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Abstract. In this paper, the problem of secondary motion of fluid in region between

two concentric spheres are studied. Navier Stokes equations are employed to obtain

the flow field, and the components of velocity for primary and secondary flow, stream

function are obtained. Further, two particular cases are deduced and discussed

for the radius of cavity. Finally, Equi-pressure lines, streamlines, and vortex lines

are constructed to visually demonstrate the impact of different factors on the flow

pattern.

Key words and Phrases: Primary flow, secondary flow, spherical cavity, pervious

sphere, source, streamlines

1. Introduction

Datta [1] investigated the steady slow viscous flow past a pervious sphere
with a source at its center. The source is of such a strength that it brings forth a
linear part of the inertia terms neglected in Stokes flow for small Reynolds number
Re. Using the method of matched asymptotic expansion the problem was extended
to include O(Re) terms in the case of a cylinder and a sphere by Sthapit & Datta
([2],[3],[4]). In 2011, Datta and Singhal [5] revisited the problem, incorporating
the inner and outer expansions for the stream function as proposed by Proudman
and Pearson [6] to account for the effect of a source. Their approach simplified
the derivation of higher-order approximations, specifically the O(Re2 logRe) term.
Subsequently, Datta and Singhal [7] extended their analysis to include the influence
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of slip conditions. They also investigated a related problem involving axial flow
along a porous cylinder with a sink at its center (see Datta and Singhal [8]).

Datta and Srivastava [9] investigated the slow rotation of a sphere with a
source at its center in a viscous fluid. Bickley [10] analyzed the secondary flow
generated by a rotating sphere in a viscous medium. Haberman [11] addressed the
secondary flow problem for a rotating sphere enclosed within a coaxially rotating
spherical container. Datta [12] studied the steady rotation of a magnetized sphere
in a viscous conducting fluid, while Datta [13] explored the secondary flow around
a magnetized sphere rotating in such a medium. Ranger [14] examined the axially
symmetric flow past a rotating sphere induced by a uniform stream at infinity. He
demonstrated that the leading terms of the flow represent a linear superposition of
a primary Stokes flow past a non-rotating sphere and an antisymmetric secondary
flow in the azimuthal plane caused by the sphere’s rotation. In the paper Stokes
flow around an axially symmetric rotating pervious body Srivastava [15] has not
attempted to satisfy the boundary conditions for the general case; he has only
reproduced the case of a sphere already covered in Datta & Srivastava [1]. In recent
past years, Some authors have studied and explored this kind of work for various
medium by considering different parametrs. Some of them are [16, 17, 18, 19, 20].

In this paper we study the analysis of the secondary flow for the slow rotation
of a pervious sphere with a source at its center enclosed in a concentric spherical
cavity at rest. The analysis is done through a perturbation expansion in Reynolds
number Re. The first term corresponds to the azimuthal flow presented earlier by
Datta & Srivastava [9] and the second term provides the streamlines corresponding
to the Stokes stream function in meridian flow.

Figure 1. Figure for the rotation of pervious sphere with source
at its center enclosing in concentric spherical cavity
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2. Formulation of the Problem

Consider the slow steady rotation of a pervious sphere of radius a with con-
stant angular velocity Ω carrying a source of strength Q at its center generating

a radial flow field (Q/r′
2
)r̂ and encompassed by a concentric pervious spherical

cavity of radius b. The region (a ≤ r′ ≤ b) in between pervious sphere and cavity
is filled with an incompressible viscous fluid of density ρ and kinematic viscosity ν,
no fluid accumulates. Now it is convenient to introduce dimensionless quantities

ra = r′,Ωaq = q′, µΩp = p′. (1)

Here, ′ denotes dimensional quantities, r space coordinate, q velocity and p
pressure.
The equations that govern the motion of an incompressible viscous fluid in the
standard notation are:
Equation of continuity

∇.q = 0. (2)

Navier-Stokes equation

Re((q.∇)q) = −∇p+∇2q, (3)

or using equation (2)

Re(((∇× q)× q) + (1/2)∇(q.q)) = −∇p−∇× (∇× q), (4)

where Re = Ωa2/ν is Reynolds number.
The equations are to be solved under the following no slip boundary conditions:

q = sin θϕ̂ at r = 1, (5)

q = 0 at r = 1/λ = b/a, (6)

To solve the problem, we make use of the following perturbation scheme:

q(r, θ) =
1

Re

s

r2
r̂+ w(r, θ)ϕ̂+Re(u(r, θ)r̂+ v(r, θ)θ̂), (7)

where s = Q/aν is source parameter.

