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Abstract. Locating chromatic number of a graph is a concept that is still interest-

ing today because there is no theorem or algorithm that can determine the locating

chromatic number of any graph. In this research, an algorithm was created to de-

termine the locating chromatic number for corona operation of path and cycle with

Python programming.
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1. INTRODUCTION

Given G = (V,E) is a connected graph, where V (G) is the nonempty set of
elements called vertices and E(G) is the set of unordered pairs (u, v), which are
called edges with u, v ∈ V (G). Chartand, et al.[1] in 2002 introduced the locating
chromatic number of a graph G, defined as follows.

Let Si be a set of vertices that receive a color i and
∏

= {S1, S2, S3, . . . , Sk}
is a set of color classes from V (G). The color code for the vertex v denoted by cΠ(v)
is the k ordered pairs (d (v, S1) , d (v, S2) , d (v, S3) , . . . , d(v, Sk) with d (v, Si) =
min {d(v, x)|x ∈ Si} for 1 ≤ i ≤ k where d(v, x) is the minimum distance from
vertex v to vertex x. If each vertice of G has a different color code, then c is called
the locating coloring of G. The minimum number of colors used in coloring of G is
called the locating chromatic number (lcn) of G, denoted by χL(G).

Chartrand et al. [1] obtained 3 ≤ χL(G) ≤ n for arbitrary connected graph
G. Next, they determined the lcn of path, χL (Pn) = 3 for n ≥ 3; χL(Cn) = 3 for
odd n and 4 for otherwise, where Cn is a cycle graph with n vertices. Chartrand et
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al. [2] characterized graphs having lcn (n − 1) and have the upper bound (n − 2)
for graph G with n vertices.

Asmiati determined the lcn for non homogeneous caterpillar graphs [3], bar-
bell shadow path graphs [4], and certain operations of origami graphs [5]. However,
Amanah et al. [6] determined lcn for amalgamation of some complete graphs. In
2021, Irawan et al. [7] determined the lcn of origami graphs and [8] using Python
programming.

Research on the locating chromatic number of graph operations is still inte-
resting today. Damayanti et al. [9] analyzed modified paths with cycles having lcn
4 and Prawinasti et al. [10] for split graphs of cycles. Zikra et al. [11] investigated
disjoint unions of fan graphs, examining how to generate the lcn of this graph.
Salindeho et al. [12] studied the lcn of subdivisions of friendship graphs, Welyyanti
et al. [13] for disconnected graphs with components consisting of paths and cycles,
and Rahmatalia et al. [14] for split path graphs.

One of the operation of graphs is the corona operation introduced by Fucht
and Harary in 1970[15]. The corona operation of Pn and Cm, denoted by Pn⊙Cm

is defined as the graph obtained by taking one copy of Pn and |V (Pn)| copies of
Cm and then joining all vertices of the kth copy of Cm with the kth-vertex of Pn.

In the previous research, we determined lcn for the corona operation of the
path and cycle manually and got the following result [16].

Theorem 1.1. The lcn of Pn ⊙ C3 is 5 for 3 ≤ n < 7 and 6 for n ≥ 7.

Theorem 1.2. The lcn of Pn ⊙ C4 is 5 for 3 ≤ n < 6 and 6 for n ≥ 6.

In this research, we discuss and justify these problems with Python program-
ming.

2. METHODS

The steps taken to determine lcn of (Pn ⊙ Cm) for m,n ≥ 3 are as follows.

(1) Generate a graph from the corona operation of the path and cycle.
From[16] we have
V (Pn ⊙ Cm) = {vk; k ∈ [1, n]} ∪ {ul

k; k ∈ [1, n], l ∈ [1, m]} and
E(Pn ⊙ Cm) = {vk vk+1; k ∈ [1, n − 1]} ∪ {ul

k ul+1
k ; k ∈ [1, n], l ∈

[1, m− 1]} ∪ {u1
k ul

k; k ∈ [1, n], l = m} ∪ {vk ul
k; k ∈ [1, n], l ∈ [1, m]}.

