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Abstract. In this paper, we combine linear Volterra integro-differential equations
of first and second kinds to be a generalization. Then, we use Laplace transform to
solve an analytical solution on a convolution kernel and apply Laguerre polynomials

to approximate a solution on a non-convolution kernel of this generalization.
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1. INTRODUCTION

In this study, we consider the following linear Volterra integro-differential
equations (or only VIDEs) with initial conditions. The linear VIDEs of first kind
are given by

/ﬂf Ey(z, )u™ (8)dt = f(x)u(z) + glz) + /033 ko(x, t)u(t)dt, = € [0,T],

0
u(0) = ao,u/ (0) =ay, ..., u("fl)(O) =an_1, (1)

where f(z),g(x), k1(x,t) and ka(x,t) are sufficiently smooth functions. The linear
VIDEs of second kind are expressed by

uW@gM@mm+m@+[f@@¢mmﬁ,xemTL

u(0) = bo,u (0) = by, ..., u "V (0) = b1, (2)
where h(z),k(xz) and ks(z,t) are sufficiently smooth functions. The functions
ky(z,t), ko(x,t) and ks(z,t) are called kernels of the linear VIDEs.

Let F(x) be defined and piecewise continuous function for all positive values
of z and be of exponential order. The Laplace transform of F(x) is defined by
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where F'(x) is said to be the inverse Laplace transform of G(s), denoted by F(x) =
L='4G(s) ;. Let us recall some useful results on the Laplace transform that shall

be used in the next hereinafter.

(1) The Laplace transform of some functions:

L{l}:é,s>0, L{x”}: :_:_178>0
L{e‘”}zsia,s>a, L{sinaw}:ﬁ,s>0,
L{ cosa:z:} = ﬁ, s> 0, L{ sinhax} =g > |al,
{coshax} , 8> |al.
2) IfL{ (x} G then L{F( )} :sG(s)—F(O).
(3) IfL{ (a;} G(s) then L{F(”) x)} —sTLR(0) — 52 (0) —
co — pn=1)
(4) IfL{ (x )} :G( ) then L{x” x }: [G( )}

(5) The conwolution of two functions F(z) and H( 08 Jenoted by F(x) « H(x),
is defined by F(x) + H(x) = / F()H(x — t)dt = /O Fle — t)H(t)dt. Let
L{F(m)} = G(s) and L{H( )} I(s). Then the convolution theorem
says that L{F( )« H(z } { } { } G(s)I(s).

(6) The inverse Laplace transform of some functions:

1 1 1
—1 _ —1 .~ n
R T
L’l{ 1 } _ pon L’l{ 1 } _ sin ax
s—a ’ 52 4+ a? a ’
L’l{ 5 } _ cosar L’l{ 1 } _ sinhaz
2raz) ’ s2—a2) a

1 S -
L {m} = coshax.

The Laguerre polynomial is a polynomial function given by

L =3 (D EE () -

k=0
where x and k are called the degree and the indexr of the Laguerre polynomial,
respectively. Some important results on the Laguerre polynomials that shall be
referred in the next as follows:

o s = 1[5 () S - ()

@ =3 () 5 - 5 055

k=0 k=2

(]
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(1) 10 (@) = ;i[,; ()&= - ; =g,

The Volterra integro-differential equations are typically mathematical models
in many areas of science and engineering. Solutions of these equations play vital
roles in a number of processes and phenomena such as nuclear reactors, circuit
analyses, wave propagation, glass forming processes, nano-hydrodynamics, visco
elasticity, biological populations, etc. Therefore, there are many researchers who
have been interested in the VIDEs and founded numerous methods to solve the an-
alytical and numerical solutions of VIDEs up to the present as follows. Estimated
solutions of nonlinear VIDEs of a fractional order were investigated applying the
Laplace transform and the Adomian polynomials by Yang and Hou [I]. Moreover,
the Legendre polynomial approximation was used to find numerical solutions of
nonlinear VIDEs of second kind by Gachpazan, Erfanian and Beiglo [2]. In ad-
dition, analytical solutions of linear VIDEs of second kind were solved using the
Kamal transform by Aggarwal and Gupta [3]. The modified Adomian decomposi-
tion method was utilized to explain exact solutions of linear VIDEs of second kind
by Okai, Ilejimi and Ibrahim [4]. Furthermore, approximate solutions of nonlinear
VIDEs involving delay were found taking a new higher order method by Jhinga,
Patade and Gejji [5]. Other than those findings, the Sadik transform was applied
to figure out exact solutions of first kind VIDEs on convolution type kernels by
Aggarwal, Vyas and Sharma [6]. Numerical solutions of linear VIDEs were es-
timated using the Laguerre and Touchard polynomials by Abdullah and Ali [7].
So far, some asymptotic behavior of exact solutions of nonlinear VIDEs has been
studied by Cakir, Gunes and Duru [§]. The quasilinearization technique to differ-
ence scheme also has been applied to solve estimated solutions of VIDEs in [g].
Recently, the asymptotic behavior of the analytical solutions of the singularly per-
turbed nonlinear VIDEs has been established by Cakir, Cakir and Cakir [9]. The
uniform difference scheme on the Bakhvalov-Shishkin mesh points according to the
boundary layer conditions has been introduced to find numerical solutions of VIDEs
as well in [9]. Exact solutions of the Faltung type VIDEs for first kind have been
solved applying the Kushare transform by Patil, Nikam and Shinde [I0].