p = p0 +Rep1. (8)

Inserting above representation in equation of motion (4) and equating O(1) and
O(Re) terms, we obtain the following equations:
Primary flow:

∇2w − w

r2sin2θ
=

s

r3
∂

∂r
(rw), p0 = constant. (9)

Secondary Flow :

∇2u− 2u

r2
− 2

r2 sin θ

∂ (sin θv)

∂θ
− s

∂

∂r

u

r2
=
∂p1
∂r

− w2

r
, (10)

∇2v − v

r2sin2θ
+

2

r2
∂u

∂θ
− s

r3
∂(rv)

∂r
=

1

r

∂p1
∂θ

− w2

r
cot θ, (11)
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where

∇2 ≡ ∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cotθ

r2
∂

∂θ
. (12)

3. Primary Flow

As in Datta & Srivastva [9] and Devi [21], we consider the primary motion
which is induced in the fluid by slow rotation of pervious sphere with a source at
its center. The motion is governed by the equation (9).
The boundary conditions (5, 6) for the azimuthal velocity component w are

w(1, θ) = sin θ, (13)

and

w(1/λ, θ) = 0. (14)

The boundary condition (13) suggests that solution of equation (9) of the form

w = f(r) sin θ, (15)

where f(r) is derived below and given by equation (17). Now equation (9) provides

f ′′(r) +

(
2

r
− s

r2

)
f ′(r)−

(
2

r2
+

s

r3

)
f(r) = 0. (16)

Solving the above differential equation, using boundary conditions (13) and
(14), we get

f (r) =

(
2r2 − 2rs+ s2

)
− r2e(λ−

1
r )s
(
λ2s2 − 2λs+ 2

)
r
(
(s2 − 2s+ 2)− e(λ−1)s (λ2s2 − 2λs+ 2)

) , (17)

For the case of the pervious sphere rotating an infinite expanse of fluid (λ → 0),
and the result above reduces to

f(r) =
2r2

(
1− e−

s
r

)
− 2rs+ s2

r (s2 − 2s+ 2 (1− e−s))
, (18)

which conforms to the result obtained by Datta & Srivastava [9].

The couple on the sphere required to maintain the motion is obtained by
integration of viscous stress in dimensionless form

τrϕ(r, θ) =
τ ′rϕ(r, θ)

µΩ
=

(
∂w

∂r
− w

r

)
r=1

= (f ′(1)− f(1))sin θ

=
s(e(λ−1)s(λ2s2 − 2λs+ 2) + 2(s− 1))

e(λ−1)s(λ2s2 − 2λs+ 2)− (s2 − 2s+ 2)
sinθ. (19)

Thus, the moment of the required couple is given by([22],[23])

M ′ = −2πa3
∫ π

0

τ ′r′ϕ sin
2 θdθ, (20)
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where τ ′r′ϕ is the tangential stress on the pervious sphere is given by (19). Thus,

on evaluating the integral (20), the dimensional moment of the required couple M ′

is comes out.

M ′ = −8πµΩa3
s(e(λ−1)s(λ2s2 − 2λs+ 2) + 2(s− 1))

3(e(λ−1)s(λ2s2 − 2λs+ 2)− (s2 − 2s+ 2))
, (21)

The non dimensional moment of the required couple M is

M =
M ′

8πµΩa3
, (22)

M = − s(e(λ−1)s(λ2s2 − 2λs+ 2) + 2(s− 1))

3(e(λ−1)s(λ2s2 − 2λs+ 2)− (s2 − 2s+ 2))
. (23)

For the case of the pervious sphere rotating an infinite expanse of fluid λ → 0, so,
the non dimensional moment of the required coupleM∞ in infinite expanse of fluid
is

M∞ =
2 ((s− 1) + e−s) s

3s2 − 6 (s+ e−s − 1)
. (24)

Also, the result above reduces to the result obtained by Datta & Srivastava [9].
Here s → 0 in above equation describe the case for rotation of solid sphere in an
unbounded fluid.

Figure 2. Variation azimuthal velocity w with r at θ = π/2 for
various values of s (s → 0(Blue), s = 1(Green),s = 10(Brown),
s = 100(Black), s → ∞(Red)) when the pervious sphere rotating
in an infinite expanse of fluid (i.e. λ→ 0).

