J. Indones. Math. Soc.
Vol. 31, No. 03 (2025), pp. 1-18.

R-Bounded Solution Operator for Navier-Stokes-Korteweg
in Bent Half Space (2, )

Suma Inna'* and Rahmi Purnomowati2

L2Faculty of Science and Technology, Universitas Islam Negeri Syarif Hidayatullah
Jakarta, Indonesia
'suma.inna@uinjkt.ac.id, *rahmi.purnomowati@uinjkt.ac.id

Abstract. This paper discusses the R-bounded solution operator for a compressible
fluid model of Korteweg type with slip boundary conditions in a bent half-space
(24). This result provides a foundation for studying the Navier-Stokes-Korteweg
system in the Lp in time and L4 in space maximal regularity class and contributes
to the analysis of local and global well-posedness for the original nonlinear problem,
which is a fundamental system equation to describe the motion of the viscous fluid.
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1. INTRODUCTION

The theory of R-boundedness has evolved significantly over the last decade.
Analyzing R-bounded solutions of systems of partial differential equations (PDESs)
has become a crucial step in understanding their Maximal Regularity. Maximal
Regularity theory is a powerful tool for solving nonlinear models. Recently, there
has been considerable interest in the Maximal Regularity theory due to its effec-
tiveness and reliability in handling nonlinear PDEs. Maximal Regularity provides
an a priori estimate of the solution to a linear differential system, which is essential
for solving the nonlinear system. This theory facilitates solving nonlinear equations
through linearization techniques combined with the contraction mapping principle,
where a priori estimates are crucial. This approach allows for deriving both local
and global solutions for nonlinear systems.

Let Q € RN with N > 2(N € N) where N denotes the set of natural numbers
and

RN = {z=(z1,---, zn)| z; €R, Vi}.
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The Navier-Stokes-Korteweg (NSK) model captures the capillarity effects in fluids,
and its corresponding resolvent equation is given by:

Ap+ apdivu = d in Q

1
A — a; 'Div (aeD(u) 4 (a3 — ag)divul — a; ApI) = f in © e

where p = p(z) is a scalar function, u = u(z) = (ui(z),...,un(x))" is a vector-
valued function and the coefficients «; = a;(z) (i = 1,...,4) are real-valued uni-
formly Lipschitz continuous functions, i.e., there exists a positive constant ¢ such
that |o;(z) — a;(y)| < ¢z —y|. The doubled stress tensor is denoted by D(u), i.e.,

31u1 e 81\/’&1
D(u) = Vu+ (Vu)"; for Vu= : : , (2)
81UN . 6NUN
while I is the V x N identity matrix. Here, A is a resolvent parameter in 3, = {\ €
C\ {0} | |JargA| < m — o} for o € (0,7/2) where C represents the set of complex
numbers.

We set 0; = 52—, then for a scalar function v = u(z) and for a vector function
J

9
u = (ui(z),...,un(z))" defined in RV,
Vu = (Ohu,dou, . .. ,8Nu)T :
V2u = (0;00u | {J,k,1=1,...,N});
N

divuzzaﬂu; (3)
J=1

N
Au = Z d%u.
J=1

For an N x N matrix-valued function M = (M;;(z))1<i,j<n, We set

N N T
DivM = (Zalej,...,ZajMNj> : (4)
j=1 j=1

The development of the NSK model has a rich history rooted in the study
of capillarity effects and two-phase fluid flows. In 1901, Korteweg formulated con-
stitutive equations for the stress tensor, incorporating the fluid density gradient to
model capillarity effects in fluids. Dunn and Serrin later explored the NSK model
with Dirichlet boundary conditions within the framework of rational mechanics,
introducing the concept of inertia work in thermomechanics [I]. The NSK model
captures capillarity effects and two-phase liquid-vapor flows, with a transition phase
representing a fluid diffusion interface, as discussed by Anderson et al. [2] and Liu
et al.[3].

In 2003, Bresch, Desjardins, and Lin analyzed the weak solutions of the NSK
model under specific boundary conditions [4]. Later, Kotschote discussed strong
solutions in the exterior domain, introducing Maximal Regularity for the linear



NSK model in the L, setting combined with the fixed-point theorem to obtain
local solutions for the model (1)) with Dirichlet boundary conditions [5]. Kotschote
also examined non-isothermal cases for Newtonian and non-Newtonian fluids and
proved the asymptotic stability of strong solutions to the dynamic NSK system [6].

