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Abstract. This paper discusses the R-bounded solution operator for a compressible

fluid model of Korteweg type with slip boundary conditions in a bent half-space

(Ω+). This result provides a foundation for studying the Navier-Stokes-Korteweg

system in the Lp in time and Lq in space maximal regularity class and contributes

to the analysis of local and global well-posedness for the original nonlinear problem,

which is a fundamental system equation to describe the motion of the viscous fluid.
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1. INTRODUCTION

The theory of R-boundedness has evolved significantly over the last decade.
Analyzing R-bounded solutions of systems of partial differential equations (PDEs)
has become a crucial step in understanding their Maximal Regularity. Maximal
Regularity theory is a powerful tool for solving nonlinear models. Recently, there
has been considerable interest in the Maximal Regularity theory due to its effec-
tiveness and reliability in handling nonlinear PDEs. Maximal Regularity provides
an a priori estimate of the solution to a linear differential system, which is essential
for solving the nonlinear system. This theory facilitates solving nonlinear equations
through linearization techniques combined with the contraction mapping principle,
where a priori estimates are crucial. This approach allows for deriving both local
and global solutions for nonlinear systems.

Let Ω ⊂ RN with N ≥ 2(N ∈ N) where N denotes the set of natural numbers
and

RN = {x = (x1, · · · , xN ) | xi ∈ R, ∀i} .
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The Navier-Stokes-Korteweg (NSK) model captures the capillarity effects in fluids,
and its corresponding resolvent equation is given by:

λρ+ α1divu = d in Ω

λu− α−1
4 Div (α2D(u) + (α3 − α2)divuI− α1∆ρI) = f in Ω

(1)

where ρ = ρ(x) is a scalar function, u = u(x) = (u1(x), . . . , uN (x))⊤ is a vector-
valued function and the coefficients αi = αi(x) (i = 1, . . . , 4) are real-valued uni-
formly Lipschitz continuous functions, i.e., there exists a positive constant c such
that |αi(x)− αi(y)| ≤ c|x− y|. The doubled stress tensor is denoted by D(u), i.e.,

D(u) = ∇u+ (∇u)T; for ∇u =

∂1u1 . . . ∂Nu1
...

. . .
...

∂1uN . . . ∂NuN

 , (2)

while I is the N×N identity matrix. Here, λ is a resolvent parameter in Σσ = {λ ∈
C \ {0} | | arg λ| < π − σ} for σ ∈ (0, π/2) where C represents the set of complex
numbers.

We set ∂j =
∂

∂xj
, then for a scalar function u = u(x) and for a vector function

u = (u1(x), . . . , uN (x))
⊤

defined in RN ,

∇u = (∂1u, ∂2u, . . . , ∂Nu)
⊤
;

∇2u = (∂J∂kul | {J, k, l = 1, . . . , N});

divu =

N∑
J=1

∂JuJ ;

∆u =

N∑
J=1

∂2Ju.

(3)

For an N ×N matrix-valued function M = (Mij(x))1≤i,j≤N , we set

DivM =

( N∑
j=1

∂jM1j , . . . ,

N∑
j=1

∂jMNj

)T

. (4)

The development of the NSK model has a rich history rooted in the study
of capillarity effects and two-phase fluid flows. In 1901, Korteweg formulated con-
stitutive equations for the stress tensor, incorporating the fluid density gradient to
model capillarity effects in fluids. Dunn and Serrin later explored the NSK model
with Dirichlet boundary conditions within the framework of rational mechanics,
introducing the concept of inertia work in thermomechanics [1]. The NSK model
captures capillarity effects and two-phase liquid-vapor flows, with a transition phase
representing a fluid diffusion interface, as discussed by Anderson et al. [2] and Liu
et al.[3].

In 2003, Bresch, Desjardins, and Lin analyzed the weak solutions of the NSK
model under specific boundary conditions [4]. Later, Kotschote discussed strong
solutions in the exterior domain, introducing Maximal Regularity for the linear
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NSK model in the Lp setting combined with the fixed-point theorem to obtain
local solutions for the model (1) with Dirichlet boundary conditions [5]. Kotschote
also examined non-isothermal cases for Newtonian and non-Newtonian fluids and
proved the asymptotic stability of strong solutions to the dynamic NSK system [6].

Regarding R-boundedness, Hirokazu Saito established R-bounded solutions
of the NSK with free boundary conditions in half-space and later in arbitrary
bounded domains [7, 8]. Subsequently, Suma Inna et al. demonstrated the ex-
istence of R-bounded solutions of the resolvent equations for system (1) with slip
boundary conditions in half-space for the case where (µ+ν

2κ )2 − 1
κ ̸= 0, κ ̸= µν [9].

In 2023, Suma Inna analyzed the solution operator of the NSK for the coefficients
(µ+ν

2κ )2 − 1
κ > 0, κ = µν [10], and in 2024, proved R-bounded solutions of system

(1) with slip boundary conditions in half-space for arbitrary coefficients ν, µ and κ
[11]. Besides, Suma Inna and Saito also analyzed local solutions to the NSK model
in 2023 [12].

Generally, to solve equation (1) with a boundary condition in Ω ⊂ RN , the
process typically involves: first, solving equation (1) in the whole space RN ; second,
solving equation (1) with a boundary condition in the half-space RN

+ ; and third,
solving equation (1) in a bent-half space (Ω+). The solution of system (1) in the
whole space was achieved by Saito in [13], while Suma Inna solved system (1) with
slip boundary conditions in [11].