Now we present few graphs in figures 2 to 5 to show the effects of parameters
on the velocity w and moment of the couple M . Figure 2 shows variations in the
azimuthal velocity w with r at θ = π/2 for various values of source parameter s
in an infinite expanse of fluid. In this graph w increases as s increases but in each
graph rate of variation of the azimuthal velocity w with r diminishes as r increases.
Figure 3 shows variations in the azimuthal velocity w with r for various values of
source parameter s when the pervious sphere rotating in a concentric cavity whose
radius is 2 times of the pervious sphere. In this graph w increases as s increases
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but in each graph rate of variation of w with r diminishes as s increases. Figure
4 shows variations in the couple M with source parameter s for various values of
separation parameter λ. In this graphM increases as λ increases but in each graph
rate of variation of the couple with s diminishes as s increases. Figure 5 shows
variations in the coupleM with separation parameter λ for various values of source
parameter s. In this graph M increases as s decreases but in each graph rate of
variation of the couple increases as λ increases and increases sharply as λ→ 1.

Figure 3. Variation azimuthal velocity w with r at θ = π/2 for
various values of s(s → 0(Blue),s = 1(Green),s = 10(Brown),s =
100(Black),s = 107(Red)) when the pervious sphere rotating in a
concentric cavity whose radius is 2 times of the pervious sphere
(i.e. λ = 0.5).

Figure 4. Variation of torque M with s for various values of λ =
a/b ( λ =.001(Blue),λ =.4(Green),λ =.6(Brown), λ =.8(Black),
λ =.9(Red) ) when the pervious sphere rotating in a concentric
cavity.
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Figure 5. Variation of torque M with λ = a/b for various
values of source parameter s (s → 0(Blue),s = 1(Green),s =
10(Brown),s = 100(Black),s = 1000(Red))when the pervious
sphere rotating in a concentric cavity.

4. Secondary Flow

Secondary flow is determined by the equations (10, 11) with w replaced by
f(r) sin θ ; thus, we have the equations

∇2u− 2u

r2
− 2

r2 sin θ

∂

∂θ
(v sin θ)− s

∂

∂r

( u
r2

)
=
∂p1
∂r

− f2(r)

r
sin2 θ, (25)

∇2v − v

r2 sin2 θ
+

2

r2
∂u

∂θ
− s

r3
∂

∂r
(rv) =

1

r

∂p1
∂θ

− f2(r)

r
sin θ cos θ, (26)

where f(r) is given by equation (17). These equations have to be solved under
boundary conditions:
At the common interface r = 1

u = 0, v = 0, (27)

At cavity wall r = 1/λ

u = 0, v = 0. (28)

It will be convenient using Stokes stream function ψ to express velocity components

u =
1

r2 sin θ

∂ψ

∂θ
, v = − 1

r sin θ

∂ψ

∂r
. (29)

Next, eliminating p1 in between equations (25) and (26) and using (29), we get

E4ψ − s
∂

∂r

(
1

r2
E2ψ

)
= 2

(
f(r)f ′(r)− (f(r))2

r

)
sin2 θ cos θ, (30)

where

E2 =
∂2

∂r2
+

sinθ

r2
∂

∂θ

(
1

sinθ

∂

∂θ

)
, (31)
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where using the value of f(r) as given by equation (17), we have

2f(r)

(
f ′(r)− f(r)

r

)
= (2s(r3(λ2s2 − 2λs+ 2)2e2s(λ−(1/r)) (32)

+ (4r3 − 8r2s+ 6rs2 − 2s3)− r(s− 2r)2
(
λ2s2 − 2λs+ 2

)
es(λ−(1/r))))/(r3((s2 − 2s+ 2)− e(λ−1)s(λ2s2 − 2λs+ 2))2).

Now, keeping in view the form of equation (30), we may assume the solution as

ψ = G(r)sin2θcosθ. (33)

In terms of G(r) equation (30) written as((
d2

dr2
− 6

r2

)(
d2

dr2
− 6

r2

)
− s

d

dr

(
1

r2

(
d2

dr2
− 6

r4

)))
G(r)

= 2f(r)

(
f ′(r)− f(r)

r

)
,

(34)

on collecting terms of the same order in s

r4G′′′′(r)− 12r2G′′(r) + 24rG′(r)− s(r2G′′′(r)− 2rG′′(r)− 6G′(r)

+
24

r
G(r)) = 2r4f(r)

(
f ′(r)− f(r)

r

)
,

(35)

where the right hand term is evaluated above in (32).