Regarding R-boundedness, Hirokazu Saito established R-bounded solutions
of the NSK with free boundary conditions in half-space and later in arbitrary
bounded domains [7, [§]. Subsequently, Suma Inna et al. demonstrated the ex-
istence of R-bounded solutions of the resolvent equations for system with slip
boundary conditions in half-space for the case where (42)2 — L £ 0,k # p [9].
In 2023, Suma Inna analyzed the solution operator of the NSK for the coefficients
(&t2)2 — L > 0,5 = pv [10], and in 2024, proved R-bounded solutions of system
(1) with slip boundary conditions in half-space for arbitrary coefficients v, u and &
[11]. Besides, Suma Inna and Saito also analyzed local solutions to the NSK model
in 2023 [12].

Generally, to solve equation with a boundary condition in Q c R¥, the
process typically involves: first, solving equation in the whole space RY; second,
solving equation with a boundary condition in the half-space Rf ; and third,
solving equation (1)) in a bent-half space (24). The solution of system in the
whole space was achieved by Saito in [I3], while Suma Inna solved system ([1)) with
slip boundary conditions in [I1].

This paper extends the previous work presented in [I1], which addressed
solving equation in a bent-half space (21) with slip boundary conditions. The
method to achieve the main result follows Saito’s work in [I3], which dealt with
Dirichlet boundary conditions and proved the existence of an R-bounded solution
operator for the spectral parameter A € C,, where Cy = {A € C | £\ > 0}.
However, in this paper, we prove the existence of an R-bounded solution operator
with slip boundary conditions for spectral parameter A € X, for o € (0,7/2),
which is a significant deviation from the Dirichlet boundary condition case treated
by Saito.

Additionally, we provide notations that will be used throughout the paper.
For any domain G, the Lebesgue space is represented by L,(G) while the Sobolev
space of order m,m € N, is denoted by H]* (G). When m = 0,H{ (G) = Lq (G)
and the norm in H;" (G),m € Ny, where Ng = N U {0}, is expressed as || - ||z (c)-
Let X and Y be Banach spaces, X", m € N, represents the multiplication of X m
times, and the norm in X™ is abbreviated as || - ||x. The notation £(X,Y") refers
to the set of linear operators from X to Y, while £ (X) denotes the set of linear
operators from X to X. For any domain U in C, we denote the set of all X-valued
functions f = f(\) defined for A = n+ i7 € U, that are continuously differentiable
with respect to 7 when A € U, by Hol(U, X).



In particular, we introduce specific notations for the function spaces in this
paper. Let G be any domain in R,
X,(G) = HJ(G) x Ly(G)N x HX(G) x HJ(G)N x H}(G),
X(G)=Ly(GM M= (N+1+N+N?+N+1+N>*+ N+ N>+ N+1)
H=(d,f,g,h,h) € X,(G),
RAH = (Vd, \2d, £,V2g, A2V g, \g, Vh, A/ ?h, V2R, \V/2Vh, AR) € X,(G),
Py(G) = Lg(G)NTNHENTL 5, p = (V2p, \V/2V2p, AV, N2p) € Py (G);

0,(G) = Ly(G)N NN T = (V2u, A2V, Au) € Q,(G).
(5)

Before presenting the main result, this paper introduces the definition of R-
boundedness and some related theories.

Definition 1.1. Let X and Y be two Banach spaces. A family of operators T C
L(X,Y) is called R-bounded on L(X,Y), if there exist constants C > 0 and p €
[1,00) such that for each natural number n, {T;}7_ C T, and {f;}}_; C X there
holds the inequality:

n

1Y T £llz, 0,00 < CIY S ri @) Filly0.0).x0-

j=1 j=1
The smallest such C is called R-bound of T on L(X,Y), which is denoted by

