extension U of the ultrafilter monad U on Set to 2-Rel (or Rel) is flat.
After knowing the concept of lax extension of a monad on Set to Q-Rel, we can finally
define a (S, Q)-category (which is a lax Eilenberg-Moore algebra of S in Q-Rel) and a (S, Q)-
functor (which is a lax S-homomorphism in Q-Rel). A (S,Q)-Cat is a category of (S,Q)-
categories and (S, Q)-functors. A thorough discussion of (S, Q)-Cat can be found in [§], [9], [3]
and [12].
Definition 2.18. Suppose Q is a unital quantale, and S = (S’, 7,€) is a lax extension of a monad
S on Set to Q-Rel. A (S, Q)-category (or laz algebra) is a pair (Y, a), which comprises a set YV’



and a Q-relation a : SY -+ Y such that the following diagrams

SSy ™, Sy y X5 Sy

AN

Sy —2 Y

lax commute. Namely fulfilling a - Sa<a- ny and ly <a-ey.
A (S,Q)-functor g : (Y,a) — (Z,b) is amap g: Y — Z such that the following diagram

sy -9, sz

P

y 24—z
lax commute, i.e., g-a < b-Sg.
The (S, Q)-Cat is the category of (S, Q)-categories and (S, Q)-functors. Moreover, the category
(1,Q)-Cat is denoted Q-Cat, whose objects (resp. morphisms) are called Q-categories (resp.
Q-functors).

Example 2.19. The (I, 2)-category (or 2-category) is a pair (Y, <) with Y isasetand <:Y + Y
is a relation such that

(1) v<vforeveryveY
(2) u<v,v <wimply u < w for every u,v,w € Y.
A 2-functor g : (Y, <) = (Z,<) isamap g: Y — Z such that
v < w imply g(v) < g(w)
for every v,w € Y. As a result, (I,2)-Cat (or 2-Cat) is the category Prost of preordered sets
and monotone maps.

A cornerstone result in this area is the fundamental theorem of lax algebras. This theorem
states that the category of topological spaces Top is equivalent to the category of lax algebras
over a specific monad (U, 2)-Cat. In simpler terms, this means we can understand topological
spaces as a special kind of (S, Q)-category, where S and Q are particular monad and quantale,
respectively. As a consequence, continuous functions between topological spaces can be seen as
morphisms in the (S, Q)-category framework.

The key takeaway from the equivalence between Top and (U,2)-Cat is that properties
of topological spaces and continuous functions naturally translate to (U, 2)-categories and their
morphisms. This paves the way for further generalization to arbitrary (S, Q)-categories, as
demonstrated by Clementino and Tholen [4]. Their work generalizes the Kuratowski-Mréwka
theorem and Bourbaki’s theorem, extending these well-known results from the realm of topolo-
gical spaces to the more abstract framework of (S, Q)-categories.

Theorem 2.20 (Fundamental example of a lax algebra in [I0]). The category (U,2)-Cat is
isomorphic to the category Top.

Thereafter we can also generalize the concepts of indiscrete topology and discrete topology
in topological spaces to (S, Q)-categories into the concepts of indiscrete (S, Q)-category structure
and discrete (S, Q)-category structure, as explained in the following theorem and example.
Theorem 2.21 (Theorem 33 in [I0]). Let Y be a set.

(1) The discrete (S, Q)-category structure on'Y is given by €5 - S1y (where €3, is opposite
of ey ) and denoted by 1# = ey .Sly.

(2) The indiscrete (S, Q)-category structure on Y is given by the constant map Tq : SY X
Y — Q with value Tq.



Example 2.22. In the category (U,2)-Cat = Top, the discrete structure on a set Y is the
discrete topology on Y (i.e. the power set of Y) and the indiscrete structure on Y is the
indiscrete topology on Y (i.e. {0,Y}).

2.3. The Bourbaki Theorem.

N. Bourbaki’s theorem for topological spaces says that a continuous map between topolo-
gical spaces is perfect iff it is proper. So at the beginning of this session we will start by defining
proper functions and perfect functions in topological spaces.

Definition 2.23. Let g: (Y,T) — (Z,J) be a continuous map between topological spaces.

(1) g is closed provided that the image under g of every closed set in (Y,7) is closed in
(Z,7).
(2) g is proper provided that for every topological space (W, K), the map

X1y : Y xXW—=>ZxW
is closed.

