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Abstract. Let T = {t1,t2,...,tx} C V(G) be an ordered subset of the vertex
set of a graph G, and let v € V(G) be a vertex in G. The adjacency metric
representation of vertex u with respect to the set T is the k-vector r4(u | T) =
(da(u,t1),da(u,t2),...,da(u,tg)). The set T is called a nonlocal-adjacency metric
resolving set of the graph G if ra(u | T') # ra(w | T') for every pair of vertices u,v €
G with u not adjacent to v. The minimum cardinality of a nonlocal-adjacency metric
resolving set of G is called the nonlocal-adjacency metric dimension of GG, denoted
by dim ani(G). In this paper, we present graphs obtained from the degree corona
product of two graphs. The degree corona product of graphs G and H, denoted
by G Ogeg H, is the graph constructed by taking a graph G and ZLZ(IG)I deg(v;)
copies H;; of graph H, and then connecting every vertex v; € V(G) to all vertices
in H;; for every j € {1,2,...,deg(v;)} and ¢ € {1,2,...,|V(G)|}. Furthermore,
we determine and analyze the nonlocal-adjacency metric dimension of basic graphs
Gy € {Pn,Cp}, centered graphs G. € {Kp,Sn, K1 + Pn,K1 + Cn, K + Kp},
and the degree corona product graphs Gc Ogeg K1- In addition, we provide upper
bounds, characterizations of the nonlocal-adjacency metric dimension of graphs, and

examples of applications of this concept.

Key words and Phrases: adjacency metric representation, nonlocal-adjacency
metric resolving set, nonlocal-adjacency metric dimension, degree corona product.

1. INTRODUCTION

The metric dimension concept of graphs was first introduced by Harary and
Malter in 1976 in their book titled Distance in Graphs [I]. In this book, Harary
and Melter explained that “The metric dimension of graphs is the cardinality of the
metric basis of graphs” [I]. Shortly afterward, Slater, Harary, and Melter developed
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an algorithm to determine the metric dimension of tree graphs, demonstrating that
every tree graph has a fixed metric basis, which consists of terminal vertices [IJ.

Over time, numerous researchers have applied and further developed the the-
ory of the metric dimensions of graphs. In 1996, this concept was used in robotic
navigation modeling by Khuller et al. [2]. In 2004, Sebo and Tannier applied this
concept to solve combinatorial optimization problems [3]. Besides conceptual ad-
vancements, the metric dimension has also undergone development in various graph
operations. In 1970, Roberto Frucht and Frank Harary [4] introduced the corona
operation of graphs. In 2010, Hou and Shiu applied and developed the corona
operation to obtain the spectrum of the edge corona graphs [5].

In 2011, Iswadi et al. applied the concept of the metric dimension to deter-
mine this parameter for corona graphs [6]. In the same year, Yero et al. successfully
determined the metric dimension of the recursive corona graphs [7]. Gopalapillai
also advanced the corona operation, naming it the neighborhood corona operation,
and applied it to obtain the spectrum of the circular corona graphs [8]. In 2017,
Rinurwati et al. successfully extended the corona operation into the edge corona
operation, enabling the determination of the metric dimension of the edge corona
graphs [9]. Additionally, Rinurwati et al. also identified the local metric dimen-
sion of m-pendant vertex graphs [10]. In 2021, R.E. Nabila and Rinurwati further
developed the corona operation by introducing bobble-neighborhood-corona graph,
and studied its metric and edge-metric dimensions [I1].

The concept of the nonlocal metric dimension was first introduced in 2022
by Sandi Klavzar and Dorota Kuziak. The nonlocal metric dimension of graphs is
the cardinality of the smallest nonlocal resolving set, which represents every pairs
of non-adjacent vertices in graphs [I2]. Sandi KlavZar and Dorota Kuziak success-
fully determined the nonlocal metric dimension of block graphs, wheel graphs, and
corona vertex graphs [I2]. Rinurwati et al. determined the nonlocal edge metric
dimension of graphs in 2024 [13].