RL(ny)(T). Here the Rademacher functions ri, k € N, are given by ri: [0,1] —
{—1,1},t + sign(sin(2¥7t)).
Let us define the following sets:
Rf ={z=(2,zn) €RYN |2/ = (z1,--- ,xn_1) e RV "L any > 0},
RY = {2z = (2/,2n) e RY |2/ = (x1,--- ,an_1) e RV 1 zy = 0}.
Let ® be a diffeomorphism from RY to Rév of class C? (the class of 3-times con-
tinuously differentiable functions), where the subscripts x, y denote their variables,
and let ®~! be the inverse map of ®. We define:
Q= @RY) = {y=2(z) |z = 27 (y),z € R},
Ly =0Ry) ={y=2() |z =27"(y),z €R]}.
Let n . be the outward normal vector to T';.. Define: ®~1(y) = (¢7'(v), -+ , o5 (¥))
Since x = ®~!(y), we have zy = ¢y (y) = 0 on I'y, so T'y can be written as:
I, =®RY)={z € RY | 2y = ¢5'(y) = 0} and T is the boundary of Q. If
a = (aq, -+ ,an) is an N-tuple of non-negative integers a;, we call @ a multi-index
and denote by 2 the monomial " - - -z}, which has degree |a| = Z;V=1 aj. Sim-

ilarly, if 0; = 0/0x;, then: 0% = 07" - - - Oy denotes a differential operator of order
|a|. Note that 90y = .
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Now, we state the main result of this paper. This paper examines the resol-
vent system of compressible fluid equations of the Korteweg type with slip boundary
conditions in a bent half-space €1, presented below.

Ap + @rdivyn = din Q,

i — ;' Div (aaD(@) + (a3 — dg)dival — a1 ApI) = f in Q.
ng -Vp=gonly (6)

D(u)n; — (D(u)ng,nq)ng = h — <1~1, ni)ng onI'y

ﬁ~n+:ﬁ0nf+.

To prove the existence of R-bounded solution for System @, we will demon-
strate the following theorem.

Theorem 1.2. Let ¢ € (1,00), and let My and My be constants as in Equation
. Assume there exist positive constants By and Bs such that By < &;(y) < Ba
for every y € Q4 and i = 1,2,3,4. Then, there exist positive constants § € (0,1)
and M; € (0, %) that depend on N, q, By, and By such that for any positive number
e > 0 and for real-valued continuous Lipschitz functions &; = &;(y) (i = 1,2,3,4)
defined on Q)4 and satisfying:

(a) supyecq, |di(y) — af| < & with positive constants &9 € [By, Ba),

(b) HVdJ||LOO(Q+) S€f0T]:172,3,4,

there exists a constant n > 1, which depends on My, N,d,q, B1, and Bs, such that
the following statements hold:
(1) For any X € Xy, there exist operators A(X) and B(\) with

AN) € Hol(S,, L(X(Q4), Hy (24))),
B(X) € Hol(Z,, £(X4(24), HF (24)™)),
such that for any H = (d, f,§,h, h) € X,(Q),
(5, 1) = (A(\) RyH, B(\) R\H)
is a unique solution of System (0).

(2) There ezists a positive constant Cay, ), which depends on Ma, N, q, By, and
Bs, such that for n =0,1,

d n
Re(x4(024).Py(24)) ({ <)\d)\> (SAA(A))‘A € Ea}> < Oy

d
Re(x,(04),04(21)) ({( )\) ))‘)\ €, }) < Cry s

where X, (Q4), X4(Q4), Py (1), Qg (4), Sy and Ty are defined in () with G = Q.



2. PRELIMINARIES

To solve System @, we reduce the system in the bent half-space Q4 to a
system in the half-space Rf by performing a diffeomorphism transformation on the
domain Q. Therefore, before proceeding to the proof of Theorem [1.2] we recall
some results from [II] and[14].

Let FO = (d,f,g,h’, hy) with b’/ = (hy,...,hy_1) ", we define the function
space

XORY) = HARY) x L(RY)N x HA(RY) x HARY)N " x HZ(RY).

Then, we define R\F? and X (RY) as follows:
X (RY) = Ly®RY)Y

with

N=N+1)+N+(N?*+N+1)+(N-1)(N+1)+ (N> +N+1),
and

RAF? = (Vd,\'2d, f, V29, M2V g, Ag,
Vh, AY20 V2hy A2 Vhy, Ahy) € X0(RY).
The system in the half-space is given by:

Ap+9div u =din RY
Au — pAu —vVdiv u — kAVp =fin Rf
n-Vp=gonRY (7)
8st+85vN:hsonRéV, s=1,...,.N—1

uy = hon RY
Then, we obtain the following theorem discussed in [11].