We also define a compact set in a topological space, because we will use the concept of a
compact set by defining a perfect function in a topological space.
Definition 2.24. Given a topological space (Y,7T), a subset A C Y is said to be compact
provided that for every family {O; : i € I} C T such that A C |J O; there exists a finite subfamily

il
n
{0i,,0iy, ..., 0;,} € {0; i €I} such that A C |J O;,. A topological space (Y,T) is said to
=1

be compact provided that its underlying set Y is compact.

Definition 2.25. A continuous map ¢ : (Y,7) — (Z,J) between topological spaces is called

perfect provided that g is closed, and for every z € Z, the fibre g~! (2) is a compact subset of Y.
We will first establish the concepts of proper functions and perfect functions within topo-

logical spaces. This foundation will be crucial when we present the Kuratowski-Mréwka theorem

and the Bourbaki theorem. Subsequently, we will generalize these theorems from topological

spaces to (S, Q)-categories, resulting in the generalized Kuratowski-Mréwka theorem and the

generalized Bourbaki theorem.

Theorem 2.26 (Kuratowski-Mréwka theorem in [6]). Given a topological space (Y, T). The

following conditions are equivalent:

(1) (Y,T) is compact
(2) for every topological space (Z,J), the projection wz : Y X Z — Z is closed.

Theorem 2.27 (Bourbaki theorem in [6]). A continuous map between topological spaces is proper
iff it is perfect.

2.4. The Generalized Bourbaki Theorem.

We will start this session by giving some properties that we will later use in generalizing
N. Bourbaki’s theorem for topological spaces to (S, Q)-categories.

From now on, assume that the quantale ) and the lax extension S= (S ,m,€) of a monad
S on Set to Q—Rel satisfy the following five conditions:

) Q is strictly two-sided, i.e., (Q,®, T¢g) is a monoid.
) Q is cartesian closed, i.e., v ANV W)=\ (vAw) for every v e Q, W C Q.
wew
3) S is taut, i.e., S preserves pullbacks of monomorphisms along arbitrary maps.
4) S is left-whiskering, i.e., S (g-r) = Sg - Sr, for every Q-relation r : Y -+ Z and every
mapg:2Z — W.

(1
(2
(
(



(5) n°: S — §S is natural, which means that the following diagram

SY -, ssy

s s
Sz "2, 557
commutes for every Q-relation r: Y -+ Z. This means that
0y - Sr=S85r-ng,

for every Q-relation r : Y + Z.
Example 2.28. The lax extension U = (U, 7n,¢€) of the ultrafilter monad U on Set to 2-Rel (or
Rel), satisfes the following conditions:
(1) The quantale 2 is strictly two-sided.
(2) The quantale 2 is cartesian closed.
(3) The ultrafilter functor U on Set is taut.
(4) The lax exAteAnSion U of the ultrafilter functor U on Set to 2-Rel is left-whiskering.
(5) n°: U — UU is natural.
In the following definition, we introduce a proper (S, Q)-functor, drawing on concepts from
0].
g)]eﬁnition 2.29. A (S, Q)-functor g : (Y,a) — (Z,b) is proper provided that the diagram

Sy -9, 5z
[ b
vy —24— 7
commutes, i.e., g-a="5b-95g.
Example 2.30. In the category (U,2)-Cat = Top one gets that a (U, 2)-functor ¢ : (Y,a) —
(Z,b) is proper provided that g-a = b-Ug. Since g is a (U, 2)-functor this is equivalent to
b-Ug < g-a which in turn is also equivalent to
b- UQ(W, Z) <g- CL(W, Z)a
for every W € UY, z € Z. This result is also equivalent to
bUgW),z) <V aW,y),
9(y)==
for every W € UY, z € Z. Therefore we get that for every ultrafilter W € UY and every
z € imUg(W), there exists y € lim W such that g(y) = z. This is equivalent to the map
gx 1w : Y xW — Z x W is closed, for every topological space (W, K). In other words it means
g is proper in the context of topological spaces.
In the next step, we introduce the concept of a closed (S, Q)-functor. The following defi-
nition references [6].
Definition 2.31. A (S,Q)-functor g : (Y,a) — (Z,b) is closed provided that for every A CY,
g-a-Sia-13,=0-Sg-Sialg,
where i4 : A < Y is the inclusion map and !g4 : SA — 1 (where 1 = {x}) is the unique map,
ie., lsa(z) = x for every z € SA.
Example 2.32. In the category (U, 2)-Cat = Top one gets that (U, 2)-functor g : (Y, a) — (Z,b)
is closed provided that for every A C Y,
g-a-Uia- 15, =0-Ug-Uig-34.

