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Abstract. This paper investigates an optimal control strategy to mitigate the

spread of HIV/AIDS by integrating media awareness campaigns and antiviral treat-

ment efforts. A modified SI-type model is developed, dividing the population into

five subgroups: unaware susceptible individuals, aware susceptible individuals, un-

aware infected individuals, aware infected individuals, and individuals undergoing

treatment. Additionally, a separate compartment representing the level of media

awareness is included to model the dynamics of awareness campaigns over time.

Three control variables are introduced: the success of media awareness programs

aimed at reducing contact between susceptible and infected individuals and encour-

aging infected individuals to seek and receive treatment; the effort to provide an-

tiretroviral treatment; and the effort to strengthen the intensity of media awareness

programs. The objective is to minimize the number of unaware susceptible and in-

fected individuals while maximizing the number of individuals receiving treatment,

and to reduce implementation costs. The model employs optimal control theory to

identify the best combination of strategies by minimizing a cost functional. Numer-

ical simulations explore seven control strategy combinations, ranging from single to

multiple controls. The results indicate that combining all control variables yields

the most significant reduction in unaware and infected individuals, a substantial in-

crease in the number of individuals receiving treatment, and effective minimization

of costs.

Key words and Phrases: antiviral treatment, HIV/AIDS, media awareness, optimal
control

∗Corresponding author

2020 Mathematics Subject Classification: 92D30 (primary), 49J15, 49M05, 93C95

Received: 18-01-2025, accepted: 30-08-2025.

1

mailto:reginawsayu@mipa.upr.ac.id
mailto:robiatulwitariwilda@mipa.upr.ac.id
mailto:megayumia@mipa.upr.ac.id
mailto:febrianto.afli@mipa.upr.ac.id
mailto:sailaharrizka@gmail.com


2

1. INTRODUCTION

The global HIV/AIDS epidemic remains a major challenge to public health.
As of 2023, approximately 39.9 million people were reported to be living with HIV,
65% of whom reside in the WHO African Region. Despite advancements in pre-
vention and treatment, 1.3 million people acquired HIV in 2023, and 630,000 died
due to HIV-related illnesses. While there is no definitive cure, effective prevention
strategies, timely diagnosis, and access to antiretroviral therapy (ART) have trans-
formed HIV into a manageable chronic condition, enabling long and healthy lives
for those affected. Global strategies from organizations like WHO, UNAIDS, and
the Global Fund align with the Sustainable Development Goal (SDG) target 3.3,
aiming to end the HIV epidemic by 2030. However, achieving this goal requires
enhanced efforts, as data from 2023 show that only 72% of people living with HIV
had achieved suppressed viral loads, falling short of the ambitious 95-95-95 targets
set for 2025. Integrating media-driven awareness campaigns with antiviral treat-
ments offers a promising avenue to bridge these gaps and accelerate progress toward
epidemic control [1].

Over the past decades, numerous studies have explored the impact of var-
ious interventions on HIV/AIDS transmission. Research has consistently shown
that the roll-out of antiretroviral therapy (ART) has significantly reduced HIV-
related mortality in sub-Saharan Africa. During the first decade of ART expan-
sion, overall mortality rates in the population decreased by approximately 30%,
with HIV-attributable deaths falling by 30-50% [2]. In Ethiopia, studies reveal
that the ”test and treat” approach significantly reduces mortality rates among in-
dividuals living with HIV compared to those without treatment exposure. Early
diagnosis, adherence to ART, and achieving optimal viral suppression are crucial
for maximizing the benefits of this approach [3]. Despite these efforts, mortality
rates among patients on ART remain influenced by baseline health conditions, such
as CD4 counts, comorbidities, and disease stage at initiation. Close monitoring and
tailored interventions for high-risk individuals are critical to improving outcomes
[4]. Nevertheless, the ongoing high rate of new infections points to the need for
complementary strategies, particularly behavioral interventions aimed at reducing
high-risk behaviors. Recent stochastic modeling studies in other infectious diseases
also suggest that unpredictability and noise in transmission dynamics can influence
intervention success, reinforcing the value of adaptive control strategies in public
health contexts [5, 6].