Theorem 2.1 ([I1]). Let g € (1,00) and suppose that 9.u,v, and k are arbitrary
positive constants. Then, for each X € ¥, for o € (0,7/2), there exist operators
A°(N\) and B°(\) with

A°(N) € Hol(S,, L(X)(RY), HZ(RY))),
B°() € Hol(S,, L(XYRY), HZ (RY)™)),

such that for FO = (d,f,g,h’ hy) € X(?(]Rf), (p,u) = (A°(N)RAF?, BO(A\)RAFY)
is the solution operator of equation satisfying the estimate

d\" 0
Rz:(aeg(M),Pq(Rf)) ({ (Ad)\> S A (A)‘)\ € EU}) <C,

d n
Re(xg®y),0,m@))) ({ (AdA) TABO(/\)’A © E”}> =
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forn=0,1, where C is a positive constant depending at most on N,q, 9, u,v, and
k. Here, Sy, Tx, Pg(RY), and Qu(RY) are given by with G =RY.

Moreover, we introduce a crucial theorem regarding the Neumann series ex-
pansion theorem proved in [14].

Theorem 2.2. (Neumann series expansion [14]). Let X be a Banach space and
L(X) be the set of linear operators from X to X. Let A € L(X) with ||Al|zx) < 1.
Then the following statements are satisfied:
(a) The infinite series 37 A; is also in L(X). The series 372 Aj is called
the Neumann series,
(b)  The operator (I — A) € L(X) is bijective and (I — A)~! = Z;io A;,
(c) I - A)_lHE(X) < m7
(d) Let g € X, then the equation (I — A)u = g, with the unknown u € X, has
a unique solution

u=(T—-A)"g=> Ay
=0

3. MAIN RESULTS

3.1. Reducing the System.

This section discusses reducing the system in a bent half-space (@ to a sys-
tem in a half-space. Let ®(z) = z + ¥(z), where ¥ (z) is a function such that
()]l eryy < 1. Then V®(z) = Va + Vi(z) = A + B(z) and V&~ !(y) =
A_1+B_i(y). Therefore, A and A_; can be assumed to be orthonormal matrices,
and B(z), B_;(y) are matrix-valued functions in H2 (RY) that satisfy:

I(B,B_y)llp ey < Mi, [IV(BBLy) |y o) < Mo (

oo
=

We will eventually select M7 to be sufficiently small, allowing us to assume 0

M, < %, and we assume My > 1. Let the matrices A_; = (a;;) and B_4(y)

(bi;(y)). Then, the outward normal vector to I'y can be written as:

A

) RO
L IVydn ()] N (065w
T (%)

lavi+bni(), - avy Hban®)] . (AL +Bo(y)n
B (AL +B_ Tn|’

VEN (ani + baiy)? (A1 +B-1(y)Tnl
(9)
with n = (0,---,—1)T. Clearly, n, is defined in R". Moreover, the formula @

implies that [n4 (y)| =1 for y € RY and by (8)), we have:

1
(A1 +B_1(y) 'n| > A n|— B_i(y) 'n| > 1- M > _.

\V]



Let D; = 0/0y; and 0; = 0/0x; for j = 1,...,N. By using the notations
given by , and ,we have

Div,Dy(u) = Ayu+ V,div,u.
Therefore
Div, (@D, (®) = (Div,as)D, (i) + & (Div,D, (@)
Vya:Dy () + az(Ayu + Vydivya)
= Dy(ﬁ)vy&g + &QAyﬁ + agvydivyﬁ.

Moreover, we have

Divy((y3 = y2)divyul) = (Divy (73 —32)Idivyu+ (3 — 72)
(Div,div,ul)
with
Dlvy((ig - 52)1) diva = Vy (f’?g - ?2) div ﬁ,
Divy(div,el) = V, divyc.

By using above equations, System @ can be written as:
Ap+ addiv, (@) + Hi (@) = d in Q.
A= (af) 7 (054, () + a5V, div, (@)
+adV, A, p) — Ha(@) — Hz(p) = £in O

ny - Vyj=gon Ty 10)
D(u)ny — (D()ny,ny)n, = h — <l~17 ny)ny on I'y
u-n; = h on |
with
Hi (@) =(a1 — af)div, (@)
~ 0 ~ 0
Ho(i) = <Zi - Zé) Ay + <Zz - Z;) v, div, (1) .
+ 5‘21 {Dy(a)Vyas + (divy(1))Vy(as — ao)} )
~ o 04(1) ~ ~ ~
Ha() = (= 25 ) Vi (8,70