In this research, we compound linear Volterra integro-differential equations of
first and second kinds to be a general form. Then, we take the Laplace transform to
find an exact solution on a convolution type and utilize the Laguerre polynomials
to estimate a solution on a non-convolution type of this generalization.



2. MAIN RESULTS

For this section, we assume that p,m < n and start to introduce a general-
ization of linear Volterra integro-differential equations expressed by

oau™ (z) + 8 /L Ky (x, t)u™ (t)dt
0

= A(z)u(z) + B(x) + /0 ' Ky (z, t)u'P (t)dt, € [0,T),

u(0) = co,u (0) = ¢,y .oy w1 (0) = €1, (3)

where u(x) is an exponentially bounded and smooth function, A(z), B(x), K;(z,t)
and Ky (z,t) are exponentially bounded and sufficiently smooth functions and a, 8
are real numbers. If « =0 and m = 0 or a = 0 and p = 0, then the equation is
the linear VIDE of first kind and we can see [6] and [I0] for more vital results. If
B =0 and p = 0, then the equation is the linear VIDE of second kind and we
can see [1], [2], [3], [4], [5], [7], [8] and [9] for more comprehensive findings.

Now, we will focus on a solution of this generalization on a convolution type
with a constant function A, that is, we then consider the following initial-value
problem as follows:

ou'™ (z) + 8 / ’ Ki(z — t)ul™ (t)dt
0

= Au(z) + B(z) + /0 ’ Ky(z — t)u®P (t)dt, z € [0,T],

u(0) = co,u (0) = cp, ..., u™ D (0) = ¢,,_1. (4)

We will utilize the Laplace transform to solve the problem as the following steps:
At the beginning, applying the Laplace transform to 7 we get

aL{u® ()} + 5L /0 Ko — (1)t
= AL{u(x)} + L{B(x)} + L{ /Ow Ky(z — t)u® (t)dt}. (5)

After, using the convolution theorem to , we then obtain
aL{u(")(x)} + BL{Kl(x)}L{u(m)(x)}
_ AL{u(Js)} + L{B(az)} n L{Kg(a;)}L{u(p) (x)}. 6)

Then, taking the Laplace transform of derivatives on @ with initial conditions, we
have

a[s"L{u(m)} — " ey — 5" 20— — cn,1}
+6L{K1(x)} [smL{u(x)} —s™ ey — 520 — o — cm,l] = AL{u(x)}
+L{B(x)} + L{Kz(z)} [s”L{u(m)} — Pl — P72 — oo — cp_l}



and we also obtain
[as" + ﬂL{Kl(ag)}sm - L{KQ(JC)}SP - A]L{u(x)}
- a(s"—1c0 F 5" 20 b cn,l)
+ﬂL{K1 (x)} (sm*1c0 + 8™ 2 e cm,l)
+L{B@)} - L{Kalw) b (57 e+ 57 2er + ). (7)

At last, operating the inverse Laplace transform on , we receive the solution of
initial-value problem as follows.

@ —L‘l{ a(s"‘lco+s"_201—I—-~-+cn_1) }
- as"—i—/o’L{Kl(x)}sm—L{Kg(x)}sP—A

L { ﬂL{Kl(I)} (smflco 5™ 20 -+ cm_l) }
as™ + ﬁL{Kl (x)}s’” - L{Kg(x)}sp —-A

) i) )y
as™ + BL{Kl(x)}sm - L{KQ(IL')}SP —A

Example 2.1. Solve the Volterra integro-differential problem:

x " 1 1 1
u(4)(x)+/ sin(x — t)u (t)dt:u(x)—ier—icosx—isinx—xQ—l—x—l—I—
0

’