This paper extends the previous work presented in [11], which addressed
solving equation (1) in a bent-half space (Ω+) with slip boundary conditions. The
method to achieve the main result follows Saito’s work in [13], which dealt with
Dirichlet boundary conditions and proved the existence of an R-bounded solution
operator for the spectral parameter λ ∈ C+, where C+ = {λ ∈ C | ℜλ > 0}.
However, in this paper, we prove the existence of an R-bounded solution operator
with slip boundary conditions for spectral parameter λ ∈ Σσ for σ ∈ (0, π/2),
which is a significant deviation from the Dirichlet boundary condition case treated
by Saito.

Additionally, we provide notations that will be used throughout the paper.
For any domain G, the Lebesgue space is represented by Lq(G) while the Sobolev
space of order m,m ∈ N, is denoted by Hm

q (G). When m = 0, H0
q (G) = Lq (G)

and the norm in Hm
q (G) ,m ∈ N0, where N0 = N ∪ {0}, is expressed as ∥ · ∥Hm

q (G).

Let X and Y be Banach spaces, Xm, m ∈ N, represents the multiplication of X m
times, and the norm in Xm is abbreviated as ∥ · ∥X . The notation L(X,Y ) refers
to the set of linear operators from X to Y, while L (X) denotes the set of linear
operators from X to X. For any domain U in C, we denote the set of all X-valued
functions f = f(λ) defined for λ = η + iτ ∈ U , that are continuously differentiable
with respect to τ when λ ∈ U , by Hol(U,X).
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In particular, we introduce specific notations for the function spaces in this
paper. Let G be any domain in RN ,

Xq(G) = H1
q (G)× Lq(G)

N ×H2
q (G)×H1

q (G)
N ×H2

q (G),

Xq(G) = Lq(G)
M,M =

(
N + 1 +N +N2 +N + 1 +N2 +N +N2 +N + 1

)
H = (d, f , g,h, h) ∈ Xq(G),

RλH = (∇d, λ1/2d, f ,∇2g, λ1/2∇g, λg,∇h, λ1/2h,∇2h, λ1/2∇h, λh) ∈ Xq(G),

Pq(G) = Lq(G)
N3+N2+N+1, Sλρ = (∇3ρ, λ1/2∇2ρ, λ∇ρ, λ3/2ρ) ∈ Pq(G);

Qq(G) = Lq(G)
N3+N2+N , Tλu = (∇2u, λ1/2∇u, λu) ∈ Qq(G).

(5)

Before presenting the main result, this paper introduces the definition of R-
boundedness and some related theories.

Definition 1.1. Let X and Y be two Banach spaces. A family of operators T ⊂
L(X,Y ) is called R-bounded on L(X,Y ), if there exist constants C > 0 and p ∈
[1,∞) such that for each natural number n, {Tj}nj=1 ⊂ T , and {fj}nj=1 ⊂ X there
holds the inequality:

∥
n∑

j=1

rj(u)Tjfj∥Lp((0,1),Y ) ≤ C∥
n∑

j=1

rj(u)fj∥Lp((0,1),X).

The smallest such C is called R-bound of T on L(X,Y ), which is denoted by
RL(X,Y )(T ). Here the Rademacher functions rk, k ∈ N, are given by rk : [0, 1] →
{−1, 1}, t 7→ sign(sin(2kπt)).

Let us define the following sets:

RN
+ = {x = (x′, xN ) ∈ RN | x′ = (x1, · · · , xN−1) ∈ RN−1, xN > 0},

RN
0 = {x = (x′, xN ) ∈ RN | x′ = (x1, · · · , xN−1) ∈ RN−1, xN = 0}.

Let Φ be a diffeomorphism from RN
x to RN

y of class C3 (the class of 3-times con-
tinuously differentiable functions), where the subscripts x, y denote their variables,
and let Φ−1 be the inverse map of Φ. We define:

Ω+ = Φ(RN
+ ) = {y = Φ(x) | x = Φ−1(y), x ∈ RN

+},
Γ+ = Φ(RN

0 ) = {y = Φ(x) | x = Φ−1(y), x ∈ RN
0 }.

Let n+ be the outward normal vector to Γ+. Define: Φ−1(y) = (ϕ−1
1 (y), · · · , ϕ−1

N (y))

Since x = Φ−1(y), we have xN = ϕ−1
N (y) = 0 on Γ+, so Γ+ can be written as:

Γ+ = Φ(RN
0 ) = {x ∈ RN | xN = ϕ−1

N (y) = 0} and Γ+ is the boundary of Ω+. If
α = (α1, · · · , αN ) is an N -tuple of non-negative integers αj , we call α a multi-index

and denote by xα the monomial xα1
1 · · ·xαN

N , which has degree |α| =
∑N

j=1 αj . Sim-

ilarly, if ∂j = ∂/∂xj , then: ∂
α = ∂α1

1 · · · ∂αN

N denotes a differential operator of order

|α|. Note that ∂(0,··· ,0)u = u.
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Now, we state the main result of this paper. This paper examines the resol-
vent system of compressible fluid equations of the Korteweg type with slip boundary
conditions in a bent half-space Ω+ presented below.

λρ̃+ α̃1divyũ = d̃ in Ω+

λũ− α̃−1
4 Div (α̃2D(ũ) + (α̃3 − α̃2)divũI− α̃1∆ρ̃I) = f̃ in Ω+

n+ · ∇ρ̃ = g̃ on Γ+

D(ũ)n+ − ⟨D(ũ)n+,n+⟩n+ = h̃− ⟨h̃,n+⟩n+ on Γ+

ũ · n+ = h̃ on Γ+.

(6)

To prove the existence of R-bounded solution for System (6), we will demon-
strate the following theorem.

