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Abstract. One of the models that can be considered in the energy system is the

one-factor mean-reverting process. We propose the one-factor mean-reverting model

with sinusoidal signal processing involved. The frequency component of the model

can be estimated with a high-frequency scheme. The estimation of the frequency

component is believed to produce a precise estimate. This is because the high-

frequency scheme has the potential to handle possible non-linear coefficient cases

in a unified way, that is, nh → ∞, and nh2 → 0. This paper shows that the

frequency component estimator in the one-factor mean-reverting model is strongly

consistent with the rate convergence, namely
√

(nh)3. It is also can be shown that

the estimator has a normal approximation with a mean of 0 and variance 1
6
(1+ θ2).

We applied the proposed model to the energy systems data.
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1. INTRODUCTION

Diffusion process contain drift and diffusion coefficients. The stochastic dif-
fusion process has two type depend on its drift coefficients, namely homogeneous
diffusion process and non-homogeneous diffusion process. The first model whose
drift coefficient is a constant or not depends on time, while the second model whose
drift coefficient depends on the time variable.
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The one-factor mean-reverting model is a part of the non-homogeneous dif-
fusion process. The mean-reversion process is an interesting part of a stochastic
differential equation since the process can be regarded as an energy’s path, which
is the pattern will always tend to its mean. [1] shows the digital signal process can
be used in approaching the periodicity term of the seasonal variation of the energy
system time series data. The theoretical background became an important thing in
proposing a forecast energy model, i.e., in the case of the one-factor mean-reverting
model. Moreover, we can apply the proposed model to the systems.

This study will provide the consistency of the least-square of the frequency
component of the signal processing, and also the asymptotic normality of the esti-
mates. The numerical study will be examined to support the theoretical findings.
Therefore, we do literature research on signal processing [2], the harmonic sinu-
soidal function [3], and the previous research of [1] which provides the theoretical
background of the sinusoidal signal processing of the drift. The proposed model
will be applied to the energy systems. The electric power and energy systems model
is accommodated in [4].

Consider {Xt} is a stochastic process that has a following equation

dXt = −λXtdt+ σdwt (1)

with
logCt = µt +Xt, (2)

where µt is a deterministic function of t, t ∈ (0,∞).

If we denote
Yt := logCt, (3)

then we can find the relation of the one-factor mean-reverting model and Orn-
stein–Uhlenbeck process. Observe that

d(Yt − µt) = −λ(Yt − µt)dt+ σdwt

dYt − dµt = (−λYt + λµt) dt+ σdwt

dYt =

(
−λYt + λµt +

dµt

dt

)
dt+ σdwt.

Assume that

bt(β) := λµt(θ̃) +
dµt(θ̃)

dt
, (4)

with β = (λ, θ̃), for any parameter θ̃ of the deterministic function µt; then we
obtain

dYt = (−λYt + bt(β)) dt+ σdwt. (5)

From (5), we can find the relation between the diffusion process, the Gompertz
process, and the one-factor mean-reverting model. If bt(β) = 0 then the expression
(5) can be defined as a diffusion process. If bt(β) = c, where c is a constant then the
expression (5) can be classified as a time-homogeneous Gompertz diffusion process
(see e.g., [5, 6] for references). If bt(β) is defined as (4) then the expression (5)
can be called as the one-factor mean-reverting model. This model is part of a
time-inhomogeneous Ornstein–Uhlenbeck process (see e.g., [7] for reference).
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Discrete-time sinusoidal signals can be expressed as (see i.e., [2] for reference)

x(n) = A cos(ωn+ ϑ), (6)

where

• n is an integer variable,
• A is the amplitude of the sinusoidal,
• ω is the frequency component,
• ϑ is the phase of the sinusoidal.

If we took continuous-time sinusoidal signals, namely

µt(β) =: sin(θt),

with t ∈ (0,∞), then we have

bt(β) = λ sin(θt) + θ cos(θt),

and the one-factor mean-reverting process with sinusoidal signal as follow

dYt = (−λYt + λ sin(θt) + θ cos(θt)) dt+ dwt. (7)

For λ = 1, then we have

dYt = (−Yt + sin(θt) + θ cos(θt)) dt+ dwt. (8)

Further,

∫ t

0

dYt =

∫ t

0

(−Ys + sin(θs) + θ cos(θs)) ds+

∫ t

0

dws

Yt = Y0 +

∫ t

0

(−Ys + sin(θs) + θ cos(θs)) ds+ wt

defined on an underlying complete filtered probability space
(Ω,F , (Ft)t∈R+

,P) with Ft = σ(ws : s ≤ t), the parameter spaces Θ ⊂ (0,∞) are
bounded convex domains. The true parameter value is denoted by θ0 ∈ Θ.