(2) Determine proposed algorithm:
begin program
Input n of Pn from user
Input m of Cm from user
Input initial value locating chromatic number from user
Graph ← Generate graph Pn corona Cm
Do lopping from 1 to length-of(color−combination):

Do looping from 1 to length-of(color−permutation):
Color−permutation ← permutation(initial−value)



3

nodelist(Graph)
for i in color-permutation:

if invalid-neighboor(i) ← True
repeat
color-code ← shortes-path from nodelist to a in
color−permutation

if invalid-lcn(color-node) ← True
repeat

return (color-code, color-permutation)
return (color-code, color-permutation, color-combination)
lcn ← length-of(color-permutation) + 1
print("locating chromatic number is", lcn)
print("list of node color", color-permutation)
print("color code is", color-code)
end program

(3) Run the program to get lcn of corona operation of path and cycle.

3. MAIN RESULTS

This research uses a computer system with the following specifications:

Table 1. System Specification

Item Specification
Operating System Microsoft Windows 10 Pro

Processor Intel(R) Core(TM) i5-2430M CPU @ 2.40GHz,
2401 Mhz, 2 Core(s)

Memory(RAM) 4.00 GB
OS Architecture 64 bit
Python Version 3.11.7

Libraries jupyter 2
networkx 2.4

The results of running this program are collected in the form of execution
time, number of vertices, and lcn for each type of corona operation of path and
cycle. In this work, the results are described and compared for the corona operation
of path and cycle with n = 2, 3, 4 and m = 3, 4. This restriction is applied because
of the limitation of the system that enables us to run the code. Execution for more
complex graph types will require more resources than the system specification. A
summary of the execution time and the number of location chromatic numbers for
each type of graph is given in Table 2. Each value of n of the corona operation
of path and cycle added by one will increase the execution time at an exponential
rate over time.
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Table 2. Measurement Results

Case Type of Graph Number of Vertices Execution Time lcn
1 P2 ⊙ C3 8 10 s 5
2 P3 ⊙ C3 12 1 m 58 s 5
3 P4 ⊙ C3 16 1 h 14 m 23 s 5
4 P2 ⊙ C4 10 1 m 44 s 5
5 P3 ⊙ C4 16 1 h 5 m 13 s 5

Table 2 shows the results of the measurement of execution time to find the
lcn of various types of graph resulting from corona operations. The table explains
the number of vertices, execution time, and lcn value for each case. In the first
case with the graph P2⊙C3, which has 8 vertices, the execution time is 10 seconds,
with an lcn value of 5. In the second case with the graph P3 ⊙ C3, the number of
vertices increases to 12, so the execution time increases to 1 minute 58 seconds, but
the value of lcn remains 5. The third case, the graph P4⊙C3, has 16 vertices, and
its execution time increases drastically to 1 hour 14 minutes 23 seconds. Although
the execution time increases significantly, the lcn value remains 5.

In the fourth case, the graph P2 ⊙C4 has 10 vertices with an execution time
of 1 minute 44 seconds and an lcn value of 5. Finally, for P3 ⊙ C4, the number
of vertices is 16 with an execution time of 1 hour 5 minutes 13 seconds, and the
value of lcn also remains 5. A significant increase in execution time is seen in cases
with a larger number of vertices. This shows that the addition of vertices in the
corona operation graph directly affects the computational complexity, although the
lcn value remains constant for all cases. The graphs accompanying this table can
help clarify the differences in execution time between these cases.

The graphic image below can make it easier for us to see the clear difference
when additional vertices occur in the corona operation result graph.

Figure 1. Measurement result curve of Pn ⊙ C3 VS Pn ⊙ C4
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The curve on Figure 1 shows the relationship between the type of graph and
the execution time in finding lcn. The horizontal axis represents the type of graph
resulting from the corona operation, while the vertical axis shows the execution
time in seconds.