Incorporating media awareness programs is crucial for HIV prevention ef-
forts, particularly in raising awareness and promoting behavior change. However,
their effectiveness often depends on the campaign design and the target audience.
For instance, exploratory reviews suggest that while mass media interventions are
effective in reaching large populations, their impact on behavior change, such as
HIV testing or disclosure, is limited unless combined with interpersonal skills de-
velopment and more in-depth interventions [7]. These campaigns are most effective
when focused on raising awareness and setting the context for reducing stigma
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and changing societal norms. In Zambia, studies examining health communica-
tion strategies among sex workers revealed that negatively framed campaigns that
evoked fear about HIV/AIDS were more effective in encouraging behavior change,
such as quitting sex work, compared to campaigns aimed at fighting stigma with
positive messages [8]. Similarly, stochastic models in hepatitis B dynamics have
shown that media awareness alone may not lead to disease eradication unless cou-
pled with strong treatment or vaccination interventions, especially when accounting
for random environmental fluctuations [9].

Previous studies have extensively employed mathematical modeling to ex-
plore various aspects of HIV/AIDS prevention, treatment, and control strategies.
For instance, modeling approaches have been applied to understand the immune
response to HIV, highlighting gaps in knowledge regarding innate immunity and
the role of adaptive responses in controlling infection [10]. A general equilibrium
model examined the Malawian epidemic, focusing on behavioral changes in sexual
practices in response to public policy interventions, such as antiretroviral therapy
(ART) and condom use, demonstrating the interplay between individual choices
and epidemic dynamics [11]. The pivotal influence of social factors in health out-
comes, including stigma and access to services, has also been modeled, emphasizing
the need for holistic interventions that integrate both epidemiological and socioeco-
nomic factors [12]. Additionally, optimal control strategies have been investigated
to identify cost-effective treatment allocation schemes, revealing that early treat-
ment can minimize infections, while late treatment is more cost-efficient for reducing
deaths [13]. Public education campaigns and voluntary testing have been shown to
significantly influence epidemic control, with optimal interventions tailored to spe-
cific population groups or resource constraints [14, 15]. Moreover, the effectiveness
of combining media campaigns with screening and treatment strategies has been ex-
plored, underscoring their synergistic impact on controlling disease spread [16, 17].
In related settings, stochastic optimal control models for other infectious diseases
have demonstrated how effective policies can be designed under uncertainty [18],
and similar stochastic modeling frameworks have been extended even into cyber-
security contexts, such as worm propagation in sensor networks [19]. These works
collectively underline the potential of integrating media awareness programs with
antiviral treatments, providing a strong foundation for developing optimal control
strategies to mitigate the HIV/AIDS epidemic effectively.

This paper suggests an optimal control model to integrate media awareness
programs and antiviral treatment efforts in controlling the spread of HIV/AIDS. We
develop a modified SI-type model that divides the population into five subgroups:
unaware susceptible individuals, aware susceptible individuals, unaware infected
individuals, aware infected individuals, and individuals receiving treatment. The
model extends the awareness-based HIV/AIDS model proposed by Roy et al. [20]
by incorporating a treatment compartment and redefining the control strategy,
to better represent behavioral responses and treatment dynamics. Three control
variables are introduced: the success of media awareness programs, the effort to
provide antiretroviral treatment, and the effort to strengthen the media awareness
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programs. The objective is to decrease the number of unaware susceptible and
infected individuals, maximize the number of individuals receiving treatment, and
minimize the associated costs of implementing these interventions.

2. MATHEMATICAL MODEL FORMULATION

This HIV/AIDS spread model incorporates media awareness. It assumes
that when the media disseminates information about HIV/AIDS, some susceptible
individuals reduce contact with infected persons or avoid sexual activities or other
transmission risk factors. As a result, individuals are categorized into aware and
unaware groups. In this model, it is assumed that aware susceptible individuals are
effectively protected from infection due to behavioral changes (e.g., reduced contact,
consistent condom use), such that their infection risk is negligible. In addition,
aware infected individuals are more likely to seek treatment. Therefore, the total
population is divided into five subpopulations: unaware susceptible individuals
(Su(t)), aware susceptible individuals (Sa(t)), unaware infected individuals (Iu(t)),
aware infected individuals (Ia(t)), and those receiving treatment (T (t)). The model
also introduces a dynamic variable M(t) to represent the level of media awareness
over time, which influences transitions between unaware and aware classes. The
dynamics of HIV/AIDS spread with media awareness are shown in Figure 1.