Theorem 1.2. Let q ∈ (1,∞), and let M1 and M2 be constants as in Equation
(8). Assume there exist positive constants B1 and B2 such that B1 ≤ α̃i(y) ≤ B2

for every y ∈ Ω+ and i = 1, 2, 3, 4. Then, there exist positive constants δ ∈ (0, 1)
and M1 ∈ (0, 12 ) that depend on N, q,B1, and B2 such that for any positive number
ϵ > 0 and for real-valued continuous Lipschitz functions α̃i = α̃i(y) (i = 1, 2, 3, 4)
defined on Ω+ and satisfying:

(a) supy∈Ω+
|α̃i(y)− α̃0

i | ≤ δ with positive constants α̃0
i ∈ [B1, B2],

(b) ∥∇α̃j∥L∞(Ω+) ≤ ϵ for j = 1, 2, 3, 4,

there exists a constant η ≥ 1, which depends on M2, N, δ, q, B1, and B2, such that
the following statements hold:

(1) For any λ ∈ Σσ, there exist operators A(λ) and B(λ) with

A(λ) ∈ Hol
(
Σσ, L(Xq(Ω+), H

3
q (Ω+))

)
,

B(λ) ∈ Hol
(
Σσ, L(Xq(Ω+), H

2
q (Ω+)

N )
)
,

such that for any H̃ = (d̃, f̃ , g̃, h̃, h̃) ∈ Xq(Ω+),

(ρ̃, ũ) =
(
A(λ)RλH̃, B(λ)RλH̃

)
is a unique solution of System (6).

(2) There exists a positive constant CM2,η, which depends on M2, N, q,B1, and
B2, such that for n = 0, 1,

RL(Xq(Ω+),Pq(Ω+))

({(
λ
d

dλ

)n

(SλA(λ))

∣∣∣∣λ ∈ Σσ

})
≤ CM2,η,

RL(Xq(Ω+),Qq(Ω+))

({(
λ
d

dλ

)n

(TλB(λ))
∣∣∣∣λ ∈ Σσ

})
≤ CM2,η,

where Xq(Ω+),Xq(Ω+),Pq(Ω+),Qq(Ω+),Sλ and Tλ are defined in (5) with G = Ω+.
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2. PRELIMINARIES

To solve System (6), we reduce the system in the bent half-space Ω+ to a
system in the half-space RN

+ by performing a diffeomorphism transformation on the
domain Ω+. Therefore, before proceeding to the proof of Theorem 1.2, we recall
some results from [11] and[14].

Let F0 = (d, f , g,h′, hN ) with h′ = (h1, . . . , hN−1)
⊤, we define the function

space

X 0
q (RN

+ ) = H1
q (RN

+ )× Lq(RN
+ )N ×H2

q (RN
+ )×H1

q (RN
+ )N−1 ×H2

q (RN
+ ).

Then, we define RλF
0 and X 0

q (RN
+ ) as follows:

X0
q(RN

+ ) = Lq(RN
+ )N

with

N = (N + 1) +N + (N2 +N + 1) + (N − 1)(N + 1) + (N2 +N + 1),

and

RλF
0 = (∇d, λ1/2d, f,∇2g, λ1/2∇g, λg,

∇h′, λ1/2h′,∇2hN , λ
1/2∇hN , λhN ) ∈ X0

q(RN
+ ).

The system in the half-space is given by:



λρ+ ϑdiv u = d in RN
+

λu− µ∆u− ν∇div u− κ∆∇ρ = f in RN
+

n · ∇ρ = g on RN
0

∂Nvs + ∂svN = hs on RN
0 , s = 1, . . . , N − 1

uN = h on RN
0

(7)

Then, we obtain the following theorem discussed in [11].

Theorem 2.1 ([11]). Let q ∈ (1,∞) and suppose that ϑ.µ, ν, and κ are arbitrary
positive constants. Then, for each λ ∈ Σσ for σ ∈ (0, π/2), there exist operators
A0(λ) and B0(λ) with

A0(λ) ∈ Hol(Σσ,L(X0
q(RN

+ ), H3
q (RN

+ ))),

B0(λ) ∈ Hol(Σσ,L(X0
q(RN

+ ), H2
q (RN

+ )N )),

such that for F0 = (d, f , g,h′, hN ) ∈ X 0
q (RN

+ ), (ρ,u) = (A0(λ)RλF
0, B0(λ)RλF

0)
is the solution operator of equation (7) satisfying the estimate

RL(X0
q(RN

+ ),Pq(RN
+ ))

({(
λ
d

dλ

)n

SλA
0(λ)

∣∣∣∣λ ∈ Σσ

})
≤ C,

RL(X0
q(RN

+ ),Qq(RN
+ ))

({(
λ
d

dλ

)n

TλB0(λ)

∣∣∣∣λ ∈ Σσ

})
≤ C
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for n = 0, 1, where C is a positive constant depending at most on N, q, ϑ, µ, ν, and
κ. Here, Sλ, Tλ, Pq(RN

+ ), and Qq(RN
+ ) are given by (5) with G = RN

+ .

Moreover, we introduce a crucial theorem regarding the Neumann series ex-
pansion theorem proved in [14].

Theorem 2.2. (Neumann series expansion [14]). Let X be a Banach space and
L(X) be the set of linear operators from X to X. Let A ∈ L(X) with ∥A∥L(X) ≤ 1.
Then the following statements are satisfied:

(a) The infinite series
∑∞

j=0Aj is also in L(X). The series
∑∞

j=0Aj is called
the Neumann series,

(b) The operator (I −A) ∈ L(X) is bijective and (I −A)−1 =
∑∞

j=0Aj ,

(c) ∥(I −A)−1∥L(X) ≤ 1
1−∥A∥L(X)

,

(d) Let g ∈ X, then the equation (I −A)u = g, with the unknown u ∈ X, has
a unique solution

u = (I −A)−1g =

∞∑
j=0

Ajg.