This graph is divided into two groups on the basis of the type of graph. The
red curve (cases 1, 2, and 3) represents the graph Pn ⊙ C3. The blue curve (cases
4 and 5) represents the graph Pn ⊙ C4.

In the red curve, there was a significant increase in execution time as the
number of vertices increases in the graphs. For P2⊙C3, the execution time is only
10 seconds, but increases dramatically to more than 4000 seconds (about 1 hour 14
minutes) at P4⊙C3. In the blue curve, a similar pattern is also seen. The execution
time for P2⊙C4 is about 104 seconds (1 minute 44 seconds), and increases to more
than 3900 seconds (about 1 hour 5 minutes) for P3 ⊙ C4.

This Figure 1 illustrates that the greater number of vertex in the graph of the
corona operation causes a significant surge in execution time. This time increase
is more clearly seen in the graph Pn ⊙ C3 compared to Pn ⊙ C4, although growth
trends in general remain consistent for both groups.

The following are some results for determining the lcn of Pn ⊙ Cm for n =
2, 3, 4 and m = 3, 4 using Python programming.

Case 1 P2 ⊙ C3

The partition Π of V (P2 ⊙ C3):
S1 = {v2}
S2 = {v1}
S3 = {u1

3, u
2
3}

S4 = {u1
1, u

2
2}

S5 = {u1
2, u

2
1}.

Then, the color codes are:
cΠ(u

1
1) = (2, 1, 1, 0, 1); cΠ(u

1
2) = (2, 1, 1, 1, 0); cΠ(u

1
3) = (2, 1, 0, 1, 1);

cΠ(u
2
1) = (1, 2, 1, 1, 0); cΠ(u

2
2) = (1, 2, 1, 0, 1); cΠ(u

2
3) = (1, 2, 0, 1, 1);

cΠ(v1) = (1, 0, 1, 1, 1); cΠ(v2) = (0, 1, 1, 1, 1).

Figure 2. A minimum locating coloring of P2 ⊙ C3
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Case 2 P3 ⊙ C3

The partition Π of V (P3 ⊙ C3):
S1 = {v1, v3}
S2 = {u3

3, v2}
S3 = {u1

3, u
2
3}

S4 = {u1
1, u

2
2, u

3
2}

S5 = {u1
2, u

2
1, u

3
1}.

Then, the color codes are:
cΠ(u

1
1) = (1, 2, 1, 0, 1); cΠ(u

1
2) = (1, 2, 1, 1, 0); cΠ(u

1
3) = (1, 2, 0, 1, 1);

cΠ(u
2
1) = (2, 1, 1, 1, 0); cΠ(u

2
2) = (2, 1, 1, 0, 1); cΠ(u

2
3) = (2, 1, 0, 1, 1);

cΠ(u
3
1) = (1, 1, 3, 1, 0); cΠ(u

3
2) = (1, 1, 3, 0, 1); cΠ(u

3
3) = (1, 0, 3, 1, 1; );

cΠ(v1) = (0, 1, 1, 1, 1); cΠ(v2) = (1, 0, 1, 1, 1); cΠ(v3) = (0, 1, 2, 1, 1).

Figure 3. A minimum locating coloring of P3 ⊙ C3

Case 3 P4 ⊙ C3

The partition Π of V (P4 ⊙ C3):
S1 = {u2

3, v4}
S2 = {u1

3, u
3
3, v2}

S4 = {u1
1, u

2
2, u

3
2, u

4
2}

S5 = {u1
2, u

2
1, u

3
1, u

4
1}.