Since finding the analytical solution of the equation (35) is very tedious, we
use the following perturbation expansion for small s

G(r) = G0(r) + sG1(r) + s2G2(r). (36)

Also, we need the expansion up to O(s2) term of the right hand side of equa-
tion (35) 2f(r)(f ′(r)− (f(r))/r) where f(r) given by equation (17); thus we have
2f(r)(f ′(r)− (f(r))/r)

6((λ3r3 − 1)/((λ3 − 1)2r5)) + s(((1− λ3)(λ3r3(4λ3r3 + 9λr − 20) + 7) (37)

+ 6(3λ4 − 4λ3 + 1)r(λ3r3 − 1))/(2(1− λ3)3r6)) + s2((3(λ− 1)2(λ(λ(3λ(29λ

+ 36) + 70) + 28) + 7)r2(λ3r3 − 1)− 10(λ− 1)(λ2 + λ+ 1)(λ(3λ+ 2) + 1)

r(λr − 1)2(λr(λr(4λr(λr + 2) + 21) + 14) + 7) + 4(λ2 + λ+ 1)2(λr − 1)3

(λr(2λr(5λr(3λr + 5) + 39) + 39) + 13))/40(λ− 1)2(λ2 + λ+ 1)4r7) +O(s3).

Substituting G(r) and f(r) from (36) and (37) in (35) and collecting zero order
terms in s, we get the equation for G0(r)

r4G0
(4)(r)− 12r2G′′

0(r) + 24rG′
0(r) = 6((λ3r3 − 1)/((λ3 − 1)2r)), (38)

with boundary conditions :

G0(1) = G′
0(1) = G0(1/λ) = G′

0(1/λ) = 0, (39)

we get the solution
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G0(r) = ((1− r)2(λr − 1)2(λ(λ(λ(λ(2λ− 1)− 16) + λ(λ(λ(2λ(λ

+ 4) + 5)− 2)− 3)r3 + 2(λ+ 1)(λ(λ(2λ(λ+ 4) + 5)− 2)− 3)

r2 + λ(2λ(λ(4λ+ 9) + 3)− 17)r − 4(4r + 5))− 4(r + 2))− 2))

/(4(λ3 − 1)2(λ(λ(λ(4λ(λ(λ+ 4) + 10) + 55) + 40) + 16) + 4)r2). (40)

A similar process for G1(r) yields differential equation:

r4G′′′′
1 (r)− 12r2G′′

1(r) + 24rG′
1(r)− (r2G′′′

0 (r)− 2rG′′
0(r)− 6G′

0(r)

+ (24/r)G0(r)) = ((1− λ3)(λ3r3(4λ3r3 + 9λr − 20) + 7)

+ 6(3λ4 − 4λ3 + 1)r(λ3r3 − 1))/(2(1− λ3)3r6). (41)

Use G0(r) from (40) in (41), we get

r4G1
(4)(r)− 12r2G′′

1(r) + 24rG′
1(r) = r4(((λ3 − 1)2(4λ6 + 16λ5 + 40λ4 + 55λ3

+ 40λ2 + 16λ+ 4)((1− λ3)(λ3r3
(
4λ3r3 + 9λr − 20

)
+ 7)+ 6(3λ4 − 4λ3 + 1)r(λ3r3

− 1))+ (1−λ3)3(10(4λ6 +16λ5 +40λ4 +55λ3 +40λ2 +16λ+4)+7λ5(2λ4 +8λ3+

5λ2 − 2λ− 3)r6 + 4λ3(4λ6 + 16λ5 + 40λ4 + 55λ3 + 40λ2 + 16λ+ 4)r3 − 12(10λ7+

25λ6 + 40λ5 + 57λ4 + 48λ3 + 20λ2 + 8λ+ 2)r))/(2(1− λ3)3(λ3 − 1)2(4λ6 + 16λ5+

40λ4 + 55λ3 + 40λ2 + 16λ+ 4)r6)). (42)

Boundary conditions

G1(1) = G′
1(1) = G1(1/λ) = G′

1(1/λ) = 0. (43)

Solution for G2(r) are form differential equation

r4G2
(4)(r)− 12r2G′′

2(r) + 24rG′
2(r)− (r2G1

(3)(r)− 2rG′′
1(r)− 6G′

1(r)

+ (24/r)G1(r)) = (3(λ− 1)2(λ(λ(3λ(29λ+ 36) + 70) + 28) + 7)r2(λ3r3

− 1) + 4(λ2 + λ+ 1)2(λr(2λr(5λr(3λr + 5) + 39) + 39) + 13)(λr − 1)3

− 10(λ− 1)(λ2 + λ+ 1)(λ(3λ+ 2) + 1)r(λr(λr(4λr(λr + 2) + 21)+

14) + 7)(λr − 1)2)/(40(λ− 1)2(λ2 + λ+ 1)4r7). (44)