Figure 1. Transmission diagram of HIV/AIDS spread dynamics

The constant recruitment rate (Λ) adds new individuals to the susceptible
unaware compartment (Su). The susceptible individuals who are unaware can
become infected by contact with unaware infected individuals at an infection rate
of β or become aware through media campaigns at a rate of α1. Additionally, due
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to media influence, unaware infected individuals become aware infected individuals
at a rate of α2. However, due to memory limitations, both aware susceptible and
infected individuals may revert to unaware at rates ϵ1 and ϵ2, respectively. Some
aware infected individuals can receive antiretroviral treatment at a rate ϕ. The
model assumes natural death occurs at rate µ for all subpopulations, while infected
individuals and those receiving treatment may die from HIV/AIDS at rates δ1
and δ2, respectively. Furthermore, individuals receiving treatment have a lower
HIV/AIDS-related death rate than those who are not treated (δ1 > δ2). The media
awareness program is implemented proportionally with changes in the number of
unaware infected individuals at a rate of η, but decreases with a rate of η0 due to
its inefficiency.

Based on these assumptions and the transmission diagram, the HIV/AIDS
spread model is expressed as a set of nonlinear differential equations.

dSu

dt
= Λ− βSuIu − α1SuM + ϵ1Sa − µSu;

dSa

dt
= α1SuM − ϵ1Sa − µSa;

dIu
dt

= βSuIu − α2IuM + ϵ2Ia − (µ+ δ1)Iu;

dIa
dt

= α2IuM − ϕIa − ϵ2Ia − (µ+ δ1)Ia;

dT

dt
= ϕIa − (µ+ δ2)T ;

dM

dt
= ηIu − η0M.

(1)

3. ANALYSIS OF THE MODEL

3.1. Positivity and Boundedness of the Model.

In this section, it will be shown that the state variables remain positive and
bounded, which implies that the solution to system (1), with non-negative initial
values, will stay non-negative for all times t > 0 and will be bounded by a non-
negative value. To demonstrate positivity, first consider

dM

dt
= ηIu − η0M ≥ −η0M. (2)

Solving equation (2) yields

M(t) ≥ C1e
−η0t

where C1 is a positive constant. Consequently, ∀t ≥ 0,M(t) ≥ 0. Then consider
the equation

dT

dt
= ϕIa − (µ+ δ2)T ≥ −(µ+ δ2)T. (3)
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Solving equation (3) yields

T (t) ≥ C2e
−(µ+δ2)t

where C2 is a positive constant. Consequently, ∀t ≥ 0, T (t) ≥ 0. Using a similar
approach, it can be verified that ∀t ≥ 0, Su(t), Sa(t), Iu(t), Ia(t) ≥ 0. To demon-
strate boundedness, consider that the total population of humans at time t is given
by

N(t) = Su(t) + Sa(t) + Iu(t) + Ia(t) + T (t).

Thus, based on the system (1), the time-dependent rate of change of the total
human population is expressed as

dN

dt
= Λ− µN − δ1(Iu + Ia)− δ2T ≤ Λ− µN.

Consequently, as t→ ∞, N → Λ
µ , which means, N , the total population is bounded

above by max
(
N(0), Λµ

)
. Since all variables are non-negative, the same bound on

N also applies as the maximum value for Su, Sa, Iu, Ia, and T .

3.2. Equilibrium Analysis.

The system (1) has an equilibrium point corresponding to a disease-free state,
denoted as

E0 = (Su0, Sa0, Iu0, Ia0, T0,M0) =

(
Λ

µ
, 0, 0, 0, 0, 0

)
and the basic reproduction number R0 is given by

R0 =
Λβ

µ(µ+ δ1)
.

Theorem 3.1. Local asymptotic stability of the disease-free equilibrium point, E0,
holds if R0 < 1.

Proof. The Jacobian matrix corresponding to the system (1) is given by

J =


a11 ϵ1 −βSu 0 0 −α1Su

α1M a22 0 0 0 α1Su

βIu 0 a33 ϵ2 0 −α2Iu
0 0 α2M a44 0 α2Iu
0 0 0 ϕ −(µ+ δ2) 0
0 0 η 0 0 −η0


where a11 = − (βIu + α1M + µ), a22 = −(ϵ1+µ), a33 = βSu−α2M−(µ+δ1), and
a44 = −ϵ2 − ϕ − (µ + δ1). The stability of E0 can be determined by substituting
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the equilibrium point E0 into the Jacobian matrix, resulting in

J =



−µ ϵ1 −β Λ
µ 0 0 −α1

Λ
µ

0 −(ϵ1 + µ) 0 0 0 α1
Λ
µ

0 0 β Λ
µ − (µ+ δ1) ϵ2 0 0

0 0 0 −ϵ2 − ϕ− (µ+ δ1) 0 0
0 0 0 ϕ −(µ+ δ2) 0
0 0 η 0 0 −η0

 .