Additionally, by changing variables y = ®(x), we have the following fundamental
properties:

D; = (ai; +by(x))d, Vy=(A_1+B_i(z)V,,

] =

l

o

N
DjDk = Z aljamkalam + Z (aljbmk(x) + amkblj (.’L‘) + blj(a?)bmk(l‘))alam

l,m=1 l,m=1



N

+ > (aj + b1 (2) (Otbmi) () O

I,m=1

For k,I,m =1,..., N, let us define:
Chim (@) = (arx + bik(2)) (Bibmi) (z),
C% (1) = abmp (%) 4 @mpbir () + big, ()b ()

Then we obtain:

N
Ay =A; + Z (Chin (@) + Ciiyn (2)r).
k,lm=1
Let u(z) = a(®(zx)), then we get:
divy(0) = divg(A_ju) + B_i(z) : V
Vydivy (@) = (A_y + B_i(2))" V!E(dlvw(A 1) +Boy(z): Veu)  (12)
D, (@) = (Vo@)(A-1 +B_1(2)) + (A1 + B_1(2)) " (Vou) |
with S : T = ij:l S;;T;; for matrices S = (S;;),T = (Ti;) and AT is the

transpose of matrix A. Let us define
p= @), v = A_ju(z) = A_a(®(x))
d=d(®(@)),f = A_1f(®(2)),g = §(®(x)),h = h(®(x)), h = h(P(x))
Using the fact that AT, = (A_;)~! and the equations in (12)), we obtain:

(13)

fl) = Z akialjDkl(v) + Cij : Vv
k,l=1

with Cj; : Vv = Zk 1=1 kb1 Dy (v).
Let n, = —AN + B+( ) (AN17 N ,ANN)T + (B+17 N ,B+N)T with
Avi = —— aNi Bai= —— AL i=1,...,N.
VY (ani +byi(y))? VI (ani +byi(y))?

Then using the above equations and the third equation in , we obtain:
D(@)ny =D(v)n+ Ry : Vv
(D@)ni,n)ny = (D(v)n,n)n+ Ry : Vv
with
Ry, :Vv=(Ry:VV|1,...,Rpn :VVv|n), (m=12)
where

N N
Ry :Vv|e=> An;jCsi : Vv+ Y (Anj+ Byj)Cyj: Vv
j=1 j=1
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and

N N
R2 : VV‘S =2 Z ANsajiB_,_ijN - Z ANsakialjB+iB+jDkl(v)
0.9,k i,k 1=1

N
— Y Cij: VVAN(Anj + B1i) (Anj + Byy).

4,5=1

with s = 1,...N — 1. Let h, = ZN 1%]( — SN (i, (Anj + Bﬂ)>(ANj +
Bij),(s =1,...N —1). By using (1 , and (T4), the system is trans-

formed into the following system in half—space:

Ap+ad(divy + K1 (v)) + Hi(AT,v) =d  inRY
v — (a9) " a9 AV + adVdivv + a)VAp + Ka(v) + K3(p))
—A_Ho (AL w) = A Hs(p)=f inRY (15)
n-Vp—Kip)=g onRY
ONVs + Osony + K5(v) = hs  on Rév
oy +Kg(v)=h onRY

with s=1,...,N —1 and
Ki(v) =B_i(z): (AL, Vv)

N
) =ay Z (Chim ()0 + Ciyn (2)010m) v
l,m=

k,l, 1
+ag {I+ A B_i(2)")V(divv + B_i(z) : (AT, Vv)) - Vdivv}

N
Ks(p) =ai |(I + A_1B_() )V{A+ > (C;izm(w)am+C§Zm($)318m)}p

k,l,m=1

— AVp

o (p) = = P () (2 b ()
T ASB (@) (A B (2) ol + 1)
_ (ABoy(2))" +Bi(@)AL, + B_iB_y(z)")n v
[(AZ, +B_i(x)Tn] ’
Ks5(v) =Ry : VVv|s — Ry : V|

Ko(v) = —v - (A_1B. ().

n-Vp

(16)
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Then the System is reduced to

(p,v)=d in RY
Av — (o) HaSAV + aiVdivy + adVAp) — Wh(p,v) = f in RY
n-Vp-Ws(p,v)=g onRy (17)
(p,v)=h
(p;v)=h

« onRY

N
on Ry

with (s=1,--- , N — 1) and

Wi(p,v) = =K1 (v) = Hi(AL ),

Wa(p,v) = () T (K2(v) + K3(p)) + A_1Ha(AL1v) + A1 H3(p)
Ws(p,v) = Ka(p),

Wi(p,v) = K5(p),

Ws(p,v) = Ke(v).