The notion of adjacency in metric dimensions was initially introduced by
Jannesari and Omoomi [I4], and has since gained significant attention from various
researchers. One notable application of this concept is the study of the local adja-
cency metric dimension in generalized wheel graphs featuring m-pendant vertices,
as previously investigated by Rinurwati et al. [I5]. In an effort to deepen the explo-
ration of adjacency-based metric dimensions, including their nonlocal variants, this
paper focuses on local adjacency metric dimension in generalized wheel structures
and the enhancement of corona operations, particularly in the context of degree
corona graphs.

2. PRELIMINARIES

All graphs G = (V(G), E(G)) (basic and operating) used in this study are
connected and simple. The operation graphs explained here are corona and joint.



The concepts that will be developed are adjacency metric resolving set and nonlocal
property.

2.1. Basic Graphs Gj.

Various types of basic graphs Gy, € {P,,C,, Sy, K,}, which are commonly
utilized in the construction of new graphs through graph operations, are described
in this part. The definitions in this subsection are referenced from [16].

Definition 2.1. [I6] A path graph Py, is a graph with order n and size n—1. The
set of vertices in P, is V(P,) = {v1,va,...,v,} where n > 1 and the set of edges
E(P,) ={viviq1 |i€{1,2,...,n - 1}}.

Figure [1| shows the path graph with n vertices, commonly denoted as P,.
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FiGURE 1. Path Graph P,

Definition 2.2. [I6] A cycle graph C,, is a graph with order n and size n, where
n > 3, with the vertex set V(C,,) = {v1,v2,...,v,} and the edge set E(C,) =
{vivig1 |1 € {1,2,...,n—1}} U{vpv1}.

Figure [2| presents a cycle graph with order n, C,,.
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Ficure 2. Cycle Graph C),

Definition 2.3. [I7] A star graph is a tree consisting of n wvertices, in which a
single vertex has degree n— 1, while each of the remaining n — 1 vertices has degree
one.

Figure [3| presents a star graph with order n, .S,,.
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FiGURE 3. Star Graph S,

Definition 2.4. [16] A complete graph K,, is a graph that has n vertices, where
every vertex forms an edge with each other vertex. A Complete graph K, has
n\y _ n(n—1)

(2) = —5— edges.

~ When n =1, the complete graph K, = K is referred to a trivial graph, and

K, is also known as a null graph or an empty graph.
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Fi1GURE 4. Complete Graph K,

2.2. Some Graphs Operation.

In this part, the corona and joint product between graphs G and H are dis-
cussed. The corona operation was originally introduced in [4], and its construction

can be found in Definition The joint operation was introduced in [17] and
described in Definition 2.6l

Definition 2.5. [4] Let G and H be two graphs. The corona product of G and H,
denoted by G® H, is a graph obtained by taking one copy of G and creating |V (G)|
copies of H, denoted as H; for each i € {1,2,...,|V(G)|}, and then joininh every
vertex in H; to the it vertex of G. The resulting graph is referred to the corona
graph.

Figure [9] illustrates the graph obtained from the corona operation between
P,,, whose vertices are colored red, and K5, whose vertices are colored blue.
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FIGUrE 5. P, ® Ky

Definition 2.6. [I8] The joint operation of G and H, written as G + H, is the
graph formed by taking G and H, and adding an edge between every vertex in G
and every vertex in H. This resulting graph is referred to the joint graph.

Figure [6] illustrates the graph obtained from the joint operation between P,,
whose vertices are colored red, and K7, with its single vertex colored blue.
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FIGUuRrE 6. K1 + P,

2.3. Centered Graphs G..

A vertex v in graph G is referred to a center vertex of G if it is adjacent to
each other vertex in the graph. In other words, a center vertex in G is one that is
connected by an edge to all other vertices. The degree of v, deg(v), represents total
number of edges that incident to v. If n = |V(G)] is the total number of vertices
in G, and w is a center vertex, then deg(w) = n — 1. A graph G that contains all
of its center vertices is called a centered graph, denoted G.. A centered graph can
be a basic graph or a graph produced from an operation. Some centered graphs for
which we will determine their nonlocal-adjacency metric dimensions are: graphs
K, and S,, (including basic graphs), and graphs K; + P,,, K1 + C,, and K,, + K,,
(including the graphs resulting from operations). From Figure [3] we can see that
the only center vertex of graph S, is vertex v,,. All vertices of graph K,, are center
vertices, and a center vertex of graphs Ky + P,, K1 + C),, and K,,, + K, is the
vertex of K71, respectively.