The eigenvalues of the Jacobian matrix J(E0) are

λ1 = −µ, λ2 = −(ϵ1 + µ), λ3 = −(µ+ δ2), λ4 = −η0
and the remaining two eigenvalues are roots of the quadratic equation

λ2 + ζ1λ+ ζ2 = 0

where

ζ1 = −Λβ

µ
+ 2(µ+ δ1)− ϵ2 + ϕ;

ζ2 =

(
β
Λ

µ
− µ− δ1

)
(−ϵ2 − ϕ− µ− δ1) .

The eigenvalues are

λ5,6 =
−ζ1 ±

√
ζ21 − 4ζ2
2

.

The equilibrium E0 will be locally asymptotically stable provided that Re(λ5,6) < 0.
The eigenvalues λ5,6 .yield several possibilities for stability

(1) If ζ21 − 4ζ2 < 0, λ5,6 ∈ CRe(λ5,6) < 0;

(2) If ζ21 − 4ζ2 = 0, λ5 = λ6 = − ζ1
2 < 0;

(3) If ζ21 − 4ζ2 > 0, λ5,6 ∈ R and

λ5,6 < 0 if

(
β
Λ

µ
− µ− δ1

)
(−ϵ2 − ϕ− µ− δ1) > 0

or

R0 =
Λβ

µ(µ+ δ1)
< 1.

□

4. OPTIMAL CONTROL PROBLEM

The application of optimal control is explored in this section for the HIV/AIDS
spread dynamics model in system (1). The following control variables are intro-
duced

(1) u1 ∈ [0, 1] represents the success of the media awareness program for sus-
ceptible individuals to limit contact with infected individuals or vice versa,
and for infected individuals who are aware to seek and receive treatment;

(2) u2 ∈ [0, 1] represents efforts in antiretroviral treatment;
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(3) u3 ∈ [0, 1] represents efforts to strengthen the media awareness program.

The resulting controlled system is given by

dSu

dt
= Λ− βSuIu − α1(1 + u1)SuM + ϵ1Sa − µSu;

dSa

dt
= α1(1 + u1)SuM − ϵ1Sa − µSa;

dIu
dt

= βSuIu − α2(1 + u1)IuM + ϵ2Ia − (µ+ δ1)Iu;

dIa
dt

= α2(1 + u1)IuM − ϕ(1 + u2)Ia − ϵ2Ia − (µ+ δ1)Ia;

dT

dt
= ϕ(1 + u2)Ia − (µ+ δ2)T ;

dM

dt
= η(1 + u3)Iu − η0M.

(4)

The objective of this optimal control design is to minimize the number of
susceptible and infected individuals who are unaware, maximize the number of in-
dividuals receiving treatment, and minimize all costs associated with implementing
the controls u1, u2, and u3. Therefore, the objective function for the system (4) is
given by

J (u1, u2, u3) =

∫ tf

0

[
ASu +BIu − CT +

1

2
W1u

2
1 +

1

2
W2u

2
2 +

1

2
W3u

2
3

]
dt. (5)

We seek optimal controls u1, u2 and u3 in U such that

minJ (u1, u2, u3) subject to (4) (6)

for which

Uad = {u1, u2, u3 | u1, u2 and u3 are Lebesgue integrable, 0 ≤ ui ≤ 1, i = 1, 2, 3}

represents the control set.

4.1. The existence of an optimal control.

Theorem 4.1. An optimal control (u∗1, u
∗
2, u

∗
3) exists for problem (6).

Proof. We apply the necessary criteria from [21] to prove this theorem, first by
denoting the right-hand side of (4) by g (t, x⃗, u⃗). We aim to prove that the following
conditions hold

(a) g is a C1 function and for some constant K, it holds that

|g(t, 0, 0)| ≤ K, |gx⃗ (t, x⃗, u⃗)| ≤ K (1 + |u⃗|) , |gu⃗ (t, x⃗, u⃗)| ≤ K;

(b) The set F, which includes all solutions to system (1) with controls within
Uad is nonempty;

(c) g (t, x⃗, u⃗) = a (t, x⃗) + b (t, x⃗) u⃗;
(d) The control set U = [0, 1]× [0, 1]× [0, 1] is closed, convex and compact;
(e) The objective functional’s integrand is convex with respect to U .
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To verify the conditions mentioned above, we write

g (t, x⃗, u⃗) =


Λ− βSuIu − α1(1 + u1)SuM + ϵ1Sa − µSu

α1(1 + u1)SuM − ϵ1Sa − µSa

βSuIu − α2(1 + u1)IuM + ϵ2Ia − (µ+ δ1)Iu
α2(1 + u1)IuM − ϕ(1 + u2)Ia − ϵ2Ia − (µ+ δ1)Ia

ϕ(1 + u2)Ia − (µ+ δ2)T
η(1 + u3)Iu − η0M

 .