Additionally, to demonstrate Theorem we employ the solution for system
outlined above. This involves proving the existence and uniqueness of the R-
bounded solution operator for system . Thus, in the following subsection, we
will establish the existence of the R-bounded solution operator for system .

3.2. Existence of R-bounded Solutions Operator for System (17).

In this subsection, we prove the existence of a unique solution to the System
and establish the R-boundedness of the system. To this end, we start with
the following lemma.

Lemma 3.1. Let g € (1,00), and let My and My be constants appearing in equa-
tion (8). Assume conditions (a) and (b) in Theorem[1.3 are satisfied for positive
constants § and € such that 0 < § < min(1, B1/2). Then there exist positive con-
stants o, B, and apg, e that do not depend on a? (i = 1,2,3,4) such that for
v e HZRY)N and p € H3(RY), the following inequalities hold:

IV (@K (WD, eyy < @MIVEVIL, @) + Bt VY L, ey,

I(af) ™ Ka(v
[ (a ) 1K3(P ||Lq(Rf) < aM1||V3P||Lq(R$) —l—ﬁlel(VQp, Vﬂ)HLq(Rf)v

)

||G1K1(V)||LQ(R$) = aM1||VV||Lq(R$)»
)||Lq(Rﬁ) < OZM1||V2VHLQ(R§) + 5M2HVVHLQ(R$),
)
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||V2K4(p)||Lq(Rf) < aMlHV?’P”Lq(Rf) + Bar (V2 Vo)llL,wy),
HV,C‘l(p)”Lq(Rf) < OZM1HV2P||LQ(]M) + 5M2||VP||L(1(RQ);
||K4(p)||Lq(Rf) < aMlHVPHLq(Rf)a
||V’C5(V)||LQ(R$) < OlMluvszLq(Rﬁ) + BMQH(VV)”LQ(Rﬁ)» (18)
||K5(V)||Lq(Rf) < O‘Ml‘lvV”Lq(]Rf)a
\|V2’C6(V)||Lq(M) < aMlHVQVHLq(M) + B (VY V)l 1y w2y
IVEs ()l @my) < aMi[[VV]p, @y) + Bas V]

and
IVH (AT V)| J(RY) S ad||V2v, L&)+ ans o[ VVL @y,
[H1(AT V), J(RY) S ad|| Vv J(RY):
|A_1Ha (AL
A1 Ha(alp)ll, JRY) S asd||[ V|, ®RY) + o, [[(V2p, V)l (RN
1(af) " Hs(p)l J(RY) S aMy ||Vl JRY) T QM e 1(V2p, V)l o (RY)-

More precisely, o depends on N,q, Bi, Bs but do not depend on My, Ms,§ and
€; B, depends on N, Ms,q,B1 and Bs but do not depend on My,§ and €; and
an, edepends on M — 2,6, N, q, B1 and By but do not depend on My, M2, d and .

WVlz JRY) S a5||v2v||L (®Y) + ang,e[VV|L, ®RY ) (19)

Proof. First, we prove , especially KCa(v). Recall the formula Ky(v) in .
Then by , we obtain

1Chimller, ) + IVCRim Lo ) < Ot
”Clzlm”Loo(Rj_\’) < COnMy,

for k,l,m = 1,..., N where the positive constants Cn s, and Cy do not depend
on M;. Then, by using the above inequalities, the estimates for Ko(v) is satisfied.
We have proved the estimate of Ko(v) by using the same argument as for K3(v).
Similarly, by recalling the formula in then using , then we immediately have
the required estimates for Ky (v),K4(v), Ks5(p), Ks(p). Therefore, we have proved
the estimates for .

Next, we prove (19). Let o1 (z) = @1(é(z)). Since

Vear(z) = (A + B(x)) ' (V) (¢(2)),
it follows that
||Vz041||LOC(Rﬂj) < Cne

with the positive constant C'y that only depends on N. Then it is known that

sup |ay(z) — af| = sup |ai(y) —af| <6
zeRY yeQ L
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Recalling the formula of H; in , the above inequalities result in the first estimate
of . Since 0 < 0 < min(1, B1/2), for any = € R, we get
laj(z)]| < B2+1 (j=1,2,3),
B1/2 < |aa(2)| < By +1.