/ (z — t)u(t)dt, u(0) = 3,4 (0) = 1,u (0) =1,u (0)=1.
0
Solution. Firstly, applying Laplace transform to the problem, we have
L3uW(z)t + L / sin(z — t)u” ()dt b = Lu(z)
{u@}erd | p=1{u)}
1, 1 1 . 9 ¥
—|—L{—fe — —cosx — —sinz —x +x—1}+L{ (x—t)u(t)dt}.
2 2 2 0
Secondly, using the convolution theorem, we get
L{u(4) (x)} + L{ sinx}L{uN (x)} = L{u(m)}
1 1 1
+L{ — 561 — 58T — o sinz — 2% +x — 1} + L{I}L{U(I)}
Thirdly, taking the Laplace transform of derivatives, we have

"

34L{u($)} — s%u(0) — s%u (0) — su” (0) —u" (0)
o [52L{u(:c)} — su(0) — u’(O)] - L{u(x)}

2(s—=1) 2(s241) 2(s2+1) 3 2 s g2 U

+
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and using initial conditions, we also obtain

34L{u(x)} —3s% — 5% —s5—1+ 2 :_ 1 [szL{u(m)} —3s— 1}
- L{“(f”)} - 2(51— 1)~ 2(528+ 1)~ 2(521+ 1)

2 1 1 1
st a e}

Fourthly, rearranging the equation, we certainly receive

<s4+ s —i—l)L{u(m)}:353—&—52—i—s—&—l—l—i
$2+1 2 s2+1

1

s

1 1 s 1 2 1

TET1 TG0 241 2P+l B2

or
B0 —-252 -1 6s? — 458 + 657 — 458 — 125% + 852 — 65+ 4
| o) - |
s2(s2+1) 283(s —1)(s? + 1)
Thus, we get

L{u(x)} _ 2(3s —2)(s® + 5% — 252 — 1) _ 3s—2 .

25(s —1)(s8 + 56 —-252—-1) s(s—1)
Finally, taking the inverse Laplace transform of the equation, we suddenly have an
analytical solution

35 —2 s 25 —2
_ Lfl _ L71 L71
u(@) {s(s—l)} {s(s—l)}+ {s(s—l)}
1 1
_ -1 -1) = — o
1 {—}re )=
Example 2.2. Solve the Volterra integro-differential problem:

" z " 1 1
u () +/ (x—t)*u (t)dt = u(x)+ g sinh(z) — 7% cosh(z) — 22 sinh(z) —z—1+
0

/

/z e* "t (H)dt, u(0) = 1,4 (0) = —1,u (0) = 1.
0

Solution. The first one, applying Laplace transform to the problem, we have

L{u (x)} + L{ /Om(x — )2 (t)dt} - L{u(x)}

1 1 * /
+L{g sinh(x) — 2% cosh(z) — 5% sinh(z) — x — 1} + L{/ ety (t)dt}.
0

The second one, using the convolution theorem, we get

L{um (33)} + L{xQ}L{u” (:c)} = L{u(x)}

= L{g sinh(z) — %x cosh(z) — %x sinh(z) — oz — 1} + L{e$}L{u/ (x)}

The third one, taking the Laplace transform of derivatives, we have



1
1 {sL{u(m)} - u(O)}
and using initial conditions, we also obtain
2
sSL{u(m)} —s2+s—1+ = [82L{u(x)} —s+ 1]
S

B 9 (s2+1) s 1 1
N L{u(x)} + 22 —1) 2(s2—12 (s2—-12 2 s

1
L{u(@)} -1].
—|—S 7 [s u(x)
The fourth one, rearranging the equation, we certainly receive
2 S 2 2
3 2
(s —|—g— po —1>L{u(m)}—s —s—l—l—l—S—Q—S—S

9
+ —

(s*+1) s 1 1 1
2(s2—=1) 2(s2—-12 (s2-12 2 s s-—1

or

e ()

2510 — 459 + 257 + 65° — 85> — 8s* + 165% — 452 — 65+ 4
2s3(s —1)(s? —1)2 '

Hence, we get
L{u(a:)} _ 2(s% —1)(s® — 2 +1)(s° — s* — 252 + 35— 2) _ §3 — 52 + 1.
252(s2 —1)2(s5 — st — 252 4+ 35— 2) s2(s2—-1)
The last one, taking the inverse Laplace transform of the equation, we suddenly
have an exact solution

3 2

§3 — 82 1 s i $°-
ue) = 1 = = 1 e - L )

_ -1 S BYSR
=1L {5271}—L {?}—coshx—x.