It follows straightforwardly that g (t, x⃗, u⃗) is a C1 function and |g(t, 0, 0)| = Λ.
Moreover, we have

|gx⃗ (t, x⃗, u⃗)| =

∣∣∣∣∣∣∣∣∣∣∣∣

g11 ϵ1 −βSu 0 0 −α1(1 + u1)Su

α1(1 + u1)M g22 0 0 0 α1(1 + u1)Su

βIu 0 g33 ϵ2 0 −α2(1 + u1)Iu
0 0 α2(1 + u1)M g44 0 α2(1 + u1)Iu
0 0 0 ϕ(1 + u2) g55 0
0 0 η(1 + u3) 0 0 −η0

∣∣∣∣∣∣∣∣∣∣∣∣
where g11 = −βIu − α1(1 + u1)M − µ, g22 = −ϵ1 − µ, g33 = βSu − α2(1 + u1)M −
(µ+ δ1), g44 = −ϕ(1 + u2)− ϵ2 − (µ+ δ1), g55 = −(µ+ δ2), and

|gu⃗ (t, x⃗, u⃗)| =

∣∣∣∣∣∣∣∣∣∣∣∣

−α1SuM 0 0
α1SuM 0 0
−α2IuM 0 0
α2IuM −ϕIa 0

0 ϕIa 0
0 0 ηIu

∣∣∣∣∣∣∣∣∣∣∣∣
.

Since Su, Sa, Iu, Ia, T, and M are bounded, there is a constant K for which

|g(t, 0, 0)| ≤ K, |gx⃗ (t, x⃗, u⃗)| ≤ K (1 + |u⃗|) , |gu⃗ (t, x⃗, u⃗)| ≤ K.

This implies that condition (a) is satisfied. As a consequence of condition (a), a
unique solution to system (1) exists for a constant control, which in turn ensures
that condition (b) is satisfied.

Furthermore,

g (t, x⃗, u⃗) =


Λ− βSuIu − α1SuM + ϵ1Sa − µSu

α1SuM − ϵ1Sa − µSa

βSuIu − α2IuM + ϵ2Ia − (µ+ δ1)Iu
α2IuM − ϕIa − ϵ2Ia − (µ+ δ1)Ia

ϕIa − (µ+ δ2)T
ηIu − η0M

+


−α1SuM 0 0
α1SuM 0 0
−α2IuM 0 0
α2IuM −ϕIa 0

0 ϕIa 0
0 0 ηIu

×

u1u2
u3

 .

Thus, condition (c) is satisfied. It is clear from the definition that condition (d)
is satisfied, so we now proceed to prove condition (e). First, let f (t, x⃗, u⃗) be the
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function representing the integrand in the objective functional that is

f (t, x⃗, u⃗) = ASu +BIu − CT +
1

2
W1u

2
1 +

1

2
W2u

2
2 +

1

2
W3u

2
3

then it is necessary to prove that

(1− τ) f (t, x⃗, u⃗) + τf (t, x⃗, v⃗) ≥ f (t, x⃗, (1− τ) u⃗+ τ v⃗)

where u⃗, v⃗ are control vectors and τ ∈ [0, 1]. Consequently, we obtain that

(1− τ) f (t, x⃗, u⃗) + τf (t, x⃗, v⃗) = (1− τ)

[
ASu +BIu − CT +

1

2
W1u

2
1 +

1

2
W2u

2
2 +

1

2
W3u

2
3

]
+ τ

[
ASu +BIu − CT +

1

2
W1v

2
1 +

1

2
W2v

2
2 +

1

2
W3v

2
3

]
= ASu +BIu − CT + (1− τ)

[
1

2
W1u

2
1 +

1

2
W2u

2
2 +

1

2
W3u

2
3

]
+ τ

[
1

2
W1v

2
1 +

1

2
W2v

2
2 +

1

2
W3v

2
3

]
and

f (t, x⃗, (1− τ) u⃗+ τ v⃗) = ASu +BIu − CT +
1

2
W1 [(1− τ)u1 + τv1]

2

+
1

2
W2 [(1− τ)u2 + τv2]

2
+

1

2
W3 [(1− τ)u3 + τv3]

2
.