2.4. Adjacency Metric Dimension.

The concept of adjacency distance is introduced by Jannesari and Omoomi
as described in Definition 2.7
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Definition 2.7. [14] Given graph G, and let T = {t1,ta,...,t;} C V(G) be an
ordered set. For every vertex v € V(Q), the adjacency metric representation of v
with respect to T is 14 (V|T) = (da (v,t1),da (v,t2),...,da (v, ;) with

0 , for v=t
da(v,t;) =<1 , for v~t
2, for vt

where v ~ t; means v is adjacent to t;, and v ~ t; means v is not adjacent to t;,
ie{1,2,.., k}.

The adjacency metric dimension of graph G is defined as follows.

Definition 2.8. [19] For an ordered subset T = {t1,t2,...,tx} C V(G) and
p € V(G), the adjacency metric representation of p with respect to T is k-vector
rA(|T) = (da(p,t1), da(p,t2),...,da(p,tx)). The set T is an adjacency metric
resolving set of G, if Vp,q € V(G) with p # q holds ra(p|T) # ra(q|T). The ad-
jacency resolving set with the minimum number of vertices is called the adjacency
basis of G. The adjacency metric dimension of G, written as dima(G), is defined
as the number of elements in its adjacency basis.

Several researchers, as referenced in [19], have investigated and determined
the adjacency metric dimensions for numerous types of connected graphs. For any
graph G, two distinct vertices p and ¢ can either be adjacent or non-adjacent. Based
on Definition a resolving set T in the context of nonlocal-adjacency metric
only resolves between vertex pairs that are not adjacent. The minimum number
of elements in such a resolving set T' is referred to the nonlocal-adjacency metric
dimension, represented by dim a,;(G). This study combines the adjacency metric
resolving set concept and the nonlocal property in a graph. Thus, we can construct
a concept that is produced from this development, as we can see in Definition [3.1]

3. MAIN RESULTS

A formal definition of nonlocal-adjacency metric dimension for graph G is
provided below.

Definition 3.1. Let G be a connected graph and suppose T = {t1,ta,...,tx} is
an ordered subset of its vertex set. For any vertexr uw € G, the adjacency met-
ric representation of u with respect to T is given by the k-vector ra(u | T) =
(da(u,t1),da(u,ta),...,da(u,ts)), where da(u,t;) denotes the adjacency distance
from wvertex u to vertex t;, for i € {1,2,...,k}. The set T is called a nonlocal-
adjacency metric resolving set for G if, for every pair of distinct non-adjacent ver-
tices u and w in G, their representations are distinct, orra(u | T) # ra(w | T).The
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minimum cardinality among all such resolving sets is referred as the monlocal-
adjacency basis of G. The number of vertices in this basis is called the nonlocal-
adjacency metric dimension of G, denoted by dim 4,,)(G).

3.1. Nonlocal-Adjacency Metric Dimension of Basic Graph.

In this section, we determine the nonlocal-adjacency metric dimension of basic
graph Gy, specifically non center vertex, that is path graph P, and cycle graph C,.
Theorem describes nonlocal-adjacency metric dimension of P,, n > 5.

Theorem 3.2. Nonlocal-adjacency metric dimension of P, n > 5 is

2 , forn € {5,6}
L"THJ , forn>17.

dimAnl (Pn) = {

Proof. Let P, be labeled as shown in the Figure The vertices set of P, is V(P,) =
{v1,v2,...,0,}, deg(v1) = 1 = deg(v,,) and deg(v;) =2 for i € {2,3,...,n— 1}
The proof is analyzed under two separate conditions:

Case 1. For n € {5,6}. We choose W5 = {v1,v3} = Ws. The vertices in V(P,)
have adjacency metric representations with respect to Wi.