Here, we will emphasize on an approximate solution of this generalization for
a non-convolution type given by

oau™ (z) + 8 /I Ky (x, t)u™ (t)dt
0

= A(z)u(z) + B(x) + /0 ’ Ky (z, t)u'P (t)dt, € [0,T),

u(0) = co,u (0) = c1, .oy u™ "V (0) = ¢y (8)
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The approximation using the Laguerre polynomials is below: To start with Sup-
posing that the function u, (x) is an estimated solution of the equation defined
by

uy(x) = Z dpLi(x) = doLo(z) + d1 L1 (x) + deLa(z) + - - - + dy Ly (), (9)

where m,n,p < x, Lg(x) are the Laguerre polynomials and dy are unknown con-
=0

stants, k ,1,...,x. Then, writing equation @ as a dot product, we have
do
dy
uy () = [Lo(m) Li(z) Lo(z) ... Lx(x)} |2 | (10)
dy

Next, rearranging the equation in a matrix formula, we also have

boo bo1 boz --- boy do
0 b1 b1z -+ biy dy
uy (z) = [1 r 2?2 . .’L‘X:| 0 0 by -+ bay | .| d2
0 0 0 - by d,

where b;; are known constants. After that, finding the derivatives of u, (z), we have
as follows:

boo bo1r bo2 - boy do
0 bi1 bz -+ biy dy
ulx(:v) = [0 1! 2z 322 ... Xxx_l} 0. O .b22 b2.x . d.2
0 0 0 - by d,
boo bo1 bo2 -+ boy do
0  bi1 biz -+ biy dy
u;(x) = [O 0 2! 6z ... X(x—l)mxfﬂ 0 0 bay -+ bay | .| d2 ,
0 0 0 - by dy
boo bo1 boz --- boy do
0 b11 bz -+ biy dy
ul;(a?) =1000 3 .. x(x—1)(x—2)zx3 0 0 byp -+ by |.]| d2



and
u;")(x) = [0 00 ...n .. x(x=1..x=n+1)zXx"
boo bo1 boz -+ boy do
0 bi1 biz -+ biy dy
0 0 ‘bag -+ boy |[.]| do | (11)
0 0 0 - by dy

Then, substituting the equation into the equation , we receive

al0 00 ... n! .. X(x—l)...(x—n—kl)mxfn]

[ boo bor boz -+ boy do
0 bi1 bz -+ by dy
0 0 b22 b2X . d2
_0 0 0 "'bxx_ _dx_
+ﬂ/ Kl(x,t){[() 00 o ml o x(x = Do(xx — m+ )™
0
[ boo bor boz - boy | [ do |
0  bi1 big -+ by dq
0 0 by -~ by |.| d }dt
_0 0 0 "'bxx_ _dx_
boo bo1 boz --- boy do
0 bi1 bz -+ by dy
:A(:E)[l x x? 2® . xx} 0 0 bay -+ boy | .| do
0 0 0 - by dy
+B(x)+/ KQ(x,t){[o 00 o pl o x(x—=1)(x —p+ 1)EXP
0
boo bo1 bo2 -+ Dboy do
0  bi1 big -+ biy dy
0 0 by - by | .| do }dt. (12)
0 0 0 - by dy

Simplifying and integrating the equation , we then have the new equation with
unknown constants dy, dy, ..., dy. In order to determine dg, dy, ..., dy, using n initial
conditions and selecting ; € [0,T],i = 1,2, ..., x—n+1, with substituting in the new
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equation, we get a system of linear algrbraic equations of x + 1 unknown constants.
Solving this system by a program, we have the values of the unknown constants,
that is, the numerical solution of the initial-value problem is obtained.

In order to guarantee the convergence of this method, we will verify as follows.
Let u(x) be an analytical solution of initial-value problem that has derivatives
of all orders at = 0. Then, the Taylor series of u(z) at « = 0 is defined by

’ 1 " 1
u(z) = u(0) + v (0)z + T (0)z? + -+ ;u(’o (0)zX 4 ---

Thus, by the definition and process to find wu, (), we obtain that

1
(x+1) x+1 (x+2) x+2 .
U (0)zX| 4+ |(X . 2)!u (0)xX™4| + )

xX converges to 0 as Y — oo to confirm that
><7+1)><Jr 1
e

1
(x +1)!

Here, it is sufficient to show that

u(z) —ux(z)] < |

1
x!
|u(x) — uy ()| converges to 0 as x — co. Since e(%)x <x!'<ef , we get
X X : : X X
ﬁ(;—{ﬂ) < %xx < i(%) . It is easy to determine that ﬁ(;jl) and %(%)
converge to 0 as as Y — oo. This means that %xx converges to 0 as x — oo to

confirm the convergence.

Example 2.3. Estimate a solution of the linear Volterra integro-differential prob-

4
2¢” +/ ztu ()dt,u(0) = 2,4 (0) = —1,u (0) = 2,u" (0) = 8,u(0) = 2,0 <
0

lem using ug(z): u'® (z) +/ wtu (t)dt = zu(z) — 35 g + ng + 32 — 2ze” +
0

x < 2. An ezact solution is u(x) = x3 — 3z + 2€*.