3. MAIN RESULTS

3.1. Reducing the System.

This section discusses reducing the system in a bent half-space (6) to a sys-
tem in a half-space. Let Φ(x) = x + ψ(x), where ψ(x) is a function such that
∥ψ(x)∥L∞(RN ) ≪ 1. Then ∇Φ(x) = ∇x + ∇ψ(x) =: A + B(x) and ∇Φ−1(y) =:
A−1+B−1(y). Therefore, A and A−1 can be assumed to be orthonormal matrices,
and B(x), B−1(y) are matrix-valued functions in H2

∞(RN ) that satisfy:

∥(B,B−1)∥L∞(RN ) ≤M1, ∥∇(B,B−1)∥H1
∞(RN ) ≤M2. (8)

We will eventually select M1 to be sufficiently small, allowing us to assume 0 ≤
M1 ≤ 1

2 , and we assume M2 > 1. Let the matrices A−1 = (aij) and B−1(y) =
(bij(y)). Then, the outward normal vector to Γ+ can be written as:

n+ = n+(y) = −
∇yϕ

−1
N (y)

|∇yϕ
−1
N (y)|

= −

(
∂ϕ−1

N (y)

∂y1
, · · · , ∂ϕ

−1
N (y)

∂yN

)⊤

√∑N
i=1

(
∂ϕ−1

N (y)

∂yi

)2

= − [aN1 + bN1(y), · · · , aNN + bNN (y)]
⊤√∑N

i=1(aNi + bNi(y))2
= − (A−1 +B−1(y))

⊤n

|(A−1 +B−1(y))⊤n|
,

(9)
with n = (0, · · · ,−1)⊤. Clearly, n+ is defined in RN . Moreover, the formula (9)
implies that |n+(y)| = 1 for y ∈ RN and by (8), we have:

|(A−1 +B−1(y))
⊤n| ≥ |A⊤

−1n| − |B−1(y)
⊤n| ≥ 1−M1 ≥ 1

2
.
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Let Dj = ∂/∂yj and ∂j = ∂/∂xj for j = 1, . . . , N . By using the notations
given by (2), (3) and (4) ,we have

DivyDy(ũ) = ∆yũ+∇ydivyũ.

Therefore

Divy(α̃2Dy(ũ)) = (Divyα2)Dy(ũ) + α̃2(DivyDy(ũ))

= ∇yα̃2Dy(ũ) + α̃2(∆yũ+∇ydivyũ)

= Dy(ũ)∇yα̃2 + α̃2∆yũ+ α̃2∇ydivyũ.

Moreover, we have

Divy((γ̃3 − γ̃2)divyũI) = (Divy(γ̃3 − γ̃2)Idivyũ+ (γ̃3 − γ̃2)

(DivydivyũI)

with

Divy((γ̃3 − γ̃2)I) div ũ = ∇y(γ̃3 − γ̃2) div ũ,

Divy(divyc̃I) = ∇y divyc̃.

By using above equations, System (6) can be written as:

λρ̃+ α0
1divy(ũ) +H1(ũ) = d̃ in Ω+

λũ− (α0
1)

−1(α0
2∆y(ũ) + α0

3∇ydivy(ũ)

+α0
1∇y∆yρ̃)−H2(ũ)−H3(ρ̃) = f̃ in Ω+

n+ · ∇yρ̃ = g̃ on Γ+

D(ũ)n+ − ⟨D(ũ)n+,n+⟩n+ = h̃− ⟨h̃,n+⟩n+ on Γ+

ũ · n+ = h̃ on Γ+

(10)

with
H1(ũ) =(α̃1 − α0

1)divy(ũ)

H2(ũ) =

(
α̃2

α̃4
− α0

2

α0
4

)
∆yũ+

(
α̃3

α̃4
− α0

3

α0
4

)
∇ydivy(ũ)

+ α̃−1
4 {Dy(ũ)∇yα̃2 + (divy(ũ))∇y(α̃3 − α̃2)}

H3(ρ̃) =

(
α̃1

α̃4
− α0

1

α0
4

)
∇y∆yρ̃+ (∆yρ̃)∇yα̃1

(11)

Additionally, by changing variables y = Φ(x), we have the following fundamental
properties:

Dj =

N∑
l=1

(alj + blj(x))∂l, ∇y = (A−1 +B−1(x))
⊤∇x,

DjDk =

N∑
l,m=1

aljamk∂l∂m +

N∑
l,m=1

(aljbmk(x) + amkblj(x) + blj(x)bmk(x))∂l∂m
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+

N∑
l,m=1

(alj + blj(x))(∂lbmk)(x)∂m

For k, l,m = 1, . . . , N , let us define:

C1
klm(x) = (alk + blk(x))(∂lbmk)(x),

C2
klm(x) = alkbmk(x) + amkblk(x) + blk(x)bmk(x)

Then we obtain:

∆y = ∆x +

N∑
k,l,m=1

(C1
klm(x)∂m + C2

klm(x)∂m).