Then, by using the above inequalities, we can prove the remaining estimates of
(19). This completes the proof of the lemma. O

Let W(pv ) (Wl(pv ) WQ(,D,V),Wg(p, V),W4(p,V),W5(p,V )T' Then, for
any (p,v) € H?’(RN) X HQ(RN) ,n>1,and X € ¥,, by Lemma 3.1 and Theorem

we have the follovvlng estimate:

||RAW P,V )||x (]RN) <Oé<12M1 +4€2)
1/2 (20)
+ (861, + 30aty ) N 1530, Tavlp, () 00 ()

Let ¥ = of, p=a/al, v =al/al, and k = af/a in (7). By Theorem
there exist operators A°(\) and B°(\) with
A°(N) € Hol(Sq, L(X4(RY), HF (RY)
B'(\) € Hol(3o, L(X,(RY), Hj (RY)
(r (A

such that for F* = (d,f,g,h’, hy) € XQ(RY),
is the unique solution for system

);
);

,w) = (A°(A)RAF?, BO(NRLFY)

M+ oddivw = d ian,

0 0
AW—%AW—&%AdiVW—%AVT:f ian,

Qy Qy Qg
n-Vr=g onRéV, (21)

Onws + Oswy = hs onRY, (s =1,..,N —1),

n-w=h onR},

satisfying the estimates

d\" 0
Rxo®Y),py®Y)) {(Ad)\> S A" (N) [ A e EU} < M,

d n
Rxgmy),0,®Y)) {(AdQ TBY(N) [ A e EJ} <M,

for n = 0,1, where M is a positive constant that depends on N, ¢, B1, and B, but
does not depend on af (i = 1,2, 3,4).

Next, we will solve the system ([17)) using the approach developed for solving
the system . Let we define

VVF = W (V)F, Va(V)F, V3(VF, Vi(V)F, Vs (VF),

where

V;(MF = W;(A°(VF,B°(VF) (5 =1,2,3,4,5),
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for F € XJ(RY) and A € %,. For the estimate V(A)F mentioned above, we have
the following lemma, with a proof that parallels the proof of Lemma 3.7 in [13].

Lemma 3.2. Let ¢ € (1,00) and let My and My be positive constants in .
Assume that (a) and (b) in Theorem[1.9 are satisfied for positive constants § and e
where 0 satisfies 0 < & < min(1, B1/2). Then there exists v > 12 that depends only
on q such that for n =0,1 and for anyn > 1,

Rexg@y)) ({(AddA)n(RMA)) X< E”D (22)
<M (a(M1 +0) + (Bum, + O‘szf)”_%> '

Furthermore, from Lemma [22] we can choose M; and § sufficiently small such
that

YM(aM; +68) <1/4, and M(Bag, + ang,.)n~ Y2 < 1/4, (23)
and choose 1 to be very large such that
YM(aMy +6) < 1/4, and  M(Bas, + ann.)n /2 < 1/4, (24)
resulting
Re(@®) ({00 v res,}) <172 (25)
forn=0,1.

By (25), we see that V(M lxo@y) < 1/2. Therefore, based on the Neumann

series expansion theorem [2.2] (b) and (c), for every A € ¥, there exists an inverse
operator (I — RAV(A))~' of I — RA\V(A) in L(X)(RY)) such that

d ., .
Rocaynn ({0 = RavO ™ [re s, ) <4
Let, for FO ¢ xg(M ) and for A € ¥,, we define the following operators:
ONF? = A°N)(I = RAVN)TIFY, EWF? = B\ (I — RAV(N)FC.

