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Abstract. Disasters like tsunamis are typically triggered by tectonic earthquakes,

volcanic eruptions, or landslides. Tsunami waves can hit the coast with enormous

energy, causing great damage. This study focuses on landslide-generated wave phe-

nomena; the analytical formula of the linear dispersive model is adopted and used

to simulate the development of free surface waves due to bottom landslides. Various

types of landslide motion were simulated over a flat bottom depth and the resulting

surface wave forms were examined and compared with the far-field leading wave

type of solution. In addition, the effect of wave dispersion on the resulting wave

pattern was investigated.
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1. INTRODUCTION

Tsunami is a natural disaster that can cause significant damage to coastal
regions. They are most commonly triggered by tectonic earthquakes or volcanic
eruptions, but can also be generated by landslides, as happened in Lituya Bay in
1964, Papua New Guinea in 1998, and Palu Bay in 2018. In recent years, there has
been a growing interest in understanding the characteristics of tsunami waves gen-
erated by landslides, and the potential hazards they pose to coastal communities.

Several studies have been conducted related to landslide-generated tsunamis.
One of the pioneering studies on this topic was carried out by Tinti et al. [1],
which investigates the characteristics of surface waves caused by landslides moving
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along a flat bottom using a hydrostatic model. Furthermore, Whittaker et al. [2]
examine in more detail the relationship between the speed of erosion and the am-
plitude of the resulting waves, as well as the behavior of the wave field. Studies
related to numerical schemes of hydrostatic models to simulate the formation of
waves generated by landslides can be found in Tjandra & Pudjaprasetya [3], see
also Magdalena et al. [4]. A significant breakthrough was conducted by Lo & Liu
in [5], who studied the analytical solutions of the fully dispersive model, as well as
the weakly dispersive model, for landslides moving at constant speed at constant
water depth. Furthermore, Jing et al. in [6] and [7] adopt fully and weakly dis-
persive models to examine waves resulting from landslides moving with constant
acceleration. For studies of waves due to landslide over a sloping beach, readers are
referred to [8] and [9].

In this paper, we present a study on the phenomenon of landslide-generated
waves, with a focus on the development of free surface waves due to landslides over
flat bottoms. The analytical formula of the linear dispersive model is considered
and used to simulate the development of free surface elevation due to landslide.
Simulations are conducted for various types of landslides. We also examine and
investigate the effect of wave dispersion on the resulting surface wave forms. The
discussion here is limited to the use of analytical solutions of the dispersive linear
model, while for numerical modeling, the reader is referred to our other articles,
for instance [10], and also [11]. For experimental studies, the reader is referred to
[12], [13].

The paper is organized as follows. Section 2 discusses the governing equations
in the form of a dispersive wave model, along with analytical solutions in terms of
the inverse Fourier and Laplace transforms; with this analytical formulation, in
Section 3, we discuss the steps used to simulate the development of free surface
wave due to landslides. Section 4 presents the far-field leading wave solutions
compared with free surface elevation produced by landslides of various shapes.

2. DISPERSIVE WAVE MODEL

In this section, we present a brief summary of the complete linear dispersive
wave equations and outline the analytical solution that can be obtained through
the use of Fourier and Laplace transforms as proposed by Jing, et al. [6].

Consider an ideal fluid layer bounded above by a free surface η(x, t) and
below by a bottom topography z = B(x, t) − h0. Here, B(x, t) represents the
moving landslide on a constant water depth h0. Let Φ(x, z, t) denote the velocity
potential that satisfies the following governing equations consisting of the Laplace
equation with three boundary conditions.
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Figure 1. Sketch of fluid domain and notations

Φxx +Φzz = 0, x ∈ R, −h0 < z < 0, (1)

ηt = Φz, z = 0, (2)

Φt + gη = 0, z = 0, (3)

Φz = Bt(x, t) = F (x, t), z = −h0. (4)

In the description above, B(x, t) represents the moving landslide that depends
on time t, and in this study, we assume a solid landslide with constant speed.