Solution. First, suppose that a function ug(x) is an approximate solution of this
problem, that is,

UG(LU) = doLo(l‘) + d1L1(33> + dng(m) + -4 d@L(j(l‘)
=do(1) +di(—x+1)+ dg[%(xQ — 4z +2)] + d3[é(—l‘3 +92% — 18z + 6)]

1
+dy[— (2" — 162° + 722% — 96z + 24)]

24
1

s [ 155 (2" + 252 — 2002* + 6002° — 6002 + 120)]
1

+de [ﬁ(xﬁ — 362° 4 450z* — 24002° + 54002% — 4320z + 720)].

Second, finding derivatives of ug(z), we have as follows:

’ 1 ].

ug(z) = di(—1) + do [5(255 —4)] +ds [6(731’2 + 18z — 18)]
1

i[5 (427 — 4827 + 144z — 96))]

1
+ds [50“5%4 +100z® — 6002> 4 1200z — 600)]
1

=50 (62° — 1802* + 1800z* — 72002 + 10800z — 4320)],

+dg |



and
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UG(x):::d2[§

(—202® + 3002% — 1200z + 1200)]

(2)] +ds [%(7696 +18)] + du| 4(12x — 96z + 144)]

1
+ds[ 155

+d6[ L

= O( 302" — 7202° + 54002 — 14400z + 10800)],

ug (z) = dg[é( 6)] +d4[ (242 — 96)]

+ds5 [ = (—602” + 600z — 1200)]

+dg [ =5~ (1202° — 21602* + 10800z — 14400)],

720(

u(e) = da [ (20)] + ds [ 155 (-

(360z* — 4320z + 10800)]

1202 + 600)]

+ds [720

1 1
u) (2) = ds [ 155 (—120)] + d [ 55 (720 — 4320)].

Third, substituting the derivatives into the problem, we receive

1
d5[120

v 1 1 1
+/O xt{dg [5(=6)] + da[5; (24t = 96)] + d5 [ 55 (= 60¢* + 600t — 1200)]
1

(—120)] + de [%(720x —4320)]

s[5 (1208° — 21606 + 10800t — 14400)] }dt

:x{dol )+ da( x+1)+d2[ (@2 — 4z +2)]

+ds [é —2® +92° — 182+ 6)] + d4 [i(x‘* — 162° + 722° — 96z + 24)]
+ds [ﬁ —a° 4 25z* — 2002° 4 6002* — 600z + 120)]

+dg [7— a8 — 362° 4 4502 — 24002° + 54002 — 4320z + 720)] }

3 9
—sz — 4 ix + 322 — 2ze” 4 2
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+/ mt{dl(—l) +dso [%(215 —4)] +ds [%(—3:&2 + 18t — 18)]
0

1 3 2
a5 (47 — 4847 + 144t — 96)

1
+ds [1720(75754 +100£* — 600¢* + 1200t — 600)]

1
+ds [%(&5 — 180t* + 1800¢> — 7200¢* + 10800¢ — 4320)] }dt.

Fourth, simplifying and integrating the equation, we obtain the new equation. Se-
lecting x1 = 0.25 and x5 = 0.5 to substitute in the new equation with using 5 initial
conditions, we get the following system:

do+di+do+ds+dy+ds +ds =2,

—dy — 2dy — 3ds — 4dy — 5ds — 6dg = —1,

ds + 3dz 4+ 6d4 + 10ds + 15dg = 2,

—ds — 4d, — 10ds — 20dg = 8,

dy + 5ds + 15dg = 2,

—0.25dy — 0.179687d, — 0.118489ds — 0.073445d3 — 0.050341dy
—1.053831d5 — 5.837542dg = 2.179211,

—0.5dy — 0.1875d1 + 0.041666d> + 0.139322d3 + 0.076302d4
—1.161273d5 — 6.075211dg = 2.875283.

At last, solving the system by a program, we have

do = 17.757015,d; = —61.703708, d2 = 100.163313,ds = —92.756475,
ds = 54.971399, ds = —19.350177,dg = 2.918632.