Use G1(r) from (42) in (44), we get
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r4G2
(4)(r)− 12r2G′′

2(r) + 24rG′
2(r) = (21(λ− 1)3(3(λ− 1)2(λ(λ(3λ(29λ+ 36)+

70)+28)+7)r2(λ3r3−1)+4(λ2+λ+1)2(λr(2λr(5λr(3λr+5)+39)+39)+13)(λr

− 1)3 − 10(λ− 1)(λ2 + λ+ 1)(λ(3λ+ 2) + 1)r(λr(λr(4λr(λr + 2) + 21) + 14)

+ 7)(λr − 1)2) + (2(λ2 + λ+ 1)(7140(λ2 + λ+ 1)(λ(λ(λ(4λ(λ(λ+ 4) + 10)

+ 55) + 40) + 16) + 4)λ5r2 log(1/λ)(λ(λ(λ2 + λ+1)r5 +6)+ 6) + (λ− 1)(−1530(λ

− 1)2(λ2 + λ+ 1)(λ(λ(λ(4λ(λ(λ+ 4) + 10) + 55) + 40) + 16) + 4)2 + 7λ5(λ(λ(λ(λ

(λ(λ(λ(λ(λ(2λ(λ(λ(λ(35λ(2λ(4λ(λ+ 7) + 103) + 399) + 15837) + 6489) + 3609)

+ 12832) + 50015) + 143002) + 326409) + 423534) + 328887) + 161105)+

46874) + 5853)− 2247)− 1296)r7 − 210(λ− 1)2λ3(λ(λ(3λ− 5)− 5)− 2)(λ(λ(

λ(4λ(λ(λ+4)+10)+55)+40)+16)+4)2r4−2520(λ−1)2λ3(λ2+λ+1)(λ(λ(λ(4λ

(λ(λ+ 4) + 10) + 55) + 40) + 16) + 4)2r3 − 6(λ(λ(λ(λ(λ(λ(λ(λ(λ(λ(λ(λ(2λ(λ(λ(λ(

2λ(4λ(175λ− 557)− 19341)− 139923)− 259503)− 247863)− 19071) + 693727)

+ 808123)− 571160)− 2383773)− 2813680)− 1782647)− 553148) + 97413)+

224049) + 138084) + 48384) + 12096) + 1728)r2 + 1050(λ− 1)2(λ+ 1)(λ(λ(λ(4λ(

λ(λ+4)+ 10)+ 55)+ 40)+ 16)+ 4)(λ(λ(λ(λ(λ(2λ(λ(4λ+9)+ 16)+ 107)+ 174)+

163) + 88) + 32) + 8)r)))/((λ(λ(λ(4λ(λ(λ+ 4) + 10) + 55) + 40) + 16) + 4

)2))/(840(λ− 1)5(λ2 + λ+ 1)4r7) (45)

Boundary conditions

G2(1) = 0, G′
2(1) = 0, G2(1/λ) = 0, G′

2(1/λ) = 0. (46)

Solution G2(r) is given in appendix of this chapter.
SubstitutingG0(r), G1(r) andG2(r) in (36), we getG(r) which is given in appendix.
We discuss only two cases for separation parameter λ for various flow/physical
quantities. One for rotation of pervious sphere in infinite expanse of fluid (i.e.
λ → 0) and other for rotation of pervious sphere in concentric spherical cavity
which is at rest and of radius two times of sphere (i.e. λ = 0.5).

Case(i): λ = 0.

G(r) = −((r − 1)(r2(485s2 + 2592s+ 5040)− r(2989s2 + 7488s+ 5040)

− 1384s2) + 144rs(27s+ 34) log(r))/(40320r3), (47)

At s = 0

G(r) = − (r − 1)2

8r2
, (48)

which conforms to the solution of [10], Haberman [11], Collins [24] and Chakraborty
and Roy [25].
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Case(ii): λ = 0.5.

G(r) = (−3r8(619s2(20063904 log(2)− 14740493) + 2044s(8339520 log(2)

− 5870101) + 1629395040) + 3577r7s(s(8339520 log(2)− 10985941)− 3679200)

+ r6(s2(127928580192 log(2)− 85925650073) + 6132s(51705024 log(2)− 37619

975)− 57530178720) + 122540355r5(881s2 + 2408s+ 3136)− 9149679840r4s(43

s+ 56)− 6r3(19s2(5138027328 log(2)− 6273170923) + 12264s(3547337 + 83395

20 log(2)) + 357464204160) + 183960r2(s2(2398405 + 3335808 log(2)) + 1822430

4s+ 16711744) + 7162176rs((3577r5 + 14308r2 − 167466)s− 208488) log(r)

− 8r(s2(43864924147 + 18552562224 log(2))− 36792s(1181432 log(2)− 905

8899) + 156421923840)− 422105229952s2)/(9415020555360r3). (49)

It may be seen that above result at s = 0 conforms to the corresponding solution
of the flow due to the rotation of a sphere in a Newtonian fluid (as in [21], [11]).