The Fourier transform of a function f(x) is indicated using a tilde as follows

f̃(k) =

∞∫
−∞

f(x)e−ikxdx, f(x) =
1

2π

∞∫
−∞

f̃(k)eikxdk,

whereas the Laplace transform of a function g(t) is indicated using a bar

ḡ(s) =

∞∫
0

g(t)e−stdt, g(t) =
1

2πi

∫
Γ

ḡ(s)estds.

By using the Fourier transform with respect to the spatial variable x and the
Laplace transform with respect to the time variable t, Equation (1) is transformed
into an ordinary differential equation that can be solved. Using three boundary
conditions, the particular solution can then be determined as follows.

¯̃Φ(k, s) =
¯̃F (k, s)

k

s2 sinh (kz)− gk cosh (kz)

s2 cosh (kh0) + gk sinh (kh0)
(5)
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where ¯̃F (k, s) =
∞∫

−∞
e−ikx

(∞∫
0

e−stBt(x, t)dt

)
dx, see [6] for details. The transform-

ing surface can be obtained from the dynamic boundary conditions

¯̃η(k, s) =
1

cosh (kh0)

s ¯̃F (k, s)

s2 + ω2

where

ω2 = gk tanh(kh0) (6)

is the dispersion relation. We obtain the following by taking the inverse of the
Fourier and Laplace transforms.

η(x, t) =
1

2π

∞∫
−∞

eikx

cosh kh0

t∫
0

F̃ (k, τ) cos[ω(t− τ)]dτdk. (7)

Restrict to a solid landslide B(x, t) = B(x− x0(t)), with x0(t) as the center

of the landslide. Then F̃ (k, τ) becomes

F̃ (k, t) =

∞∫
−∞

e−ikx ∂B

∂t
dk = (−ik)

dx0

dt
B̃(k)e−ikx0 . (8)

Due to landslide movement on the bottom, the initially still water level will
deform, causing surface waves to develop. The linear dispersive model predicts the
free surface dynamics according to (7). It is worth noting that if the function B
representing the landslide form is known, then it suffices to compute the Fourier
transform of said function, resulting in F̃ . Utilizing F̃ allows for the calculation of
the elevation of the free surface. In the next section, we will discuss the steps to
simulate the dynamics of wave surfaces using Matlab.

3. LANDSLIDE GENERATED WAVES IN CONSTANT DEPTH

In this section, the analytical formula (7) is used to simulate the development
of free surface waves due to landslide motion. Although the analytical formula
is explicit, it consists of a double improper integral and a Fourier-transformed
function. We employ a computer programming language (Matlab) to calculate
them, since it is not trivial here we describe the steps.

(1) Set time t = tn at which the free surface will be plotted.

(2) Find the Fourier transform formula of the landslide B̃j(k) for the corre-
sponding landslide Bj . The index ’j’ indicates the type of landslide that
will be used later on.

(3) For a landslide that moves with constant speed V , the position of the
landslide center at any time is x0(t) = V t, and the Fourier transform

F̃j(k, t) can be calculated using (8).
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(4) The surface η(x, tn) is calculated using a double integral according to the
formula (7), with the dispersion ω(k) follows from (6).

Several notes indicate that the formula obtained (7) has an integral form
on an infinite number of wave numbers, k. However, when performing numerical
integration with Matlab, we need to provide finite bounds for the integral. We have
tried several intervals, that is −20 < k < 20, −30 < k < 30, −40 < k < 40, and
−100 < k < 100 but we found that they give nearly the same results, therefore we
use −20 < k < 20 for most calculations. Our software calculates the integral using
the adaptive quadrature method, and an absolute error of 1e−5. Furthermore, the
integral with respect to k should avoid all singularities of the integration, in this
singularity case of B̃j(k).