Therefore, the numerical solution is

1
ug(x) = 17.757015 — 61.703708(—x + 1) + 100.163313 [ 5 (2* — 4z + 2)]
1, .
—92.756475 [6(—:1:3 + 922 — 18z + 6)]
1
+54.971399[ﬁ(:r4 — 162° + 722° — 96z + 24)]

—19.350177[ — (—2® + 252" — 2002® + 6002 — 600z + 120)]

1
20

1
+2.918632 [%(:ﬁ — 362" 4 450z* — 24002° + 54002* — 4320 + 720)].
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TABLE 1. Values of exact and approximate ug(z) solutions for

example
x | Exact solution | Approx. solution | Absolute error
0.00 2.000000 1.999999 0.000001
0.20 1.850806 1.850805 0.000001
0.40 1.847649 1.847640 0.000009
0.60 2.060238 2.060181 0.000057
0.80 2.563082 2.562883 0.000199
1.00 3.436564 3.436040 0.000523
1.20 4.768234 4.767025 0.001209
1.40 6.654400 6.651716 0.002684
1.60 9.202065 9.196116 0.005949
1.80 12.531295 12.518153 0.013142
2.00 16.778112 16.749669 0.028443
=e=—Exact Solution ® Approximate Solution
18.00
16.00
14.00
12.00
—~ 10.00
S 800
6.00
4.00
2.00
0.00

0.00 020 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
X

FIGURE 1. Graphs of exact and approximate ug(z) solutions for

example

Example 2.4. Approximate a solution of the linear Volterra integro-differential
x

problem using us(x) and us(x): u” (z) —|—/ xsin(t)u/ (t)dt = —22u(x) — cos(z) —
0

4z cos(x)—xsin(x)+4x3+2x2+4x+/ x cos(t)u(t)dt, u(0) = 1 (0) =3,u (0) =
0
0,0 <z < 7. An exact solution is u(z) = sin(z) + 2z + 1.

Solution. Firstly, let us(z) is an approximate solution of this problem, that is,
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U4(.’E) = doLo({L‘) + dlLl({E) + dng(x) + d3L3(£U) + d4L4(£C)
=do(1) +dy(—z + 1) + dy [%(:ﬁ — 4z +2)] +ds [é(—x?’ +92% — 182 + 6)]

1

+d4 [24 (z* — 162° + 722° — 96z + 24)].
Secondly, finding derivatives of uy(z), we have as follows:
! 1

uy(x) = di(—1) + do [ (22 — 4)] + ds [é(f?,a:? + 18z — 18)]

2
+d4 [%4(4:& — 482” + 144z — 96)],
1 1 1 )
uy (z) = dy [5(2)} +d3 [6(—6x +18)] +d4 [ﬂ(ux — 96z + 144)]

and
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1 1
uy (z) =ds [6(_6)] + d4[ﬁ(24x - 96)].
Thirdly, substituting the derivatives into the problem, we receive
d3 [1(—6)] +dy [i(zzm: - 96)]
6 24
@ 1 1
+/ xsin(t){dl(—l) +da [5(215 —4)] +ds [6(_3t2 + 18t — 18)]
0
1
— (413 — 48t 4 144t —
[ (417 — 4812 + 144t — 96)] }dt
1
_ —2x2{d0(1) +di(—z+1) +da[5(a” — do +2)]
1 1
s[5 (—a® +92? — 182 +6)] +da [ (¢ — 1627 4 7202 — 96z + 24)] }
—cos(z) — 4 cos(x) — wsin(x) + 42® + 227 + 4a
@ 1
+/ xcos(t){do(l) +di(—t+1)+do [i(tz — 4t +2)]
0
1 1
s [ (7 + 012 = 18t + 6)] + da [ (1 — 168" +72¢* — 96t + 24)] }dt.

Fourthly, simplifying and integrating the equation, we obtain the new equation.
Selecting 1 = 0.25 and x5 = 0.5 to substitute in the new equation with using 3
initial conditions, we get the following system:



do+dy +dy+d3s+dy =1,
—dy — 2dy — 3ds — 4dy = 3,
do + 3d3 + 6dy = 0,

0.063149dg + 0.031817d; + 0.005048d> — 1.017567d3
—3.786408d, = —0.812175,
0.260287dg + 0.007726d; — 0.171664d> — 1.290905d3
—3.861327d, = 0.127539.

Finally, solving the system by a program, we get

do = 3.306071,d; = —1.284838,dy = —0.981913,ds = —0.405944, d4 = 0.366624.

Therefore, the numerical solution is

1
ua() = 3.306071 — 1.284838(~x + 1) — 0981913 (2* — 4z + 2)]

1
—0.405944[6(—333 + 92% — 18z + 6)]

1
+0.366624 [ — (z* — 162” + 722* — 96z + 24)].