Moreover, it follows that

(1− τ) f (t, x⃗, u⃗) + τf (t, x⃗, v⃗)− f (t, x⃗, (1− τ) u⃗+ τ v⃗)

=
1

2
W1

[
(1− τ)u21 + τv21

]
+

1

2
W2

[
(1− τ)u22 + τv22

]
+

1

2
W3

[
(1− τ)u23 + τv23

]
− 1

2
W1 [(1− τ)u1 + τv1]

2 − 1

2
W2 [(1− τ)u2 + τv2]

2 − 1

2
W3 [(1− τ)u3 + τv3]

2

=
1

2
W1

{
(1− τ)u21 + τv21 − [(1− τ)u1 + τv1]

2
}
+

1

2
W2

{
(1− τ)u22 + τv22 − [(1− τ)u2 + τv2]

2
}
+

1

2
W3

{
(1− τ)u23 + τv23 − [(1− τ)u3 + τv3]

2
}

=
1

2
W1

[√
τ (1− τ)u1 −

√
τ (1− τ)v1

]2
+

1

2
W2

[√
τ (1− τ)u2 −

√
τ (1− τ)v2

]2
+

1

2
W3

[√
τ (1− τ)u3 −

√
τ (1− τ)v3

]2
≥ 0

which completes the proof. □

4.2. The optimality characterization.

We proceed to establish the conditions that must be satisfied by a pair of
optimal control and the corresponding state variables by applying Pontryagin’s
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maximum principle [22]. First, we define the Hamiltonian function for the system
as

H = ASu +BIu − CT +
1

2
W1u

2
1 +

1

2
W2u

2
2 +

1

2
W3u

2
3

+ ψ1 [Λ− βSuIu − α1(1 + u1)SuM + ϵ1Sa − µSu]

+ ψ2 [α1(1 + u1)SuM − ϵ1Sa − µSa]

+ ψ3 [βSuIu − α2(1 + u1)IuM + ϵ2Ia − (µ+ δ1)Iu]

+ ψ4 [α2(1 + u1)IuM − ϕ(1 + u2)Ia − ϵ2Ia − (µ+ δ1)Ia]

+ ψ5 [ϕ(1 + u2)Ia − (µ+ δ2)T ]

+ ψ6 [η(1 + u3)Iu − η0M ]

(7)

where ψi, i = 1, 2, . . . , 6 denote the adjoint variables. To determine the optimality
system, the partial derivatives of the Hamiltonian (7) are taken with respect to the
corresponding state variables.

Theorem 4.2. Let the optimal control (u∗1, u
∗
2, u

∗
3) and corresponding state solu-

tions Su, Sa, Iu, Ia, T,M of the system (4), there exist adjoint variables, ψi, for
i = 1, 2, . . . , 6 that satisfy

dψ1

dt
= −A+ (βIu + α1(1 + u1)M + µ)ψ1 − α1(1 + u1)Mψ2 − βIuψ3;

dψ2

dt
= −ϵ1ψ1 + (ϵ1 + µ)ψ2;

dψ3

dt
= −B + βSuψ1 − [βSu − α2(1 + u1)M − (µ+ δ1)]ψ3−

α2(1 + u1)Mψ4 − η (1 + u3)ψ6;

dψ4

dt
= −ϵ2ψ3 + [ϕ (1 + u2) + ϵ2 + (µ+ δ1)]ψ4 − ϕ (1 + u2)ψ5;

dψ5

dt
= C + (µ+ δ2)ψ5;

dψ6

dt
= α1(1 + u1)Su (ψ1 − ψ2) + α2(1 + u1)Iu (ψ3 − ψ4) + η0ψ6;

(8)

with terminal conditions

ψi(tf ) = 0 for i = 1, 2, . . . , 6.

In addition, the optimal controls u∗1, u
∗
2, u

∗
3 are defined by

u∗1 = max

{
0,min

{
1

W1
[α1SuM(ψ1 − ψ2) + α2IuM(ψ3 − ψ4)] , 1

}}
;

u∗2 = max

{
0,min

{
ϕ

W2
Ia(ψ4 − ψ5), 1

}}
;

u∗3 = max

{
0,min

{
− η

W3
Iuψ6, 1

}}
.

(9)
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Proof. We get the adjoint system (8) as a result of Pontryagin’s Principle

dψ1

dt
= − ∂H

∂Su
,

dψ2

dt
= − ∂H

∂Sa
, . . . ,

dψ6

dt
= − ∂H

∂M
.

subject to zero conditions at the final time (transversality).

To determine the optimal control as characterized in (9), we solve the equa-
tions within the interior of the control set

∂H
∂u1

= 0,
∂H
∂u2

= 0,
∂H
∂u3

= 0.