5. Discussion of the secondary flow solution

Having obtained G(r) and hence the stream function associated with the
secondary flow, we present below certain quantities viz. pressure, streamlines,
vortex lines that give more information about of the flow. Graphs have been drawn
to depict pressure, streamlines, vortex lines for twelve values (0, 1, 10, 20, 30, 40)
of the source parameter s and two values (0, 0.5) of the separation parameter λ.
Here it may be noted that λ = 0 corresponds to an infinite expanse of fluid media
outside of the pervious sphere and decreasing values of λ = 0.5 imply shrinking
of the space in-between the pervious sphere and the cavity. Also that a increase
in the value of s results in an increase in the effect of source; thus, the value s=0
approximates the Source modified Stokes equation to Stokes equation.

5.1. Pressure.

In order to determine the pressure p1 in x-z plane we need to use the differ-
ential equation

dp1 =
∂p1
∂r

dr +
∂p1
∂θ

dθ. (50)

On inserting the values of u and v from equations (29) in the equations (25, 26)
with use of (33), we get

∂p1
∂r

=

(
r4f(r)2 − 3r3G′′(r) + 3rsG′(r)− 12sG(r) + 18rG(r)

)
r5

sin2 θ

+
2(r3G′′(r)− rsG′(r) + (4s− 6r)G(r))

r5
, (51)

∂p1
∂θ

=
1

r3
(r3f(r)2 − r3G(3)(r) + rsG′′(r) + 6rG′(r) − 12G(r)) sin θ cos θ. (52)
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Above equations indicate that p1 is to be written as

p1(r, θ) = p11(r) sin
2 θ + p12(r). (53)

Integrating (52) with respect to θ gives

p1 =
1

2r3
(r3f(r)2 − r3G(3)(r) + rsG′′(r) + 6rG′(r)− 12G(r)) sin2 θ+ g(r). (54)

Differentiating above equation with respect to r and equating with right hand side
of (51) and using the differential equation (35), we get

g′(r) =
2
(
r3G′′(r)− rsG′(r) + (4s− 6r)G(r)

)
r5

. (55)

Since r ≥ 1 here, so equation (55) provide

g(r) =

∫ r

1

(
2
(
r3G′′(r)− rsG′(r) + (4s− 6r)G(r)

)
r5

)
dr. (56)

Due to very much larger expression of G(r) in terms of λ. Also, the needed f(r) in
form as

f(r) = (λ3r3 − 1)/((λ3 − 1)r2) + s(λ2 + λ+ λ3(2λ+ 1)2r4 − 4λ3(λ2 + λ+ 1)r3+

(3λ3 − λ2 − λ− 1)r+1)/(4(λ− 1)(λ2 + λ+1)2r3)− (s2(4(λ2 + λ+1)2 − λ3(40λ4+

101λ3 + 57λ2 + 17λ+ 1)r5 + 20λ3(2λ+ 1)2(λ2 + λ+ 1)r4 − 40λ3(λ2 + λ+ 1)2r3+

(λ− 1)2(21λ4 + 24λ3 + 10λ2 + 4λ+ 1)r2 + 5(3λ5 + 2λ4 + λ3 − 3λ2 − 2λ− 1)r))

/(80((λ− 1)(λ2 + λ+ 1)3r4)). (57)

Using g(r) from (56) and f(r) from (57) in (54), we get p1 completely known from.
Since expression of p1 in terms of λ is very huge, therefore, we discuss for two values
0 and 0.5 of λ.
Expression for pressure for λ = 0

p1 = ((3r − 4)/(4r4) + s((108r3 − 350r2 + 340r − 105)/(280r6)) + s2((485r3

− 3180r2 + 7320r − 2448 log(r)− 4618)/(6720r6))) sin2 θ − ((r − 1)/(2r4))− s((36

r3 − 105r2 + 104r − 35)/(140r6)) + s2((−485r3 + 3033r2 − 6984r + 2448 log(r)

+ 4436)/(10080r6)). (58)

Expression for pressure for λ = 0.5
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p1 = ((1057r6 − 8176r3 + 68448r − 65408)/(50078r4) + s((21r8(2779840 log(2)