TABLE 2. Values of exact and approximate uy(z) solutions for

24

example
z | Exact solution | Approx. solution | Absolute error
0.00 1.000000 1.000000 0.000000
0.31 1.937336 1.937146 0.000190
0.63 2.844422 2.843491 0.000931
0.94 3.693973 3.691509 0.002464
1.26 4.464331 4.457244 0.007087
1.57 5.141593 5.120311 0.021282
1.88 5.720968 5.663897 0.057071
2.20 6.207247 6.074761 0.132486
2.51 6.614333 6.343231 0.271102
2.83 6.963884 6.463209 0.500675
3.14 7.283185 6.432166 0.851019
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=—e=Fxact Solution ® Approximate Solution
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7.00
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0.00 031 063 094 126 157 188 220 251 283 3.14

X

FIGURE 2. Graphs of exact and approximate uy(z) solutions for

example 2.4

For the approximate solution us(x), the first one, let us () be an approximate
solution of this problem, that is,

U5(£L') = doLo({E) + dlLl({E) + dQLQ(fL') + d3L3(£L‘) + d4L4(JJ) + d5L5(1‘)
=do(1) +dy(—z + 1) + dy [%(a;? — 4z +2)] +ds [é(—x?’ +92% — 182 + 6)]

1
+dy [ﬁ(a:4 — 162° + 722 — 96z + 24)]

1
+ds [m(—x5 + 252" — 2002® 4 6002° — 600z + 120)].

The second one, finding derivatives of usz(x), we have as follows:
/ 1
us(z) = di(=1) + do [

1
i[5 (427 — 4827 4 144z — 96)]

1
+ds [ﬁ(—fm‘* +1002® — 6002* 4 1200z — 600)],

(22 —4)] +ds [é(—3m2 + 18z — 18)]

"

ug () = @[%(2)] + d3[1 L

c (—6z + 18)] +dy [24(12332 — 96z + 144)]

1
+ds [m(—ZOx?’ + 3002” — 1200z + 1200)]

and

1’ ]_ ].
ug (z) = ds [6 120

The third one, substituting the derivatives into the problem, we receive

(=6)] +ds [i(zm —96)] + d5 [-==(—602> + 600z — 1200)].
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ds [é(ffj)] +dy [i(?élx —96)] +ds [%O(—mx? + 600z — 1200)]

+ /01 T sin(t){dl(—l) +dso [%(% —4)] +ds [é(—sﬁ + 18t — 18)]
+dy [214(4753 — 48t% + 144t — 96)]

1
+ds [ 55 (—5t* + 100¢> — 600¢2 + 1200t — 600)] }dt

= —2x2{d0(1) +di(—z+1)+do [%(ﬁ — 4z +2)]
1

1

+ds [6 (—a® + 927 — 18z + 6)] + dy [54 (z* — 162° + 722% — 96z + 24)]
1

+ds [ (—a” + 252" — 2002" + 6002” — 600 + 120)] }

—cos(z) — 4x cos(x) — wsin(x) + 4a® + 227 + 4a

v 1
+/ xcos(t){do(l) +di(—t+1)+do [§(t2 — 4t + 2)]
0
1 1
+ds [6(—153 + 97 = 18t + 6)] + da [ (¢ — 1687 + 7267 — 96t + 24)]

1
+ds [@(—ﬁ +25¢* — 200> + 600t — 600t + 120)] }dt.

The fourth one, simplifying and integrating the equation, we obtain the new equa-
tion. Selecting x1 = 0.25, x5 = 0.5 and x3 = 0.75 to substitute in the new equation
with using 3 initial conditions, we get the following system:

do+di+do+ds+dy+ds =1,

—dy — 2dy — 3d3 — 4dy — bds = 3,

ds 4 3ds + 6d4 + 10d5 = 0,

0.063149d + 0.031817d; + 0.005048dy — 1.017567d3
—3.786408d, — 8.833081d5 = —0.812175,
0.260287dy + 0.007726d; — 0.171664ds — 1.290905d3
—3.861327d4 — 8.017746d5 = 0.127539,

0.613771dy — 0.249023d; — 0.739887dy — 1.957671d3
—4.232047d, — 7.407697d5 = 2.374515.

The last one, solving the system by a program, we get

do = 3.906579,dy = —4.506704, dy = 5.955424, d3 = —7.891840,
dy = 4.411328,ds = —0.874787.

Therefore, the numerical solution is



18

1
us(x) = 3.906579 — 4.506704(~x + 1) +5.955424[ 3 (2* — 4z +2)]

1
—7.891840[6(—x3 + 927 — 18z + 6)]

1
+4.411328[ﬂ(x4 — 162° + 722° — 96z + 24)]

—0.874787

1
120

(—2° + 252" — 2002* + 6002 — 600z + 120)].