ra(v1|Ws) = (0,2) = ra(v1|Ws)
ra(va|Ws) = (1,1) = r4(ve|Ws
ra(v3|Ws) = (2,0) = r4(vs|Ws
ra(vg|Ws) = (2,1) = ra(vg| W

ra(vs|Ws) = (2,2) = ra(vs|Ws).
ra(vs|Ws) = (2,2) = ra(vs|Ws), but vs is adjacent to vg in Ps. The cardinality

of Wy, |Wy| = [252] = 2, for n € {5,6} is minimum, because if we take a set

W¢ = W{ with cardinality one, then r4(v3|Wi) = ra(va|Wi) = ravs|WE) = (2),
but vg = vs. In Ps, 74 (v;|W§) = (2) for 3 <4 < 6, vg = v5, v3 % vg, and vy » ve.
So W{ = W{ is not a nonlocal-adjacency metric resolving set of Ps and Ps. So,
|W5| = |[Ws| = 2 is minimum, such that dim 4,;(P,) = 2 for n € {5,6}.

Case 2. For n > 7. An ordered set T' = {vy4, vg, Vs, . . . Va2 41) } is chosen with

~ I I

cardinality 7', |T| = | %+ |. The adjacency metric representation vertex v; € V/(P,)
with respect to T is

T‘A(’Ui ‘ T) = (dA(’Ui,rU4),dA(U7;,U6),dA(’U,L',1}8),. "dA(Ui’UQ(\_%J—&-I))) s With

L=

0 ,ifi=j
da(vi,vj) =491 Liffi—jl=1

2 Lifli—j|>2
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fori € {1,2,...,n}and j € {4,6,8,...,2(L"THJ+1)}. We have r4(v1|T) =

(2,2,,...2) = ra(v2]T) but v1 ~ vy and rx(vs3|T) = (1,2,,...2). Hence, all non-
~———— ———
L3 L)

adjacent vertices in P,, n > 7, have different adjacency metric representations.
Therefore, T is a nonlocal-adjacency metric resolving set of P,,. The cardinality of
T, |T| = [™#] is minimum. If we take any ordered subset 7/ C T C V(P,) with
IT'| < |T|, and we choose T" = T\ {v;}, i € {4,6,...,2(| 2| + 1)}, then there
exists a vertex v; € V(P,) such that ra(v; | T") = ra(v; | T) = (2,2,...,2) with
—_———

L5t -1
1<4,5 <n,i#j, and v; # v;. Therefore, T is a minimum nonlocal-adjacency
metric resolving set of P,. So, the nonlocal-adjacency metric dimension of P, is
dima,,(P,) = |T| = [ 2] O

nl
Nonlocal-adjacency metric dimension of Cy,, n > 5, is given in Theorem [3.3]

Theorem 3.3. Nonlocal-adjacency metric dimension of Cp, n > 5 is

L"THJ , foroddn >5

VLT_lJ , for even n > 6.

dimAnl(Cn) = {

Proof. Suppose the graph C,, is labeled as shown in Figure [2] so that the vertex
set of Cy, is V(Cy,) = {v1,v2,...,v,}. An ordered subset T C V(C,,) is chosen,
that is T' = {v1,v3, vs5,...}. It will be shown that T is a nonlocal-adjacency metric
resolving set of C,. The proof is divided into two cases, that is for odd n > 5 and
for even n > 6.

Case 1 For odd n > 5.

Choose the set T = {v1,vs,v5,...} = {var—1 | k € {1,2,3,..., |2 |}}. The

2]

adjacency metric representation of v; € V(C,,) with respect to T, is ra(v; | T) =

(da(vi,v1),da(vi,v3),da(vi,vs), ... ,da(vs,vop—1)), with
0 Lifi=j

dA(’Ui,’Uj): 1 7lf |Z—]|:1

2 Lifli—j|>2

fori € {1,2,...,n}andj=2k—1, ke {1,2,...,| =t |}. All vertices have distinct
adjacency metric representations, except for v,_; and v,_s, which have the same
representation {2,2,...,2}, but v,_; is adjacent to v,_s. Hence, the adjacency
—_——
|25
metric representations of non-adjacent vertices are all different. Therefore, T is
a nonlocal-adjacency metric resolving set for C,, when n > 5 and n is odd. The
n+1

cardinality of T = |T| = LTJ is minimum because if an ordered subset 7V C T C



V(C,) is taken with |T"| < |T|, say T" = T\ {v;} for some i € {1,3,...,2 [ 2] -1},
then there exists a vertex v; € V(C,,) such that
ra(vi | TI) = 7aA(Uj | T/) ={2,2,...,2}
—_———
(=51
with 1 <4,5 <n, ¢ # j, and v; = v;.