First, we simulate a landslide moving at a constant speed V = 0.5 m/sec on
a flat bottom with depth h0 = 0.25 m. For this simulation, we used a Gaussian
landslide of amplitude A m.

B1(x− V t) = Ae−8(x−V t)2 (9)

and the Fourier transform is

B̃1 = A

√
2π

4
e−(1/32)k2

e−ikV t (10)

For this simulation, we normalized the wave celerity
√
gh0 to one. Also, it

should be noted that all parameters utilized in this simulation have been normal-
ized. The numerical result is shown in Figure 2.

Due to landslide movement on the bottom, the initially zero surface is de-
formed, and the resulting free surface at several subsequent times t = 0.5 sec,
t = 1.0 sec and t = 2.0 sec, are plotted in Figure 2. This simulation serves as a
validation of the general solution (7). As can be seen in Figure 2 the surface plots
show good agreement with analytical solutions of the same case as proposed by [5].

Following the theoretical prediction described in [5], the surface consists of
three wave components: η+(x, t) with a positive phase moving to the right with
velocity

√
gh0, η−(x, t) with a negative phase moving to the left with velocity

−
√
gh0, and the third wave ηV (x, t) with a negative phase moving to the right with

the velocity of landslide V .

If V <
√
gh0, after a sufficient amount of time the two waves moving to the

right will be quite far apart. The leading wave, namely η∗+(x, t) is known as the
far-field leading wave. A more detailed discussion regarding the far-field leading
wave will be presented in the following section.

4. FAR-FIELD LEADING WAVE SOLUTION

Far-field leading wave is the behavior of the first wave crest in the region far
from the wave source. The far-field leading wave is essential for understanding the
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Figure 2. Surface elevation η(x, t)/A at subsequent times t =
0.5 sec, t = 1.0 sec, and t = 2.0 sec, due to a Gaussian landslide
at a flat depth h0 = 0.25 m moving at speed V = 0.5 m/sec

behavior of water waves at long distances from their source, such as in the open
ocean. In this section, we examine the phenomenon of this far-field leading wave
in more detail. For solid landslides with amplitude A moving at a constant speed
V will generate surface waves, and the solution for the far-field leading wave is
provided in [14] as follows:

η∗+(x, t) =
AV

2(
√
gh0 − V )

{
Sξ1/3Ai (σ)−M1ξ

2/3Ai′ (σ) +
M2

2
ξAi′′ (σ)

}
+ ... (11)

σ = ξ1/3
x−

√
gh0t

L
, ξ =

(
2L

µ2
√
gh0t

)
, µ =

h0

L
. (12)

The formula (11) is written in physical variables, with L represents the char-
acteristic length of the landslide, and the non-dimensional parameter µ = h0/L
that represents the dispersion effect. Further observation of solution (11), the first,
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second, and third terms depend respectively on S the area enclosed by the land-
slide, M1 the first moment, and M2 the second moment. Moreover, for a positive
landslide hump (S > 0), the first moment M1 = Sxc, with xc center of mass of the
landslide. Therefore, the first two terms of the far-field leading wave (11) depend
on the area of the landslide. In the following, we will simulate several forms of
landslides with the same enclosed area. We focus on three shapes: a Gaussian (9),
a rectangular, and a triangular, with explicit formulas as follows.

B2(x− V t) = A

(
H

(
x− V t+

√
2π

8

)
−H

(
x− V t−

√
2π

8

))
, (13)

B3(x− V t) = A

[
1 +

4√
2π

(x− V t)

][
H

(
x− V t+

√
2π

4

)
−H(x− V t)

]

+A

[
1− 4√

2π
(x− V t)

] [
H(x− V t)−H

(
x− V t−

√
2π

4

)]
.