Let u(x) = ũ(Φ(x)), then we get:

divy(ũ) = divx(A−1u) +B−1(x) : ∇xu

∇ydivy(ũ) = (A−1 +B−1(x))
⊤∇x(divx(A−1u) +B−1(x) : ∇xu)

Dy(ũ) = (∇xũ)(A−1 +B−1(x)) + (A−1 +B−1(x))
⊤(∇xu)

⊤

(12)

with S : T =
∑N

i,j=1 SijTij for matrices S = (Sij),T = (Tij) and A⊤ is the
transpose of matrix A. Let us define

ρ = ρ̃(Φ(x)),v = A−1u(x) = A−1ũ(Φ(x))

d = d̃(Φ(x)), f = A−1f̃(Φ(x)), g = g̃(Φ(x)),h = h̃(Φ(x)), h = h̃(Φ(x))
(13)

Using the fact that A⊤
−1 = (A−1)

−1 and the equations in (12), we obtain:

Dij(ũ) =

N∑
k,l=1

akialjDkl(v) + Cij : ∇v

with Cij : ∇v =
∑N

k,l=1 akjbliDkl(v).

Let n+ = −AN +B+(x) = −(AN1, . . . , ANN )⊤ + (B+1, . . . , B+N )⊤ with

ANi =
aNi√∑N

i=1(aNi + bNi(y))2
, B+i =

bNi√∑N
i=1(aNi + bNi(y))2

, i = 1, . . . , N.

Then using the above equations and the third equation in (12), we obtain:

D(ũ)n+ = D(v)n+R1 : ∇v

⟨D(ũ)n+,n+⟩n+ = ⟨D(v)n,n⟩n+R2 : ∇v
(14)

with

Rm : ∇v = (Rm : ∇v|1, . . . , Rm : ∇v|N ), (m = 1, 2)

where

R1 : ∇v|s =
N∑
j=1

ANjCsj : ∇v +

N∑
j=1

(ANj +B+j)Csj : ∇v
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and

R2 : ∇v|s =2

N∑
i,j,k,l

ANsajiB+jDjN −
N∑

i,j,k,l=1

ANsakialjB+iB+jDkl(v)

−
N∑

i,j=1

Cij : ∇vANs(ANj +B+i)(ANj +B+j).

with s = 1, . . . N − 1. Let hs =
∑N

j=1 asj(hj −
∑N

l=1⟨hl, (ANj + B+j)⟩(ANj +

B+j)), (s = 1, . . . N − 1). By using (12), (13) and (14), the system (10) is trans-
formed into the following system in half-space:

λρ+ a01(divv +K1(v)) +H1(A
⊤
−1v) = d in RN

+

λv − (a04)
−1(a02∆v + a03∇divv + a01∇∆ρ+K2(v) +K3(ρ))

−A−1H2(A
⊤
−1v)−A−1H3(ρ) = f in RN

+

n · ∇ρ−K4(ρ) = g on RN
0

∂Nvs + ∂svN +K5(v) = hs on RN
0

vN +K6(v) = h on RN
0

(15)

with s = 1, . . . , N − 1 and

K1(v) =B−1(x) : (A
⊤
−1∇v)

K2(v) =α
0
2

N∑
k,l,m=1

(C1
klm(x)∂m + C2

klm(x)∂l∂m)v

+ α0
3

{
(I+A−1B−1(x)

⊤)∇(divv +B−1(x) : (A
⊤
−1∇v))−∇divv

}
K3(ρ) =α

0
1

[
(I +A−1B−1(x)

⊤)∇

∆+

N∑
k,l,m=1

(C1
klm(x)∂m + C2

klm(x)∂l∂m)

 ρ

−∆∇ρ

]

K4(ρ) =

∑N
j=1 bNj(x)(2aNj + bNj(x))

|(A−1B−1(x))⊤n|(|(A−1B−1(x))⊤n|+ 1)
n · ∇ρ

−
(A−1B−1(x))

⊤ +B−1(x)A
⊤
−1 +B−1B−1(x)

⊤)n

|(A−1 +B−1(x))⊤n|
· ∇ρ

K5(v) =R1 : ∇v|s −R2 : ∇v|s
K6(v) =− v · (A−1B+(x)).

(16)
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Then the System (15) is reduced to



λρ+ α0
1divv −W1(ρ,v) = d in RN

+

λv − (α0
4)

−1(α0
2∆v + α0

3∇divv + α0
1∇∆ρ)−W2(ρ,v) = f in RN

+

n · ∇ρ−W3(ρ,v) = g on RN
0

∂Nvs + ∂svN −W4(ρ,v) = hs on RN
0

vN −W5(ρ,v) = h on RN
0

(17)

with (s = 1, · · · , N − 1) and

W1(ρ,v) = −α0
1K1(v)−H1(A

⊤
−1v),

W2(ρ,v) = (α0
4)

−1(K2(v) +K3(ρ)) +A−1H2(A
⊤
−1v) +A−1H3(ρ),

W3(ρ,v) = K4(ρ),

W4(ρ,v) = K5(ρ),

W5(ρ,v) = K6(v).

Additionally, to demonstrate Theorem 1.2, we employ the solution for system (17)
outlined above. This involves proving the existence and uniqueness of the R-
bounded solution operator for system (17). Thus, in the following subsection, we
will establish the existence of the R-bounded solution operator for system (17).

3.2. Existence of R-bounded Solutions Operator for System (17).

In this subsection, we prove the existence of a unique solution to the System
(17) and establish the R-boundedness of the system. To this end, we start with
the following lemma.