TABLE 3. Values of exact and approximate us(x) solutions for the

example
z | Exact solution | Approx. solution | Absolute error
0.00 1.000000 1.000000 0.000000
0.31 1.937336 1.937318 0.000017
0.63 2.844422 2.844339 0.000084
0.94 3.693973 3.693774 0.000199
1.26 4.464331 4.464054 0.000276
1.57 5.141593 5.142007 0.000414
1.88 5.720968 5.725529 0.004562
2.20 6.207247 6.226270 0.019024
2.51 6.614333 6.672304 0.057971
2.83 6.963884 7.110808 0.146924
3.14 7.283185 7.610740 0.327555
=e=—Exact Solution ® Approximate Solution
8.00
7.00
6.00
5.00
Z 4.00

3.00
2.00
1.00
0.00

0.00 031 063 094 126 157 1.88 220 251 283 3.14

X

FIGURE 3. Graphs of exact and approximate us(z) solutions for

example [2.4]
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To demonstrate the practical applicability of the proposed method, we con-
sider a classical population model with memory effects, where the current growth
rate depends not only on the present population but also on its past values. Let
u(t) denote the population size at time ¢ > 0. The population growth with memory
is defined by

uw'(t) = ru(t) + /0 K(t — s)u(s)ds, u(0) = ug,

where r € R is the intrinsic growth rate and K is a memory kernel. For the growth
model of Drosophila, we get r = 0.25, ug = 50 and the exponentially decaying kernel
K () = 0.15¢7%17 and see more in [I1]. Thus, the growth model is in the form

t
u'(t) = 0.25u(t) +/ 0.15e 02 =%)y(s)ds, u(0) = 50.
0

This kernel is smooth, exponentially bounded and therefore satisfies the Laplace-

transform conditions and other regularity assumptions used in our analysis. By

600 250
Laplace transform, the exact solution of the problem is u(t) = — e%*t +=—¢70-35,

Then, applying the proposed Laguerre method with u4(¢) and ug(t) on ¢ € [0,2],
we obatian the results as follows.

1
ua(t) = 80.06930788 — 58.02243169(—t + 1) + 41.82881774 [ (+* — 4t + 2)]
1
—17.37952146[6(7153 + 9t — 18t + 6)]
1
+3.50382753 [ﬂ(t‘L — 16t + 72> — 96t + 24)]

and

ug(t) = 80.81383638 — 62.43684455(—t + 1) + 52.39097279 [%(ﬁ — 4t +2))
—30.15647576[%(—#” +9¢* — 18t + 6)]

+11.40683809[i(t4 — 16t% + 72t* — 961 + 24)]

—2.10565106 [ﬂlo(—ﬁ +25t* — 200> + 600> — 600t + 120)]

1
+0.08732412[ —— (% — 36t° + 450t* — 2400t3 + 5400¢% — 4320t + 720)].
720
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TABLE 4. Values of exact and approximate u4(t) solutions with
absolute errors.

t | Exact solution | Approx. solution | Absolute error
0.00 50.000000 50.000000 0.000000
0.25 53.467282 53.466132 0.001150
0.50 57.663500 57.662390 0.001110
0.75 62.663320 62.661870 0.001450
1.00 68.553223 68.551354 0.001868
1.25 75.432924 75.431314 0.001610
1.50 83.416991 83.415904 0.001087
1.75 92.636690 92.632969 0.003721
2.00 103.242084 103.224038 0.018046

TABLE 5. Values of exact and approximate ug(t) solutions with
absolute errors.

t Exact solution | Approx. solution | Absolute error
0.00 50.000000 50.000000 0.000000
0.25 53.467282 53.467436 0.000154
0.50 57.663500 57.663728 0.000228
0.75 62.663320 62.663634 0.000314
1.00 68.553223 68.553593 0.000370
1.25 75.432924 75.433329 0.000405
1.50 83.416991 83.417464 0.000473
1.75 92.636690 92.637166 0.000476
2.00 103.242084 103.241802 0.000287

3. CONCLUDING REMARKS

In this paper, a generalization of linear VIDEs has been introduced already.
In general, all results show that the Laplace transform has been effective to solve
analytical solutions of the generalization on convolution type kernels repeatedly and
the Laguerre polynomials have been successful to figure out numerical solutions of
the generalization on non-convolution type kernels several times. However, the
Kushare transform, Sadik transform and Kamal transform are other methods that
can be analytically solved on convolution types of this generalization similarly.
Moreover, the main advantage of this analytical method is the fact that it gives the
exact solutions in just few processes and uses very less computational work. We also
suggest that this numerical method can be applicable to singularly perturbed linear
VIDESs, which are one case of this generalization, to obtain accurately approximate
solutions.

Acknowledgement. The author would like to thank the academic referees for the
careful reading and helpful comments for improving this paper.
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