(14)

The following is the Fourier transformation of (13) and (14)

B̃2 = i
A

k
(e−i(

√
2π/8)k − ei(

√
2π/8)k)e−ikV t (15)

B̃3 = A
2
√
2√

πk2
(2− e−i(

√
2π/4)k − ei(

√
2π/4)k)e−ikV t (16)

Figure 3. Three different landslide shapes, all of the same height
and having the same enclosed area

These three forms of landslides will be simulated and compared with the far-
field leading wave solution. As will be shown in the following sections, landslides of
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different shapes but have the same enclosed areas, i.e. B1, B2, B3, will generate an
identical leading surface wave; this phenomenon can be observed after a sufficiently
long observation time. Thus, this is in accordance with far-field theory.

4.1. Case h0 = 0.25 m.

We consider three forms of solid landslides (9), (13), and (14) that move
with constant velocity V over a flat bottom h0. This simulation uses parameters
V = 0.5 m/sec, g = 9.81 m/sec2, and h0 = 0.25 m. Here we introduce the
normalized time variable t∗ as follows t∗ = t

√
gh0/L, with t the physical time

variable. Together with the far-field leading wave solution, simulation results are
plotted at subsequent (normalized) times t∗, see Figure 4. As shown in this figure,
all three landslide-generated waves have similar profiles. For the surface plot at
time t∗ = 10.0 some deviation occurs, however, the leading wave still follows the
far-field analytical solution.

Figure 4. Surface elevation η(x, t)/A generated by landslides at
subsequent times t∗ = {2.0, 5.0, 10.0}, due to Gaussian landslide
B1, rectangular landslide B2, and triangular landslide B3, and far-
field solution (11) on a flat depth h0 = 0.25 m
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4.2. Case h0 = 0.4 m.

Similar to the previous, here calculations were conducted using the same pa-
rameters, but using water depth h0 = 0.4 m. Figure 5 shows the comparison of
η(x, t)/A solution (7) and far-field solution (11). We can see that the free sur-
face responds differently due to the different landslide shapes; however, as time
progresses, the leading waves converge. After a sufficiently long observation time,
all three landslides produce the same leading wave as predicted by the far-field
analytical solution and thus confirm the far-field theory.

Figure 5. Surface elevation η(x, t)/A generated by landslides at
subsequent times t∗ = {2.0, 5.0, 10.0}, due to Gaussian landslide
B1, rectangular landslide B2, and triangular landslide B3, and far-
field solution (11) on a flat depth h0 = 0.4 m

4.3. The effect of the dispersion parameter µ.

All landslides discussed here have a typical length L = 1 m, and hence the
dispersion parameter depends solely on water depth h0. In the following, we make
further observations of the effect of the dispersion parameter µ on the amplitude
of the resulting leading wave. For this reason, we performed a simulation with a
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Gaussian landslide moving at constant speed V = 0.5 m/sec using several values
µ = {0.2, 0.25, 0.3, 0.35}. Wave elevation snapshots for several consecutive times
are presented in Figure 6. As shown in the figure, a larger µ produces a wave with
a lower amplitude. In other words, the amplitude of the waves generated by the
landslide is more affected by the movement of the landslide when µ is small or when
the depth of the water h0 is relatively shallow.

Figure 6. Snapshots of wave elevation η(x, t)/A at subsequent
times, generated by a Gaussian landslide moving at a constant
speed V = 0.5 m/sec, calculated using four different depths of
water µ = h0/L = {0.2, 0.25, 0.3, 0.35}.

5. CONCLUSIONS

In this research, waves generated by landslides are studied. The analytical
solution of the full linear dispersive model expressed in terms of the inverse Fourier
and Laplace transforms is adopted. We have simulated the emergence of a free
surface wave due to a landslide propagating over a constant depth; various shapes
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of landslides that moved with constant velocity were tested. Further, we showed
that various shapes of landslides with the same enclosed area generated free surface
waves with the same leading wave; and this is to confirm the predictions from
the far-field theory. Moreover, landslide movement has a stronger impact on the
amplitude of landslide-generated waves when the depth is relatively shallow.
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