Lemma 3.1. Let q ∈ (1,∞), and let M1 and M2 be constants appearing in equa-
tion (8). Assume conditions (a) and (b) in Theorem 1.2 are satisfied for positive
constants δ and ϵ such that 0 < δ < min(1, B1/2). Then there exist positive con-
stants α, βM2 and αM2,ϵ that do not depend on a0i (i = 1, 2, 3, 4) such that for
v ∈ H2

q (RN
+ )N and ρ ∈ H3

q (RN
+ ), the following inequalities hold:

∥∇(a01K1(v))∥Lq(RN
+ ) ≤ αM1∥∇2v∥Lq(RN

+ ) + βM2∥∇v∥Lq(RN
+ ),

∥a01K1(v)∥Lq(RN
+ ) ≤ αM1∥∇v∥Lq(RN

+ ),

∥(a04)−1K2(v)∥Lq(RN
+ ) ≤ αM1∥∇2v∥Lq(RN

+ ) + βM2∥∇v∥Lq(RN
+ ),

∥(a04)−1K3(ρ)∥Lq(RN
+ ) ≤ αM1∥∇3ρ∥Lq(RN

+ ) + βM2
∥(∇2ρ,∇ρ)∥Lq(RN

+ ),
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∥∇2K4(ρ)∥Lq(RN
+ ) ≤ αM1∥∇3ρ∥Lq(RN

+ ) + βM2
∥(∇2ρ,∇ρ)∥Lq(RN

+ ),

∥∇K4(ρ)∥Lq(RN
+ ) ≤ αM1∥∇2ρ∥Lq(RN

+ ) + βM2∥∇ρ∥Lq(RN
+ ),

∥K4(ρ)∥Lq(RN
+ ) ≤ αM1∥∇ρ∥Lq(RN

+ ),

∥∇K5(v)∥Lq(RN
+ ) ≤ αM1∥∇2v∥Lq(RN

+ ) + βM2
∥(∇v)∥Lq(RN

+ ),

∥K5(v)∥Lq(RN
+ ) ≤ αM1∥∇v∥Lq(RN

+ ),

∥∇2K6(v)∥Lq(RN
+ ) ≤ αM1∥∇2v∥Lq(RN

+ ) + βM2
∥(∇v,v)∥Lq(RN

+ ),

∥∇K6(v)∥Lq(RN
+ ) ≤ αM1∥∇v∥Lq(RN

+ ) + βM2
∥v∥

(18)

and

∥∇H1(A
⊤
−1v)∥Lq(RN

+ ) ≤ αδ∥∇2v∥Lq(RN
+ ) + αM2,ϵ∥∇v∥Lq(RN

+ ),

∥H1(A
⊤
−1v)∥Lq(RN

+ ) ≤ αδ∥∇v∥Lq(RN
+ ),

∥A−1H2(A
⊤
−1v)∥Lq(RN

+ ) ≤ αδ∥∇2v∥Lq(RN
+ ) + αM2,ϵ∥∇v∥Lq(RN

+ ),

∥A−1H2(a
0
1ρ)∥Lq(RN

+ ) ≤ αδ∥∇3ρ∥Lq(RN
+ ) + αM2,ϵ∥(∇2ρ,∇ρ)∥Lq(RN

+ ),

∥(a04)−1H3(ρ)∥Lq(RN
+ ) ≤ αM1∥∇3ρ∥Lq(RN

+ ) + αM2,ϵ∥(∇2ρ,∇ρ)∥Lq(RN
+ ).

(19)

More precisely, α depends on N, q,B1, B2 but do not depend on M1,M2, δ and
ϵ; βM2

depends on N,M2, q, B1 and B2 but do not depend on M1, δ and ϵ; and
αM2,ϵdepends on M − 2, δ,N, q,B1 and B2 but do not depend on M1,M2, δ and ϵ.

Proof. First, we prove (18), especially K2(v). Recall the formula K2(v) in (16).
Then by (8), we obtain

∥C1
klm∥H1

∞(RN
+ ) + ∥∇C2

klm∥L∞(RN
+ ) ≤ CN,M2

,

∥C2
klm∥L∞(RN

+ ) ≤ CNM1,

for k, l,m = 1, . . . , N where the positive constants CN,M2
and CN do not depend

on M1. Then, by using the above inequalities, the estimates for K2(v) is satisfied.
We have proved the estimate of K2(v) by using the same argument as for K3(v).
Similarly, by recalling the formula in (16) then using (8), then we immediately have
the required estimates for K1(v),K4(v),K5(ρ),K6(ρ). Therefore, we have proved
the estimates for (18).

Next, we prove (19). Let α1(x) = α̃1(ϕ(x)). Since

∇xα1(x) = (A+B(x))⊤(∇yα̃1)(ϕ(x)),

it follows that

∥∇xα1∥L∞(RN
+ ) ≤ CN ϵ

with the positive constant CN that only depends on N . Then it is known that

sup
x∈RN

+

|α1(x)− α0
1| = sup

y∈Ω+

|α̃1(y)− α0
1| ≤ δ.
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Recalling the formula ofH1 in (11), the above inequalities result in the first estimate
of (19). Since 0 < δ < min(1, B1/2), for any x ∈ R, we get

|α̃j(x)| ≤ B2 + 1 (j = 1, 2, 3),

B1/2 ≤ |α̃4(x)| ≤ B2 + 1.

Then, by using the above inequalities, we can prove the remaining estimates of
(19). This completes the proof of the lemma. □

Let W(ρ,v) = (W1(ρ,v),W2(ρ,v),W3(ρ,v),W4(ρ,v),W5(ρ,v))
⊤. Then, for

any (ρ,v) ∈ H3
q (RN

+ )×H2
q (RN

+ )N , η ≥ 1, and λ ∈ Σσ, by Lemma 3.1 and Theorem
2.1, we have the following estimate:

∥RλW(ρ,v)∥Xq(RN
+ ) ≤α(12M1 + 4ϵ2)

+ (8βM2
+ 3αM2,η2

)λ
1/2
2 ∥Sλρ, Tλv∥Pq(RN

+ )×Qq(RN
+ ).