Then, based on the Neumann series expansion theorem (d), we obtain that (p,v) =
(OA)RAFY, Z(A\)RAFY) is the solution to satisfying the estimate

Re(y (@), P, @) ({0707 (S1000) [ A€ 2, |) < 12,
(26)

d -
Re(R3(R), Q8 ({0 (B | A€ 3, ) < 12,
for n = 0,1. Thus, we have obtained an R-bounded solution operator to System

(17). The uniqueness of the solution to System is obtained based on the prior
estimate of the solution. Suppose (p,v) satisfies System for (d,f,g,h',h) =
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(0,0,0,0,0), then by , and , we have
1(Sxp; TaV)llp, &) x 0, (YY) < MIRAW(p, V)l x0 ()
<120 (a(My + ) + (Bats + e, )1 72) 1(Sa0, Tav) g, vy x 2, 22

<M (a(My +6) + (Basy + a1~ 2) (830, Tav) 2y 22
< 1728, Tav)llp, 2y x 0, (&Y)-

The above inequality results in (p, v) = (0,0), and this shows the uniqueness of the
solution to System , which completes the proof of the uniqueness.

3.3. Proof of Theorem [1.2l

In this subsection, we will prove Theorem [I.2] demonstrating the existence of
an R-bounded solution to System @ This proof is based on the solution obtained
from the previous reduction, where we reconstruct ©(\) and =(\) as derived in the
earlier subsection.

Using the definition given by (13)), we can show that
RA(d, £, g, b, h) =(Vd, \?d, £, Vg, \/?Vg, Ag, Vi, A\'/?h, V21, A2V h, AR)
:((V@)T(V(ZZ) o) (P, )\1/2Jo @7 Aflf o (P’ gl(v2§) )
+G2(V3) 0 ®,X/2(VD)T(V§) 0o @, Ao D,
(V®)T(Vh) o ®,A/2h o ®,G1(V?h) o

+ Go(VR) 0 &, AV/2(VB) T (VR) 0 &, M o q>).
(27)
Here, G1(V2f) o ® and Go(Vf) o ® are N x N matrices whose (i, j)-th components
(G1(V2f) 0 ®),;; and (Ga(V f) o ®),; are respectively given by

N -

N 92§ 0Py () 0P (x)
2 o §

(G1(V7f) o ®)ij = . (8yk8yl ®l@ O0x; oy > 7

k=

s

N ~
9%
(G(VF)o®)y = 2 (ag ax»a;)’
10Ty

k=1

for ® = (®4,...,®y), with f € {g, h}.
Let G, ... , G11 be the variables corresponding to

Vd, \'2d, £, V25, N2V G, AG, VR, N2 h, V2R, MY 2V R AR
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respectively. Note again that g = po ®~! and @ = AT,v o ®~1. Then, by using
Equation , we define

ANG = {@(A)((V@)Tél 0®,Goo® A_1Gy0®,GGyod
+AY2G,G50 @, (VD) G5 0®,Gg0®, (V) Gg 0 ®,G1Gg 0 ®
FATY2G,Gh0 0D, (V)T Grg 0 @, Gy o @)] 0!
and
BONG =AT [EN)(VP) G10®,Gy0®, A_1G50®,C2Gyo0®
+ A V201G50®,(VB) G5 0®,Gg 0@, (VB) Gr0®,Gg o ®, Gy 0 ®
A2 G 0 @, (VD) T Gig 0 @, Gry 0 ®)] 0 &L,

for é = (él, ey éll) S %q(Q-i-)

Let (p,0) = (AN)RAH, BO)RA\H) with H = (d,f,§,h,h) € X,(Q,), then
(p, 1) is a solution to System @ Additionally, the uniqueness of the solution to
System @ follows from that of System . The required estimate in Theorerry
is obtained from the R-boundedness of the solution to System @, as given by ([26).
Therefore, we have established the existence of an R-bounded solution operator for
System (@, which completes the proof of Theorem (1.2} .

4. CONCLUDING REMARKS

This study is part of a series of investigations aimed at analyzing the Navier-
Stokes-Korteweg (NSK) system in general and complex domains. As an initial step,
it is essential to gain a deep understanding of the system’s behavior in simpler
domains, namely the whole space, half-space, and bent half-space. Solving the
system in these domains serves as an important foundation, as the results will be
used to formulate and establish the concept of maximal regularity for the NSK
system.

In particular, the findings of this study will serve as one of the key foundations
for proving maximal regularity, which will subsequently be used to establish the lo-
cal and global well-posedness of the system using the maximal regularity approach.
Maximal regularity plays a crucial role in proving the existence, uniqueness, and
stability of solutions for systems with more general domains. Through this step-
by-step approach, it is expected that the mathematical analysis of the NSK system
can be systematically developed, starting from simpler domains and progressing to
more complex and realistic settings.
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