Then, the color codes are:
cΠ(u

1
1) = (3, 1, 1, 0, 1); cΠ(u

1
2) = (3, 1, 1, 1, 0); cΠ(u

1
3) = (3, 1, 0, 1, 1);

cΠ(u
2
1) = (1, 2, 1, 1, 0); cΠ(u

2
2) = (1, 2, 1, 0, 1); cΠ(u

2
3) = (0, 2, 1, 1, 1);

cΠ(u
3
1) = (2, 1, 1, 1, 0); cΠ(u

3
2) = (2, 1, 1, 0, 1); cΠ(u

3
3) = (2, 1, 0, 1, 1);

cΠ(u
4
1) = (1, 1, 3, 1, 0); cΠ(u

4
2) = (1, 1, 3, 0, 1); cΠ(u

4
3) = (1, 0, 3, 1, 1);

cΠ(v1) = (2, 0, 1, 1, 1); cΠ(v2) = (1, 1, 0, 1, 1); cΠ(v3) = (1, 0, 1, 1, 1);
cΠ(v4) = (0, 1, 2, 1, 1).
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Figure 4. A minimum locating coloring of P4 ⊙ C3

Case 4 P2 ⊙ C4

The partition Π of V (P2 ⊙ C4):
S1 = {u1

4, u
2
4, v3}

S2 = {u1
3, u

3
4, v2}

S3 = {u2
3, u

3
3, v1}

S4 = {u1
2, u

2
1, u

3
2}

S5 = {u1
1, u

2
2, u

3
1}.

Then, the color codes are:
cΠ(u

1
1) = (1, 2, 1, 1, 0); cΠ(u

1
2) = (2, 1, 1, 0, 1); cΠ(u

1
3) = (1, 0, 1, 1, 2); cΠ(u

1
4) = (0, 1, 1, 2, 1);

cΠ(u
2
1) = (1, 1, 2, 0, 1); cΠ(u

2
2) = (2, 1, 1, 1, 0); cΠ(u

2
3) = (1, 1, 0, 2, 1); cΠ(u

2
4) = (0, 1, 1, 1, 2);

cΠ(u
3
1) = (1, 1, 2, 1, 0); cΠ(u

3
2) = (1, 2, 1, 0, 1); cΠ(u

3
3) = (1, 1, 0, 1, 2); cΠ(u

3
4) = (1, 0, 1, 2, 1);

cΠ(v1) = (1, 1, 0, 1, 1); cΠ(v2) = (1, 0, 1, 1, 1); cΠ(v3) = (0, 1, 1, 1, 1).

Figure 5. A minimum locating coloring of P2 ⊙ C4
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Case 5 P3 ⊙ C4

The partition Π of V (P3 ⊙ C4):
S1 = {u1

4, u
2
4, v3}

S2 = {u1
3, u

3
4, v2}

S3 = {u2
3, u

3
3, v1}

S4 = {u1
2, u

2
1, u

3
2}

S5 = {u1
1, u

2
2, u

3
1}.

Then, the color codes are:
cΠ(u

1
1) = (1, 2, 1, 1, 0); cΠ(u

1
2) = (2, 1, 1, 0, 1); cΠ(u

1
3) = (1, 0, 1, 1, 2); cΠ(u

1
4) = (0, 1, 1, 2, 1);

cΠ(u
2
1) = (1, 1, 2, 0, 1); cΠ(u

2
2) = (2, 1, 1, 1, 0); cΠ(u

2
3) = (1, 1, 0, 2, 1); cΠ(u

2
4) = (0, 1, 1, 1, 2);

cΠ(u
3
1) = (1, 1, 2, 1, 0); cΠ(u

3
2) = (1, 2, 1, 0, 1); cΠ(u

3
3) = (1, 1, 0, 1, 2); cΠ(u

3
4) = (1, 0, 1, 2, 1);

cΠ(v1) = (1, 1, 0, 1, 1); cΠ(v2) = (1, 0, 1, 1, 1); cΠ(v3) = (0, 1, 1, 1, 1).

Figure 6. A minimum locating coloring of P3 ⊙ C4

4. CONCLUSION

Based on the previous discussion, it confirms the effect of graph complexity
on the computing process. The more vertices a graph has, the longer it will take
to get the lcn of the graph, because there are more vertices then there are more
combinations of colorings of the graph.
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