This is equivalent (see [0, Lemma 56]) to



b-Ug-Uiglga<g-a-Uia-lfy,
for every A C Y. This means that

\% b(Uig(A) V),z)< V V' aUia(W),y),
VeU(g(A)) WEUA f(y)=z

for every z € Z. Therefore we get that the image under g of every closed set in Y is closed in Z.
In other words it means g is closed in the context of topological spaces.

We will introduce the concept of a compact (S, Q)-category. For a comprehensive treat-
ment, refer to [6].

Definition 2.33. A (S, Q)-category (Y, a) is said to be compact provided that the unique (S, Q)-
functor ly : (Y,a) = (1, T) (where 1 = {x}) is proper.
Example 2.34. In the category (U, 2)-Cat = Top one gets that (Y, a) is compact provided that
the unique (U, 2)—functor ly : (Y,a) — (1, T) (where 1 = {x}) is proper. This is equivalent to
ly -a =T -Uly. This also means that

\/ a(W7 y) =T,

yey
for every W € UY. Therefore we get that for every ultrafilter on the topological space Y has a
limit point. In other words it means Y is compact in the context of topological spaces.

In our generalization of Bourbaki’s theorem, we will employ the concepts of a finitely (—)°-
strict lax natural transformation and a fiber of a (S, Q)-functor. These concepts are defined in
the following two definitions and explained in Example (see [6] for both).

Definition 2.35. A Q—relation r : Y + Z is said to have finite fibres provided that the set

r°(z)={yeY :Lq <r(y,z)} (where r° is opposite of r)
is finite for every z € Z.

A lax natural transformation € : 1g_Rel — S is said to be finitely (—)°-strict provided that the
following diagram

sy .y
ls L

sz 2, 7

commutes for every Q—relation r : Y + Z with finite fibres. That is satisfy
€y - Sr <r-ey,

for every Q-relation r : Y -+ Z with ﬁniteAﬁbresA.
Example 2.36. Given the lax extension U = (U, n, ¢) ofAthe ultrafilter monad U on Set to Rel,
one gets that the lax natural transformation € : 1ge; — U is finitely (—)°-strict.

In the following dfzﬁnitign, we present the concept of a fibre of a (S, Q)-functor.
Definition 2.37. Let S = (5,7,¢) be a lax extension of monad S on Set to Q-Rel. Given a
(S, Q)-functor g : (Y,a) — (Z,b). The fibre of g on z € Z is the pullback

l-1(2) t (971 (2),a) — (1,1%) (where 1 = {x})
of g along the (S, Q)—functor z : (1, 1#) — (Z,b), i.e.,
(7 ()0 @) S (1,1%)

-

lig’l(Z) lz

(Y, a) L’ (Z7 b)



10

where 1% = ¢° . 5'11 is the discrete structure on 1 and

i = (#5100 Sigo19)) A (5128 511 Sl )
This theorem introduces a functor from (S, Q)-Cat to Q-Cat, which we will utilize in
Bourbaki’s generalization theorem. R R
Theorem 2.38 (Theorem 18 in [6]). Let S = (S,n,¢) be a lax extension of monad S on Set to
Q-Rel. Then there exists a functor F : (S, Q)-Cat — Q-Cat which is given by F (Y, a) = (SY, a)

and F (g: (Y,a) = (Z,b)) = Sg: (SY,a) — (SZ, I;), for every (S, Q)-category (Y, a) and (S, Q)-

functor g : (Y,a) — (Z,b), where a = Sa - Ny -

This section concludes by generalizing the Kuratowski-Mréwka and Bourbaki theorems,
extending their applicability from topological spaces to (S, Q)-categories. We will refer to [6]
and [4] for concepts used in the following two generalization theorems.

Theorem 2.39 (The generalized Kuratowski-Mréwka theorem in [6] and Theorem 5.2 in [4]). Let
S= (S’,n,s) be a lax extension of monad S on Set to Q-Rel, where S is flat and € : 1q_Ret — S
is finitely (—)°-strict. The following are equivalent:

(1) The (S, Q)-category (Y,a) is compact

(2) for every (S, Q)-category (W, c), the projection wz : (Y,a) x (W, c) = (W, ¢) is closed.
Example 2.40. In the category (U,2)-Cat = Top, one gets that the generalized Kuratowski-
Mréwka theorem mentioned Kuratowski-Mrowka theorem.
Theorem 2.41 (The generalized Bourbaki theorem in [6] and Theorem 6.1 in [4]). Let S =
(S', 1n,€) be a lax extension of monad S on Set to Q-Rel, where S is flat, S1 21 (where 1 = {x}),
and € : 1g_ret — S be finitely (—)°-strict. Giwen a (S,Q)—functor g : (Y,a) — (Z,b), the
following are equivalent:

(1) g is proper
(2) every pullback of g is closed, and Sg : (SX,a) — (SZ, Z)) is closed

(3) all fibres of g are compact, and Sg : (SY,a) — (SZ, l;) is closed.