Thus, any ordered subset 7/ C T C V(C,,) with |T'| < |T| is not a nonlocal-
adjacency metric resolving set of C,. Consequently, the nonlocal-adjacency metric
dimension of C, is diman (Cy) = |T| = L”THJ
Case 2 For n > 6, n even.

Choose the ordered set T = {vor—1 | k € {1,2,..., |22 |}} € V(Cy). The adja-
cency metric representation of the vertices v; € V(C,,) with respect to T is

ra(v; | T) = (dA('Ui,'U]),dA('UZ',U?,),...7dA(Ui,U2LnT—1J_1)) , with

0 ,ifi=j
dA(Ui,Uj)Z 1 ,if|i—j|:1
2 Lifli—j|>2

fori e {1,2,...,n}and j =2k —1, k€ {1,2,..., L%J}

Hence, every vertex has a distinct nonlocal-adjacency metric representation. So, T

is a nonlocal-adjacency metric resolving set of C,,. The cardinality |T| = L"glj is

minimum because if any ordered subset 7/ C T C V(C,,) is taken with |T"| < |T,

say T = T\ {v;}, for some 7 € {1,3,...,2 L";lj — 1}, then there exists a vertex

v; € V(C,,) such that ra(v; | T") =ra(v; | T") =1{2,2,...,2}, with 1 < 4,5 < mn,
—_———

[=5 -1
i # 7, and v; = vj.
Hence, any ordered subset 77 C T C V(C,,) with |T'| < |T| cannot serve as
a nonlocal-adjacency metric resolving set for C),. Consequently, the nonlocal-
adjacency metric dimension of C,, is given by diman(C,) = |T| = L%J, where n
is even and n > 6. O

3.2. Nonlocal-Adjacency Metric Dimension of Centered Graphs G..

Non local-adjacency metric dimension of centered graphs that are basic graphs
are presented in Theorem and Theorem The following theorems, up to
Theorem 3.8, address the nonlocal-adjacency metric dimension of centered graph
that are the result of an operation. Characterization of nonlocal-adjacency metric
dimension of a graph is presented in Theorem [3.4]

Theorem 3.4. Nonlocal-adjacency metric dimension of Ge, diman(Ge) = 0 if
and only if G, = K,,.
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Proof. (<) It is known that G. = K,. From Definition we know that all
vertices in G. = K,, are adjacent to each other. So, there is no vertex in G,
that is not adjacent to another. Hence, there is no vertex that can be chosen as
a candidate for the element of the nonlocal-adjacency metric resolving set of G..
Therefore, the nonlocal-adjacency metric resolving set of G is the empty set. Thus,
the minimum cardinality of the nonlocal-adjacency metric resolving set is zero or
dimAnl(Gc) =0.

(=) It is known that the nonlocal-adjacency metric dimension of G, is zero.
This means the cardinality of the nonlocal-adjacency metric resolving set of G, is
zero. Therefore, the nonlocal-adjacency metric resolving set of G, is the empty set.
This means there is no vertex in G. that is not adjacent to another. Hence, all
vertices in G, are adjacent to each other. The only connected graph that has this
property is K,,. O

So, zero is lower bound of the nonlocal-adjacency metric dimension of graphs.
This lower bound is sharp because dim a,,;(G) = 0 is achieved by G = K,,. Thus,
we can write 0 < dimani(G).

Theorem [3.5] presents the nonlocal-adjacency metric dimension of star graph
Sn,n > 4.

Theorem 3.5. Nonlocal-adjacency metric dimension of Sp, n > 4 is dim an;(Sy) =
n—2.