By applying the control bounds, the desired characterization is obtained. □

5. NUMERICAL SIMULATION

The state and adjoint equations obtained are nonlinear and difficult to solve
analytically. Therefore, these equations will be solved numerically using the For-
ward Backward Sweep Method. Subsequently, all combinations of the three con-
trols are numerically tested to observe their effects on minimizing the number of
unaware individuals, maximizing the number of individuals receiving treatment,
and minimizing the cost function. In total, there are seven (7) control scenarios

(1) Strategy 1: Success of the media awareness program for susceptible in-
dividuals to limit contact with infected individuals or vice versa, and for
infected individuals who are aware to seek and receive treatment (u1), where
u2 = u3 = 0.

(2) Strategy 2: Antiretroviral treatment efforts (u2), where u1 = u3 = 0.
(3) Strategy 3: Efforts to strengthen the media awareness program (u3) where

u1 = u2 = 0.
(4) Strategy 4: Success of the media awareness program for susceptible in-

dividuals to limit contact with infected individuals or vice versa, and for
infected individuals who are aware to seek and receive treatment (u1) and
antiretroviral treatment efforts (u2), where u3 = 0.

(5) Strategy 5: Success of the media awareness program for susceptible in-
dividuals to limit contact with infected individuals or vice versa, and for
infected individuals who are aware to seek and receive treatment (u1) and
efforts to strengthen the media awareness program (u3), where u2 = 0.

(6) Strategy 6: Antiretroviral treatment efforts (u2) and efforts to strengthen
the media awareness program (u3), where u1 = 0.

(7) Strategy 7: Using all controls, i.e., the success of the media awareness
program for susceptible individuals to limit contact with infected individ-
uals or vice versa, and for infected individuals who are aware to seek and
receive treatment (u1), antiretroviral treatment efforts (u2), and efforts to
strengthen the media awareness program (u3).
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Figure 2. Simulation results for all states under seven control strategies

The simulation of the optimal control model is carried out using parameter
values consistent with previous studies and assumptions. Specifically, the recruit-
ment rate is assumed to be Λ = 1000 year−1, and the infection rate between
unaware susceptible and unaware infected individuals is set as β = 0.0025 year−1

[23]. The media influence rates are taken as α1 = 0.0002 year−1 [24] for susceptible
individuals and α2 = 0.001 year−1 (assumed) for infected individuals.
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The proportion of aware infected individuals who seek and receive antiretro-
viral treatment is assumed to be ϕ = 0.2, while the reversion rates due to mem-
ory limitations are ϵ1 = 0.02 year−1 [24] for aware susceptible individuals and
ϵ2 = 0.0015 year−1 (assumed) for aware infected individuals. The natural death
rate is taken as µ = 1/71.3 year−1 [25], while HIV/AIDS-induced death rates are
δ1 = 0.09 year−1 for infected individuals [26] and δ2 = 0.06 year−1 (assumed) for
those receiving treatment. Media-related parameters include the media production
rate η = 0.005 year−1 and the media decay rate η0 = 0.06 year−1 [24].

Numerical simulations for all strategies were conducted using MATLAB with
chosen weight values for the objective function (5) as A = 500, B = 100, C =
1,W1 = 500,W3 = 200, with a control period of tf = 40 years. The results of
the numerical simulation of all strategies were then compared with the system’s
condition before control, i.e., when u1 = u2 = u3 = 0.

Strategy 7 showed a significant decrease in the number of unaware infected
individuals (Figure 2.c) and an increase in individuals undergoing treatment (Figure
2.e), as well as a significant increase in the number of aware susceptible individuals
(Figure 2.b) compared to all other strategies. When three controls were applied,
the number of infected individuals decreased significantly (Figures 2.c and 2.d),
resulting in an increase in susceptible individuals (Figures 2.a and 2.b).

In addition, Figure 2.f illustrates the dynamics of media awareness. Strategy 3
and Strategy 6, which directly involve strengthening media campaigns (u3), resulted
in the most significant increase in media awareness over time. However, despite this
increase, the number of unaware infected individuals (Iu) remains relatively high
(Figures 2.c). In contrast, Strategy 7 shows both a high level of media awareness
and the lowest level of Iu, highlighting that combining all control efforts is more
effective than relying on media campaigns alone.