− 1672487)− 8809640r7 − 73543120r5 + 208896800r4 + 24r3(3547337 + 8339520

log(2))− 962151680r2 + 811713280r − 204072960)/(511797160r6)) + s2((21r8

(12419556576 log(2)− 8142486259)− 3066r7(75055680 log(2)− 40893949)+

16377509120r6 + 73584r5(4308752 log(2)− 5091185) + 983590582800r4 + 4r3(

292867557696 log(2)− 442967754451)− 29278975488(7r3 + 51) log(r)− 98112r2

(7769681 + 12509280 log(2)) + 4712998295040r + 65408(5316444 log(2)− 4891

5751))/(3138340185120r6))) sin2 θ − 2((91r6 + 765r4 − 4088r3 + 11408r − 8176)/

(25039r4))− s(((r2 − 3r + 2)(7r6(8339520 log(2)− 5870101) + 21r5(8339520 log(

2)− 5294861) + 6r4(25018560 log(2)− 10549159) + 180r3(555968 log(2)− 94092

3)− 68163312r2 + 219378432r − 102036480))/(767695740r6))− s2((12999r8(

20063904 log(2)− 14740493)− 9198r7(25018560 log(2)− 29547263)− r6(63964

2900960 log(2)− 390848648413) + 12264r5(25852512 log(2)− 54021355) + 1475

385874200r4 + 12r3(97622519232 log(2)− 170428454641)− 1876392r2(374249

+ 654080 log(2))− 3659871936(35r6 + 56r3 + 408) log(r) + 4551963929856r + 32

704(10632888 log(2)− 94436929))/(4707510277680r6)). (59)

Now we discuss variation of pressure flow pattern; showing in figures 6 to 17 are
discussed here. This is done for two values of separation parameter λ = a/b with
various values of source parameter s as depicted on the diagrams. Equi-pressure
surfaces are obtained by setting surfaces are given by setting the pressure function
p1 = c for different values of the constant c. Since the flow is axial symmetric about
the z-axis, their intersection with the x-z plane may be termed as streamlines.
Thus they are given by equation (33) using above expressions; we present below
the graphs clearly depicting the variation in the pressure in Figure 6-17.
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Figure 6. λ→ 0 and s = 0
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Figure 7. λ→ 0 and s = 1

0 1 2 3 4 5

0

1

2

3

4

5

x

z

Figure 8. λ→ 0 and s = 10.
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Figure 9. λ→ 0 and s = 20.
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Figure 10. λ→ 0 and s = 30.
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Figure 11. λ→ 0 and s = 40.
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Figure 12. λ = 0.5 and s = 0
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Figure 13. λ = 0.5 and s = 1
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Figure 14. λ = 0.5 and s = 10
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Figure 15. λ = 0.5 and s = 20.
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Figure 16. λ = 0.5 and s = 30.
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Figure 17. λ = 0.5 and s = 40.

5.2. Streamlines.

Stream surfaces are given by setting the Stokes stream function ψ = c for
different values of the constant c. Since the flow is axial symmetric, about the z-
axis, their intersection the x-z may be termed as streamlines. Thus they are given
by equation (33)

ψ = G(r) sin2 θ cos θ =
G(r)x2z

r3
. (60)

This shows that the flow pattern is symmetric about z-axis and anti symmetric
about x-axis. Therefore, it suffices to draw the streamline pattern graphically only
in the first quadrant of x-z plane. This is done for two values of separation param-
eter λ(= a/b); λ = 0 for the pervious sphere rotating in an infinite expanse of fluid
(Figs. 18-23) and λ = 0.5 for the case when the fluid is confined to a cavity has
radius 2 (Figs. 24-29). In both cases the streamlines are depicted for 6 values of
the source parameter viz. s = 0, 1, 10, 20, 30, 40. First we observe and discuss the
disturbance induced by the presence of source in the two cases. The stream lines
only refer to the exterior flow and hence do not appear in the interior of the sphere.
Case (i): The fluid extends to infinity, λ = 0. It may be noted that s = 0 cor-
responds to the case when source is absent. It is observed that in Figs.18, 19, 20
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(s : 0, 1, 10), the stream lines are in the anticlockwise direction appearing to diverge
to infinity with hardly any difference in the flow pattern. It is also noteworthy that
these secondary vorticities are in clockwise direction as depicted in Figs. 20, 21,
22, 23.
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Figure 18. λ→ 0 and s = 0.
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Figure 19. λ→ 0 and s = 1.
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Figure 20. λ→ 0 and s = 10.
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Figure 21. λ→ 0 and s = 20.
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Figure 22. λ→ 0 and s = 30.
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Figure 23. λ→ 0 and s = 40.