Using Euler–Maruyama approach, we have

Ytj = Ytj−1
+

∫ tj

tj−1

(−Ys + sin(θs) + θ cos(θs)) ds+∆jw, (9)

with ∆jw = wtj − wtj−1
.

Moreover, we define ∆jY := Ytj − Ytj−1 , with

∆jY
Pθ0=

∫ tj

tj−1

(−Ys + sin(θs) + θ cos(θs)) ds+∆jw. (10)

We apply least-squares estimation (LSE) for the parameters of (8) based
on discrete time observations, that is, we concentrate on the situation where the
diffusion process is observed at discrete times 0 ≡ t0 < t1 < · · · < tn, where
tnj = tj = jh, with j ≤ n and for some non-random discrete instant time step
h := hn (see. e.g., [8] for reference of the time step),
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h → 0, (11)

such that for n → ∞,

T := Tn = nh, Tn → ∞, (12)

and

nh2 → 0. (13)

We define the LSE of θ as

θ̂n ∈ argmin
θ∈Θ

Qn(θ), (14)

where

Qn(θ) =
1

h

n∑
j=1

[
∆jY −

(
−Ytj−1 + sin(θtj−1) + θ cos(θtj−1)

)
h
]2

,

with ∆jY = Ytj − Ytj−1
.

2. MAIN RESULTS

In this section, first we provide the consistency of the estimate.

2.1. The consistency of the LSE of θ.

First of all, we define

Gn(θ) =
1

Tn
[Qn(θ)−Qn(θ0)] (15)

Using Lemma 4.1 of [3] we show the estimator is a strongly consistent.

Observe that

Gn(θ) =
1

Tn
[Qn(θ)−Qn(θ0)]

=
1

n

n∑
j=1

[gj−1(θ0)− gj−1(θ)]
2
+

1

Tn

n∑
j=1

[gj−1(θ0)− gj−1(θ)]∆jw + op(h),

with

gj−1(θ) = −Ytj−1 + sin(θtj−1) + θ cos(θtj−1). (16)

Moreover, we find the following expression

Gn(θ) = Gn
1,j(θ) + Gn

2,j(θ) + op(h), (17)

where

Gn
1,j(θ) =

1

n

n∑
j=1

{
sin(θ0tj−1)− sin(θtj−1) + θ0 cos(θ0tj−1)− θ cos(θtj−1)

}2

, (18)
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Gn
2,j(θ) =

2σ

Tn

n∑
j=1

{
sin(θ0tj−1)− sin(θtj−1) + θ0 cos(θ0tj−1)− θ cos(θtj−1)

}
∆jw.

(19)

From (18) and (19), we have

Gn
1,j(θ) =

1

n

n∑
j=1

{
[sin(θtj−1)− sin(θ0tj−1)]

2
+ [θ0 cos(θ0tj−1)− θ cos(θtj−1)]

2

+ 2 [sin(θtj−1)− sin(θ0tj−1)] [θ0 cos(θ0tj−1)− θ cos(θtj−1)]
}

= 1 +
1

2
(θ2 + θ20) + o

(
1

Tn

)
.

Clearly, we obtain the fact

lim
Tn→∞

inf
θ

Gn
1,j(θ) > 0. (20)

Whenever for (19),

lim
Tn→∞

sup
θ

Gn
2,j(θ) = 0. (21)

Therefore, based on (20), (21), and Lemma 4.1 of [3] we get

θ̂
a.s.−−→ θ as Tn → ∞.

2.2. The asymptotic normality of the LSE of θ.

Now, we will provide the proof of asymptotic normality of the estimate. Using
Taylor’s approach, we have

Qn(θ) = Qn(θ0) + ∂Qn(θ
∗)(θ − θ0)

∂Qn(θ) = ∂Qn(θ0) + ∂2Qn(θ
∗)(θ − θ0)

θ∗ is the point between θ and θ0. Because of (14) then ∂Qn(θ) = 0. Therefore

0 = ∂Qn(θ0) + ∂2
θ2
0
Qn(θ

∗)(θ − θ0)

∂θ0Qn(θ0) = −∂2
θ2
0
Qn(θ

∗)(θ − θ0)

By Lemma 3.12 of [1] for the right hand side of the above equation, then we have

1√
(Tn)3

∂θ0Qn(θ0) =

{
− 1√

(Tn)3
∂2
θ2
0
Qn(θ0)

1√
(Tn)3

}√
(Tn)3(θ − θ0). (22)

We will proceed the left hand side and the first of the right hand side of the equation
(22) to provide the following Theorem prove.

Theorem 2.1. We have√
(Tn)3(θ − θ0)

L−→ N
(
0,

1

6
(1 + θ20)

)
as Tn → ∞.
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Proof.

We will prove the Theorem 2.1 with the show the following expressions.