Example 2.42. In the category (U,2)-Cat = Top, one gets that the generalized Bourbaki
theorem mentioned Bourbaki theorem for topological spaces.

3. MAIN RESULTS

We will address the specific issue raised at the beginning. Let S = (9,7,¢) be a lax
extension of monad S on Set to Q-Rel, where S is flat, S1 = 1 (where 1 = {x}), and ¢ :
1q_Rel — S be finitely (—)°-strict. Given a (S, Q)—functor g : (Y,a) — (Z,b), are the following
are equivalent:

(1) g is proper

(2) every pullback of g is closed

(3) all fibres of g are compact, and g is closed.

This section will establish that the provided statements are not mutually equivalent. In support
of our proof, we will now examine the facts presented in two distinct subsections, namely Section
2.1: Examples and Section 7.9: Labeled graphs as (H, 2)-categories from [4]. Let (W,-,e) be a
monoid with identity element e € W. We consider a functor S = W x — : Set — Set and
monad S = (S,7n,¢) on Set, where SY =W x Y,

ny :Wx(WxY)—(WxY)
(Uv(wvy)) = (U'w’y)
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ey : Y -WxY
y (e, y)

for every set Y, y € Y and v,w € W. Then S possesses a lax extension functor S on Set to
2-Rel (or Rel) given by
(v.9) (57)

(w,
forany r:Y - Z , (v,y) € W xY and (w,z) € W x Z.
We aim to prove that the functor S : 2-Rel — 2-Rel is flat. Given (v,y), (w,j) € W x Y.
Then we get (v,y) (S’ly) (w,j) iff v = w and y(ly)j. Further we also get y = j. Thus

z)ev=wand yrz,

(v,y) (Sly) (v,y). So it is obtained S1ly = 1lgy. Since lgy = Sly, then we get S1ly = Sly.

We have thus established that S: 2-Rel — 2-Rel is flat.

We will demonstrate that the natural transformation e : 1q_ger — S is finitely (—)°-strict.
Consider a 2-relation r : Y + Z with finite fibers. Let (v,y) € W x Y and z € Z. Then we get

(v,y) (6% . Sr) z iff there is (w,j) € W x Z such that (v,y) (§r> (w,7) and (w,j) (¢%) z. From
(v,y) (S’r) (w,7), we get v = w and yrj. From (w,j) ()2, we get z(ez) (w,j), w = e and

z = j. Consequently v = w = e and yrj = yrz. Thus we get (v,y) (5% . S’r) z iff v = e and
yrz. On the other hand, we also get (v, y) (r - €5 ) z iff there is ¢ € Y such that (v,y) (¢5) ¢ and
grz. From (v,y) (%) q, we get g (ey) (v,y), v =-e and ¢ = y. Consequently grz = yrz. Thus

we get (v,y) (r-e5)z iff v=-e and yrz. In other words (v,y) (5% . S’r) y = (v,y) (r-e%) z, for
every (v,y) € W x Y and z € Z. This concludes that ¢ : 1q_rer — S is finitely (—)°-strict.
Let 7 : W XY -+ Y be a 2-relation. Let v € W and y,q € Y. We define the notation

y = q < (v,9)rq. In this notation, a pair (Y,a) is considered a (S, 2)-category if and only if ¥’
is ; set and a : W xY =Y is a 2-relation satisfying conditions

D v =,

(i) y > q=p=y—>p

a ' oa a

for every y,q,p € Y and u,v € W. We also get that a (S, 2)-category (Y, a) is compact if and
only if for every v € W and y € Y, there is ¢ € Y such that y %) q. Moreover g : (Y,a) — (Z,b)

is a (S, 2)-functor if and only if it satisfies y — ¢ = g(y) %) g(q), for every y,q €Y and v € W.
For a (S, 2)-functor ¢ : (Y,a) — (Z,b), we have that g is proper if and only if

(Vv eW,VyeY Vze Z:g(y) % z) (Elq €g(2):y %) q).
A (S, 2)-functor g is closed iff
(Vv eW,VyeY,Vze Z:g(y) % z) (Hq cglg),IweW:y % q).
In what follows we will prove that statement (2) does not imply statement (1).