(20)

Let ϑ = α0
1, µ = α0

2/α
0
4, ν = α0

3/α
0
4, and κ = α0

1/α
0
4 in (7). By Theorem 2.1,

there exist operators A0(λ) and B0(λ) with

A0(λ) ∈ Hol(Σσ,L(Xq(RN
+ ), H3

q (RN
+ ))),

B0(λ) ∈ Hol(Σσ,L(Xq(RN
+ ), H2

q (RN
+ )),

such that for F0 = (d, f , g,h′, hN ) ∈ X 0
q (RN

+ ), (r,w) = (A0(λ)RλF
0,B0(λ)RλF

0)
is the unique solution for system



λr + α0
1divw = d inRN

+ ,

λw − α0
2

α0
4

∆w − α0
3

α0
4

∆div w − α0
1

α0
4

∆∇r = f inRN
+ ,

n · ∇r = g onRN
0 ,

∂Nws + ∂swN = hs onRN
0 , (s = 1, ..., N − 1),

n ·w = h onRN
0 ,

(21)

satisfying the estimates

R((X0
q(RN

+ ),Pq(RN
+ )))

{(
λ
d

dλ

)n

SλA0(λ) | λ ∈ Σσ

}
≤M,

R(X0
q(RN

+ ),Qq(RN
+ ))

{(
λ
d

dλ

)n

TλB0(λ) | λ ∈ Σσ

}
≤M,

for n = 0, 1, where M is a positive constant that depends on N, q,B1, and B2, but
does not depend on α0

i (i = 1, 2, 3, 4).

Next, we will solve the system (17) using the approach developed for solving
the system (21). Let we define

V(λ)F = (V1(λ)F,V2(λ)F,V3(λ)F,V4(λ)F,V5(λ)F),

where
Vj(λ)F = Wj(A0(λ)F,B0(λ)F) (j = 1, 2, 3, 4, 5),
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for F ∈ X0
q(RN

+ ) and λ ∈ Σσ. For the estimate V(λ)F mentioned above, we have
the following lemma, with a proof that parallels the proof of Lemma 3.7 in [13].

Lemma 3.2. Let q ∈ (1,∞) and let M1 and M2 be positive constants in (8).
Assume that (a) and (b) in Theorem 1.2 are satisfied for positive constants δ and ϵ
where δ satisfies 0 < δ < min(1, B1/2). Then there exists γ > 12 that depends only
on q such that for n = 0, 1 and for any η ≥ 1,

RL(X0
q(RN

+ ))

({
(λ

d

dλ
)n(RλV(λ)) | λ ∈ Σσ

})
≤ γM

(
α(M1 + δ) + (βM2 + αM2,ϵ)η

− 1
2

)
.

(22)

Furthermore, from Lemma 22, we can chooseM1 and δ sufficiently small such
that

γM(αM1 + δ) ≤ 1/4, and M(βM2
+ αM2,ϵ)η

−1/2 ≤ 1/4, (23)

and choose η to be very large such that

γM(αM1 + δ) ≤ 1/4, and M(βM2 + αM2,ϵ)η
−1/2 ≤ 1/4, (24)

resulting

RL(X
0
q(RN

+ ))

({
(λ

d

dλ
)n(RλV(λ)) | λ ∈ Σσ

})
≤ 1/2 (25)

for n = 0, 1.

By (25), we see that ∥V(λ)∥X0
q(RN

+ ) ≤ 1/2. Therefore, based on the Neumann

series expansion theorem 2.2 (b) and (c), for every λ ∈ Σσ, there exists an inverse
operator (I −RλV(λ))−1 of I −RλV(λ) in L(X0

q(RN
+ )) such that

RL(X0
q(RN

+ ))

({
(λ

d

dλ
)n(I −RλV(λ))−1 | λ ∈ Σσ

})
≤ 4.

Let, for F0 ∈ X0
q(RN

+ ) and for λ ∈ Σσ, we define the following operators:

Θ(λ)F0 = A0(λ)(I −RλV(λ))−1F0, Ξ(λ)F0 = B0(λ)(I −RλV(λ))−1F0.

Then, based on the Neumann series expansion theorem (d), we obtain that (ρ,v) =
(Θ(λ)RλF

0,Ξ(λ)RλF
0) is the solution to (17) satisfying the estimate

RL(X
0
q(RN

+ ),Pq(RN
+ ))

({
(λ

d

dλ
)n(SλΘ(λ)) | λ ∈ Σσ

})
≤ 12M,

RL(X
0
q(RN

+ ),Qq(RN
+ ))

({
(λ

d

dλ
)n(TλΞ(λ)) | λ ∈ Σσ

})
≤ 12M.

(26)

for n = 0, 1. Thus, we have obtained an R-bounded solution operator to System
(17). The uniqueness of the solution to System (17) is obtained based on the prior
estimate of the solution. Suppose (ρ,v) satisfies System (17) for (d, f , g,h′, h) =
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(0, 0, 0, 0, 0), then by (20), (23) and (24), we have

∥(Sλρ, Tλv)∥Pq(RN
+ )×Qq(RN

+ ) ≤M∥RλW(ρ,v)∥X0
q(RN

+ )

≤ 12M
(
α(M1 + δ) + (βM2

+ αM2,ϵ)η
−1/2

)
∥(Sλρ, Tλv)∥Pq(RN

+ )×Qq(RN
+ )

≤ γM
(
α(M1 + δ) + (βM2

+ γM2,ϵ)η
−1/2

)
|(Sλρ, Tλv)∥Pq(RN

+ )×Qq(RN
+ )

≤ 1/2∥(Sλρ, Tλv)∥Pq(RN
+ )×Qq(RN

+ ).