Proof. Suppose the graph S, is labeled as shown in Figure[3] The vertex set of .S,
is V(S,) = {v1,v2,v3,...,0p—1,0n}, with deg(v;) = 1 for i € {1,2,3,...,n — 1},
and deg(v,) = n — 1. Every vertex v; with ¢ € {1,2,3,...,n — 1} is not adjacent
to one another. Let us choose the set T = {v1,v2,v3,...,0,—2} C V(Sy,). We will
show that T is a nonlocal-adjacency metric resolving set for S,,. The adjacency
metric representations of the vertices in S,, with respect to the set T are:

TA(UTL |T):(171a15a1)7 TA(vn—l ‘T):(27272772)a
—_—— —_————
(n—2) (n—2)

ra(vi | T) = (da(vi,v1),da(vi,v2),...,da(vi,vn—2)),
with
0 ,ifi=y
da(vi,vy) = o ]
2 ifi#j
and v; ~ v; for all ¢,j € {1,2,3,...,n — 1},i # j, while v, ~ v; for all i €
{1,2,3,...,n— 1}.
Hence, all pairs of non-adjacent vertices in S,, have distinct representations.
Therefore, T is a nonlocal-adjacency metric resolving set for S,,. The cardinality of

T, |T| = n — 2 is minimum because if we take any ordered subset 77 C T' C V(S,,)
with |T| < |T| = n—2, and we choose T = T\ {v;}, i € {1,2,...,n— 1} then there
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is exist a vertex v; € V(S,) such that ra(v; | T7) = ra(v; | T') = (2,2,2,...,2),
|

n—3
with 1 <4,j <n—1,i# j,v; » vj. Therefore, T is a minimum nonlocal-adjacency
metric resolving set for S,,. Hence, the nonlocal-adjacency metric dimension of S,
is dima,,(Sp) =n — 2. O

The next centered graph to be discussed is the fan graph. Let G. be a fan
graph K; + P, whose vertices are labeled as shown in figure [6] .The vertex set
of K1+ P, is V(K1 + P,) = {v1,v2,03,...,0n,0n+1}, so the order of the graph
Ky, + P, is |V(K1 + P,)| = n+ 1 = m. The nonlocal-adjacency metric dimension
of the graph K7 + P, is given in the following theorem.

Theorem 3.6. Nonlocal-adjacency metric dimension of fan graph F,, = K1 + P,
forn >4 is

1 , form=5
diman(F) =42 form =0
L 3 J , form>17

with m =n+ 1.

Proof. Let the vertices of graph K; + P, labeled as vg,v1,...,v,, where vg is the

vertex of degree n, v; and v, are the vertices of degree two, and wvo,vs,...,vV,_1
are the vertices of degree three. Hence, the vertex set of K1 + P, is V(K1 + P,) =
{vg, v1,v2,...,v,}. The proof is given in three cases.

Case 1. For m =5.

Then n=m —1=4,s0 V(K1 + Py) = {vg, v1, v2, 3,04}

Choose the set T = {v;}. The vertices in K; + P4 have the following adjacency
metric representations with respect to the set T'.

ra(vr | T) =(0), 7ra(va|T)=ra(vo|T)=(1), ra(ws|T)=ra(va|T)=(2)

However, vo ~ vy and v3 ~ wvg. Therefore, T is a nonlocal-adjacency metric re-
solving set of K7 + P4, and the cardinality T, |T| = 1 is minimum. Thus, the
nonlocal-adjacency metric dimension of Ky + Py is diman (K1 + Py) = 1.

Case 2. For m = 6.

Thenn=6—1=25, so V(K + Ps) = {vg,v1, v2, U3, V4,05 }.

Choose the set T'= {vy,v3}. The vertices in K; + P5 have the following adjacency
metric representations with respect to the set T'

ra(ve | T)=1(0,2), ra(v2|T)=ralvo|T)=(1,1),

TA(U3 | T) = (270)3 TA(U4 | T) = (27 1)a TA(UE') | T) = (272)
Nevertheless, vo is adjacent to vyg. Therefore, T' constitutes a nonlocal-adjacency
metric resolving set for the graph K7 + Ps, and its cardinality |T'| = 2 is minimum.

To justify minimumity, assume there exists a set 7' with |T'| = 1, for instance
T =T\ {v;}, where i € {1,3}. In such a case, at least one pair of distinct vertices
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in the graph would share an identical nonlocal-adjacency metric representation with
respect to T".
T =T\ {vi} ={vs}, then ra(vs | T') = ra(vs | T") = (2), and vz » v
T =T\ {vs} ={v1}, then ra(vy | T7) =ra(vs | T) = (2), and vy » v5.
Thus, 7" is not a nonlocal-adjacency metric resolving set. Therefore, dim 4, (K1 +
Ps) =2.
Case 3. For m > 7.
Choose the ordered set T' = {vy4, vg, Us, . - -, OYESY }. The vertices v; € V(K14 P,),
have the adjacency metric representations with respect to T

ra(v; | T) = (dA(’Ui,U4),dA(1}i,’U6),dA(’Ui,US),...,dA (’Uz‘,UQL%—lJ)>
with the distance defined by:
0, ifi=3j
da(vi,v) =<1, ifli—jl=1
9, if i —j| > 2.