Case (ii): The fluid is confined in the region 1 < r < 2, λ = 0.5. Since fluid
remains confined to a closed region, the flow is markedly different from the λ = 0
case. For s from the value 0 to the value 10 (Figs. 24, 25, 26) there is only a single
eddy rotating anticlockwise but streamlines became more compact as s increases.
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The base flow here is the primary flow when s = 0, i.e. when the source is absent
and a solid sphere rotating steadily. The flow lines consist of circles round the axis
of rotation that we have taken as x-axis. Then centrifugal force as in Fig.18 throws
the fluid outwards in the radial direction and on account of continuity equation
the fluid returns down ward in axial direction as shown in Fig. 18 for the infinite
region case and Fig. 24 in the confined region case. It is seen that in the latter
case the streamlines form closed curves, while in the former case they are closed
at infinity. It may also be inferred from the expression (29) of velocity that as we
move away from the equatorial plane towards the pole above, it decreases and so
does the circular streamline there. Thus, velocity is maximum at the equators and
tends to zero at the pole. Then the secondary flow pattern emerges and is modified
by the source flow which is in the spheres radial r-direction, and wanes as it moves
away from the surface of the sphere and it remains the same for all the emerging
points. It may be seen that at points near the pole outgoing source flow meets
the incoming secondary flow and the former gets, for sufficient larger values of s,
stronger than the latter appoints and reverse happens at points near the equator;
this process goes to generate eddies (see Figs. 21, 22, 23 and 27, 28, 29 ) near the
inner sphere.
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Figure 24. λ = 0.5 and s = 0
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Figure 25. λ = 0.5 and s = 1
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Figure 26. λ = 0.5 and s = 10
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Figure 27. λ = 0.5 and s = 20.
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Figure 28. λ = 0.5 and s = 30.
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Figure 29. λ = 0.5 and s = 40.

5.3. Vorticity.

The vorticity ζ is in the azimuthal direction and is given by

ζ =
1

r

(
∂

∂r
(rv)− ∂u

∂θ

)
or

ζ =
1

r sin θ
E2ψ

or

ζ =
1

r

(
G′′(r)− 6G(r)

r2

)
sin θ cos θ. (61)

Now we present ζ graphically (30 to 41) for two values of λ one for λ → 0
and other for λ = 0.5. As for streamlines.
In both cases the streamlines are depicted for 6 values of the source parameter viz.
s = 0, 1, 10, 20, 30, 40. First we observe and discuss the disturbance induced by
the presence of source in the two cases. The graphical results are depicted below.
In both the cases inside the sphere there are no vortices as source flow itself is
irrotational.

Case (i). The fluid extends to infinity, λ = 0. Fig. 30 provides the base
state when s = 0; it is seen that there are two sections of vortices, a small section,
in clockwise direction, near the surface of the inner sphere and a large section,
in anticlockwise direction, away from the sphere and extending to infinity. With
increase in the value of s upto 10 (Fig. 32), the same pattern persists except that
the inner section becomes more and more prominent and the centers of the two
sections shifting away from the surface of the sphere. Then with further increase of
s, a third section, again in anticlockwise direction, starts appearing and becoming
prominent (Figs.33-35).
The primary circulatory motion around the sphere inhibited by its presence of the
sphere generate the vortices in the secondary flow and to preserve the circulation the
next vortex appears circulating in opposite direction. Interaction with the source
flow enhances this phenomena; this causes the appearance of the third section.
Case (ii) The fluid is confined in the region 1 < r < 2, λ = 0.5. In this case the 3
sections are present from the very beginning and circulating in the same sense as
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in case (i); noticeable difference being that the central portions get elongated as s
increases. Vortices are generated by the presence of a solid boundary. There are
two in this case at r = 1 and at r = 1/λ and that explains the presence of third
region from the very start.
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Figure 30. λ→ 0 and s = 0.
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Figure 31. λ→ 0 and s = 1.
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Figure 32. λ→ 0 and s = 10.
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Figure 33. λ→ 0 and s = 20.
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Figure 34. λ→ 0 and s = 30.
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Figure 35. λ→ 0 and s = 40.
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Figure 36. λ = 0.5 and s = 0.
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Figure 37. λ = 0.5 and s = 1.
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Figure 38. λ = 0.5 and s = 10.
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Figure 39. λ = 0.5 and s = 20.
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Figure 40. λ = 0.5 and s = 30.
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Figure 41. λ = 0.5 and s = 40.
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