Proof for (2) = (1):

Let (W,-,e) be a non trivial monoid with identity element e € W and K = {5,6}. We
define a (S, 2)-functor g : (K,a) — (K,b) which is an identity map g : K — K and 2-relations
a:WxK-+ Kandb: W x K + K satisfy
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T, i ((v,9),9) € {((e;5),5),((e,5),6),
a((v,y),q) = ((e,6),5),((e,6),6)}

1, otherwise

and b ((v,y),q) =T for every v € W and y,q € K.

(i)

(i)

(iii)

(iv)

(v)

We will show that (K, a) and (K, b) are (S, 2)-categories. For every y € K we have y = y
a

and y %) y. Similarly, for every y,q,p € K and every v,w,u,j € M let us assume that
v w u J
y—>q—pand y — q = p.
a a b b
Using the definitions of @ and b we conclude that v = w = e and w-v = e-e = e. Further
we also get

w-v=e Ju
Y T) p and y T> p.

Therefore we have shown that (K, a) and (K,b) are (S, 2)-categories.
We will show that ¢ : (K, a) — (K,b) is a (S, 2)-functor. Given y,q € K and v € W such
that y = ¢. Then we get

v=-e and g(y) % f(2).
Therefore we have shown that g : (K, a) — (K,b) is a (S, 2)-functor.
We will prove that g is closed. Let v € W and y,q € K such that g(y) %) q. Since g is

an identity map, we have g~1(q) = {q}. Therefore, we can choose ¢ € g~ '(q) and e € M
such that y < ¢. Thus we have that g is closed.
a

We will prove that every pullback of g is closed. Since g is a identity map, we have that
a pullback of g along 1k ) is g, as in the following diagram

(K,a) —— (K,b)

ll(K’"') llucb)

(K,a) —— (K,b)

Since g is closed, we have that the pullback of g along 1k ) is closed.

We will prove that g is not proper. Since there is v € W such that v # e and there are

y,q € K such that g(y) % q. But for every p € f~' (q), we have that y £ p. Thus we
a

have g is not proper.

Therefore we have proven that every pullback of g is closed but g is not proper. In what follows
we will prove that statement (3) does not imply statement (1).

Proof for (3) = (1) :

By using the same (S, 2)-functor ¢ : (K,a) — (K,b) in the proof for (2) = (1) above, we
obtain that ¢ is closed and not proper. Now will show that every fibre of g is compact. Let a fibre
of g on ¢ € K, which is the pullback !,-1(y) : (97 (¢),a) — (1, 1#) of g along the (S, 2)-functor
q: (1, T) — (K,b) as in the following diagram

(67 (a),a) =2 (1,7)

lﬁrlm l‘l

(K,a) —2— (K,b)
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where 1 = {}, (1, 1#) =(1,T)and a = (i;_l(q) .a.Sig_l(q)) A (!;_1(q) 9. 51, .S!g—l(q)) .

We will show that that the fibre (¢7!(q),a) of g is compact. Let (L, c) be a (S, 2)-category.
We have the following composition,

(974(q),a) x (L,c) —* (L,c)

J{ngl(q) J/!L

(671 (0).3) ——2 (1,T)

yflm Jq

(K,a) —2—— (K.,b)

where 77, : (97%(q),a) x (L,c) = (L,c) and my-1¢y) : (97'(q),a) x (L,c) — (g7 (q),a) are
projection functions. Since 7y, : (g’l(q)7 d) x (L,c) = (L, c) is a pullback of g, then we have 7, is
closed (from the proof for (2) # (1), we have shown that every pullback of g is closed). Wherefore
7 : (97 (q), @) x (L,¢) — (L, c) is closed then according to the generalized Kuratowski-Mréwka
theorem, we obtain that (g_l(q), d) is compact. Thus we have proven that every fibre of g are
compact, but g is not proper.

4. CONCLUDING REMARKS

Our research demonstrates that, if we modify the conditions in the generalized Bourbaki
theorem (which is the question in [4]), we can then provide a counterexample that there is a
(S, Q)-functor whose pullbacks are closed, but the (S, Q)-functor is not proper. Furthermore, we
can also give a refuting example which states that there is a (S, Q)-functor which is closed and
all its fibers are compact, but the (S, Q)-functor is not proper. For further research, we intend
to analyze the generalization of the characterization of proper mappings by local compactness
properties in topological space described in [5] which can be developed in the category (S, Q)-
Cat.
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