− 1√
(Tn)3

∂2
θ2
0
Qn(θ0)

1√
(Tn)3

p−→ 1

6
(1 + θ20), (23)

and

1√
(Tn)3

∂Qn(θ0)
L−→ N

(
0,

1

6
(1 + θ20)

)
. (24)

First, we will take a look (23).

If E
Ftj−1

0 denotes the expectation operator under Pθ0 conditional on Ftj−1
,

then by applying Lemma 9 of [9], we can obtain

n∑
j=1

E
Ftj−1

0

[
h

(Tn)3
[tj−1 cos(θ0tj−1)− θ0tj−1 sin(θ0tj−1)]

2

]

=

n∑
j=1

E0

[
h

(Tn)3
[tj−1 cos(θ0tj−1)− θ0tj−1 sin(θ0tj−1)]

2 |Ftj−1

]

=
h

(Tn)3

n∑
j=1

[tj−1 cos(θ0tj−1)− θ0tj−1 sin(θ0tj−1)]
2

=
h

(Tn)3

n∑
j=1

[
t2j−1 cos

2(θ0tj−1) + θ20t
2
j−1 sin

2(θ0tj−1)− 2t2j−1θ0 cos(θ0tj−1) sin(θ0tj−1)
]

Clearly, we can easy find the expression above using Lemma 3.1 and Corollary 3.2
of [1]. Hence

n∑
j=1

E
Ftj−1

0

[
h

(Tn)3
[tj−1 cos(θ0tj−1)− θ0tj−1 sin(θ0tj−1)]

2

]
=

1

6
+

θ20
6

+ o

(
1

Tn

)
− 2θ0o

(
1

Tn

)

Therefore

n∑
j=1

E
Ftj−1

0

[
h

(Tn)3
[tj−1 cos(θ0tj−1)− θ0tj−1 sin(θ0tj−1)]

2

]
p−→ 1

6
(1 + θ20). (25)

Similarly with (25), we can obtain the following

n∑
j=1

E
Ftj−1

0

[(
h

(Tn)3
[tj−1 cos(θ0tj−1)− θ0tj−1 sin(θ0tj−1)]

2

)]
p−→ 0. (26)
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Next, we will observe (24).

n∑
j=1

E
Ftj−1

0

( 1√
(Tn)3

∂θ0gj−1(θ0)∆jw

)2


=

n∑
j=1

E0

[
1

(Tn)3
(tj−1 cos(θ0tj−1)− θ0tj−1 sin(θ0tj−1))

2 |Ftj−1

]
h =

1

6

(
1 + θ20

)

3. ESTIMATING FREQUENCY COMPONENT IN APPLIANCES
ENERGY DATASET

The proposed model was applied to real data for the energy consumption of
light fixtures in one Belgium household. These data are available at [10] and the
relevant paper at [11]. The dataset is at 10 min for about 4.5 months. The dataset
contains 19737 energy uses in the household with a ten-minute sampling rate over
a period from January 11, to May 27, 2016. We estimate the frequency component
of (8) of appliances energy use (in Wh). All calculations in the empirical results
have been performed in the R program.

We visualize the appliances energy of the dataset [10] with the proposed
model (8).

Figure 1. Ten-minute sampling rate of appliances energy (Y) over
a period from January 1, to February 18, 2016. Time in hours.

We choose the considered period, namely:

• Tn = 45, Tnh = 4.5 for period January 11, 2016 to January 14, 2016,
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• Tn = 100, Tnh = 2.5 for period January 11, 2016 to February 8, 2016,
• Tn = 150, Tnh = 1.5 for period January 11, 2016 to April 24, 2016,
• Tn = 165, Tnh = 1.4 for period January 11, 2016 to May 25, 2016.

Table 1. The performance of θ̂n of (8) for considered Tn and
Tnh. The Root Mean Squares Error (RMSE) of the model is given.

Tn Tnh θ̂n RMSE
45 4.5 0.27 176.87
100 2.5 0.36 152.59
150 1.5 0.34 144.92
165 1.4 0.27 140.44

From Table 1, we can see that the estimate get better for larger Tn and
smaller Tnh; the RMSE of the model seems getting smaller.

4. CONCLUDING REMARKS

The sinusoidal signal processing of the one-factor mean-reverting model can
be considered in energy system modeling. For a simple rate of reversion λ = 1, and
sinusoidal signal sin(θt) in the one-factor mean-reverting model (5) tend to Normal
distribution with a mean 0, and variance 1

6 (1 + θ2).

In the future, we can extend (5) for general mean reversion λ, and various si-

nusoidal signal processing form µt(θ̃), i.e., µt(θ̃) =
∑K

k=1[Ak sin(θkt)+Bk cos(θkt)],

with θ̃ = (A,B, θ).

Data availability statement The data that support the find-
ings of this study are available in UCI Machine Learning Repository at
[https://archive.ics.uci.edu/ml/machine-learning-databases/00374/]. These data
were derived from the following resources available in the public domain:
[https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction]
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