The above inequality results in (ρ,v) = (0, 0), and this shows the uniqueness of the
solution to System (17), which completes the proof of the uniqueness.

3.3. Proof of Theorem 1.2.

In this subsection, we will prove Theorem 1.2, demonstrating the existence of
an R-bounded solution to System (6). This proof is based on the solution obtained
from the previous reduction, where we reconstruct Θ(λ) and Ξ(λ) as derived in the
earlier subsection.

Using the definition given by (13), we can show that

Rλ(d, f , g,h, h) =(∇d, λ1/2d, f ,∇2g, λ1/2∇g, λg,∇h, λ1/2h,∇2h, λ1/2∇h, λh)

=
(
(∇Φ)⊤(∇d̃) ◦ Φ, λ1/2d̃ ◦ Φ,A−1f̃ ◦ Φ,G1(∇2g̃) ◦ Φ

+ G2(∇g̃) ◦ Φ, λ1/2(∇Φ)⊤(∇g̃) ◦ Φ, λg̃ ◦ Φ,

(∇Φ)⊤(∇h̃) ◦ Φ, λ1/2h̃ ◦ Φ,G1(∇2h̃) ◦ Φ

+ G2(∇h̃) ◦ Φ, λ1/2(∇Φ)⊤(∇h̃) ◦ Φ, λh̃ ◦ Φ
)
.

(27)

Here, G1(∇2f̃) ◦Φ and G2(∇f̃) ◦Φ are N ×N matrices whose (i, j)-th components

(G1(∇2f̃) ◦ Φ)ij and (G2(∇f̃) ◦ Φ)ij are respectively given by

(G1(∇2f̃) ◦ Φ)ij =
N∑

k,l=1

(
∂2g̃

∂yk∂yl
(Φ(x))

∂Φk(x)

∂xi

∂Φl(x)

∂xj

)
,

(G2(∇f̃) ◦ Φ)ij =
N∑

k,l=1

(
∂g̃

∂yk
(Φ(x))

∂2Φk

∂xi∂xj

)
,

for Φ = (Φ1, . . . ,ΦN ), with f̃ ∈ {g̃, h̃}.
Let G̃1, . . . , G̃11 be the variables corresponding to

∇d̃, λ1/2d̃, f̃ ,∇2g̃, λ1/2∇g̃, λg̃,∇h̃, λ1/2h̃,∇2h̃, λ1/2∇h̃, λh̃
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respectively. Note again that ρ̃ = ρ ◦ Φ−1 and ũ = A⊤
−1v ◦ Φ−1. Then, by using

Equation (27), we define

A(λ)G̃ =
[
Θ(λ)

(
(∇Φ)⊤G̃1 ◦ Φ, G̃2 ◦ Φ,A−1G̃3 ◦ Φ,G1G̃4 ◦ Φ

+ λ−1/2G2G̃5 ◦ Φ, (∇Φ)⊤G̃5 ◦ Φ, G̃6 ◦ Φ, (∇Φ)⊤G̃8 ◦ Φ,G1G̃9 ◦ Φ

+ λ−1/2G2G̃10 ◦ Φ, (∇Φ)⊤G̃10 ◦ Φ, G̃11 ◦ Φ
)]

◦ Φ−1

and

B(λ)G̃ =A⊤
−1[Ξ(λ)((∇Φ)⊤G̃1 ◦ Φ, G̃2 ◦ Φ,A−1G̃3 ◦ Φ, C2G̃4 ◦ Φ

+ λ−1/2C1G̃5 ◦ Φ, (∇Φ)⊤G̃5 ◦ Φ, G̃6 ◦ Φ, (∇Φ)⊤G̃7 ◦ Φ, G̃8 ◦ Φ, C2G̃9 ◦ Φ

+ λ−1/2C1G̃10 ◦ Φ, (∇Φ)⊤G̃10 ◦ Φ, G̃11 ◦ Φ)] ◦ Φ−1.

for G̃ = (G̃1, . . . , G̃11) ∈ Xq(Ω+).

Let (ρ̃, ũ) = (A(λ)RλH̃,B(λ)RλH̃) with H̃ = (d̃, f̃ , g̃, h̃, h̃) ∈ Xq(Ω+), then
(ρ̃, ũ) is a solution to System (6). Additionally, the uniqueness of the solution to
System (6) follows from that of System (17). The required estimate in Theorem 1.2
is obtained from the R-boundedness of the solution to System (6), as given by (26).
Therefore, we have established the existence of an R-bounded solution operator for
System (6), which completes the proof of Theorem 1.2. .

4. CONCLUDING REMARKS

This study is part of a series of investigations aimed at analyzing the Navier-
Stokes-Korteweg (NSK) system in general and complex domains. As an initial step,
it is essential to gain a deep understanding of the system’s behavior in simpler
domains, namely the whole space, half-space, and bent half-space. Solving the
system in these domains serves as an important foundation, as the results will be
used to formulate and establish the concept of maximal regularity for the NSK
system.

In particular, the findings of this study will serve as one of the key foundations
for proving maximal regularity, which will subsequently be used to establish the lo-
cal and global well-posedness of the system using the maximal regularity approach.
Maximal regularity plays a crucial role in proving the existence, uniqueness, and
stability of solutions for systems with more general domains. Through this step-
by-step approach, it is expected that the mathematical analysis of the NSK system
can be systematically developed, starting from simpler domains and progressing to
more complex and realistic settings.
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