Table 1. The ICER from all control strategies

Strategy
Population size at tf Averted Cost ICER
Iu Ia T

No control 2957 2436 6559
Strategy 3 2187 2660 7274 169 13,719,042 81335
Strategy 1 2189 2658 7276 171 13,673,322 -22422
Strategy 5 1594 2812 7767 221 12,104,100 -31488
Strategy 2 2954 1548 7838 388 16,200,741 24455
Strategy 6 2185 1682 8686 600 13,675,130 -11894
Strategy 4 2187 1680 8687 602 13,629,326 -23840
Strategy 7 1592 1772 9270 682 12,058,493 -19633

To evaluate the most cost-effective combination of the seven strategies con-
sidered in this paper, we carry out an analysis of cost-effectiveness using Incremen-
tal Cost-Effectiveness Ratio (ICER). The ICER enables us to evaluate the cost-
effectiveness of combining two or more control strategies. Incremental comparisons
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are made by assessing each intervention against the following least effective alter-
native [27]. The results of the ICER analysis for the seven control strategies are
presented in Table 1.

Based on Table 1, it is evident that Strategy 2, Strategy 3, and Strategy 6 are
less effective, as indicated by their high ICER values. For example, when comparing
Strategy 1 and Strategy 3, the lower ICER for Strategy 1 suggests that Strategy 3
is both more costly and less effective compared to Strategy 1. Therefore, Strategy 3
is excluded to avoid wasting limited resources. The same applies to Strategy 2 and
Strategy 6. Subsequently, the ICER is recalculated for the rest of the strategies, as
presented in Table 2.

Table 2. The ICER for Strategy 1, Strategy 4, Strategy 5, and
Strategy 7

Strategy
Population size at tf Averted Cost ICER
Iu Ia T

No control 2957 2436 6559
Strategy 1 2189 2658 7276 171 13,673,322 80095
Strategy 5 1594 2812 7767 221 12,104,100 -31488
Strategy 4 2187 1680 8687 602 13,629,326 3995
Strategy 7 1592 1772 9270 682 12,058,493 -19633

The analysis between Strategy 1 and Strategy 5 shows that Strategy 1 offers
a cost saving of 80,095 compared to Strategy 5. However, the lower ICER for
Strategy 5 suggests that Strategy 1 is more costly and less effective than Strategy
5. Thus, Strategy 1 is omitted to avoid depleting limited resources. The ICER
calculations are repeated and presented in Table 3.

Table 3. The ICER for Strategy 4, Strategy 5, and Strategy 7

Strategy
Population size at tf Averted Cost ICER
Iu Ia T

No control 2957 2436 6559
Strategy 5 1594 2812 7767 221 12,104,100 54882
Strategy 4 2187 1680 8687 602 13,629,326 3995
Strategy 7 1592 1772 9270 682 12,058,493 -19633

Strategy 5 offers a cost saving of 54,882 compared to Strategy 4. However,
Strategy 5 is dominated due to its higher cost and lower effectiveness, as indicated
by the ICER. Thus, Strategy 5 is excluded from the alternatives, and the ICER is
recalculated, as shown in the Table 4.

Based on Table 4, Strategy 7 has the smallest ICER value, making it more
effective than Strategy 4 and, consequently, the most effective strategy. This is
consistent with Figure 3.a, which illustrates the effects of the seven strategies in
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Table 4. The ICER for Strategy 4 and Strategy 7

Strategy
Population size at tf Averted Cost ICER
Iu Ia T

No control 2957 2436 6559
Strategy 4 2187 1680 8687 602 13,629,326 22628
Strategy 7 1592 1772 9270 682 12,058,493 -19633

Figure 3. Simulation of the cost function and optimal control

minimizing the cost function J . The optimal control that minimizes J is presented
in Figures 3.b, 3.c, and 3.d.



17

6. CONCLUSIONS AND FUTURE WORK

A mathematical model for the transmission of HIV/AIDS is formulated, in-
volving a media awareness program M(t), where the total human population N(t)
is classified into five subpopulations: unaware susceptible individuals Su(t), aware
susceptible individuals Sa(t), unaware infected individuals Iu(t), aware infected in-
dividuals Ia(t), and individuals receiving treatment T (t). It is shown through the
analysis that the disease-free equilibrium is locally asymptotically stable if R0 < 1
and that all solutions are bounded and positive for t > 0. Additionally, numeri-
cal simulations along with the cost-effectiveness analysis indicate that the strategy
involving all three controls (u1, u2, and u3) is the most effective.

Future research may extend the current model by incorporating robust opti-
mal control strategies to address parameter uncertainties. Such methods can im-
prove the reliability of control outcomes in the presence of incomplete or variable
epidemiological data, thereby enhancing the practical relevance of the model.
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