Hence, we obtain the adjacency metric representation r4(vy | T) = ra(ve | T) =
(2,2,...,2), withv; ~ vy. While all other vertices in V(K7 + P,) \ {v1,v2}
—_———

L=52)
have distinct representations. Thus, 7' is a nonlocal-adjacency metric resolving
set, and its cardinality |T| = |53 | is minimum, because if we choose any subset
T C T with |T"| < |T| will result the adjacency metric representasion r4(vy | T') =

ralve | T') = (2,2,...,2), with v » vy. Thus, T” is not a nonlocal-adjacency
—_——
L5t -1
metric resolving set. Therefore, we conclude diman (K1 + P,) = LmTf‘?’J O

Let G. be a wheel graph K; + C,, with vertices labeled as shown in the
following figure.

FIGURE 7. K; + C,

The vertex set of K1+ C), is V(K1 +Cy,) = {v1,va,...,0,+1}. The nonlocal-
adjacency metric dimension of K 4+ C), is given in the following theorem.
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Theorem 3.7. Nonlocal-adjacency metric dimension of K1 + Cy,, for n > 5, is

n+1

dd n >
dzmAnl(K1+Cn):{L3J ,fOTO n_5

L"T_lj , for even n > 6.

Proof. Proof is divided into two cases.
Case 1. For odd n > 5. Choose the ordered set T = {vy,vs3,vs,. .. ’U2Lﬂj*1} -
3

V(K + C,). For every vertex v; in K1 + C,,, the adjacency metric representation
with respect to T is

ra(v|T) = (dA(Ui,Ul),dA(Ui,’Ug),dA(Ui,U5)7 - ’dA(U“UQLnTHJ*l))

with
0 ,ifi=j
da(vi,vj))=q1 Jifli—j|=1
2 L if|i—j|>2
fori € {1,2,...,n+1} and j € {1,3,5,...,2 |2 | — 1}. Specifically for n = 5,
ra(n1|T) =ra(vn1|T) = (1,1) but vy and v, are adjacent. Similarly for n =7,
ra(0i|T) = ra(vp1|T) = (1,1) and 74 (vp—1|T) = ra(vn—2|T) = (2,2), but the
vertices with the same adjacency metric representation are still adjacent. For n > 9,
TA(Wn—1|T) = ra(vp—2|T) = (2,2,...,2), but v,—1 ~ vp_o. It follows that the
—_——
L5
adjacency metric representation of non-adjacent vertices in K + C), is all distinct.
Consequently, T is a nonlocal-adjacency metric resolving set of K; + C,. The
cardinality of T, |T| = L"T“J, is minimum, since if any ordered set TV C T C
V(K1 + Cy) with |T| < [T is taken, say 7" = T \ {v;}, j € {1,3,..., [ =] — 1},
then there exist vertices v;, i € {1,2,...,n} such that ra(v;|T") = ra(v;|T") =
(2,2,...,2), where 1 < 4,5 < n, and ¢ # j, that is T’ not being a nonlocal-
| ——
L2t -1
adjacency metric resolving set of K1 + C),. Therefore, T is the nonlocal-adjacency
metric basis of K1 + Cp,, and diman (K1 + Cp) = |T| = L”THJ, for odd n > 5.
Case 2. For even n > 6. Choose the ordered set T = {v1, v, v4, g, . . .  Vy| nss | 1.
2

The adjacency metric representation of the vertices in K7 + C), is
ra(v|T) = (dA(’Ui, v1),da(vi,v2),da(vi,v4),...,da(vi, UQLansJ ))
with
0 ,ifi=yjy

dA(Ui,’Uj) = 1 7lf |Z—]| =1
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fori € {1,2,...,n+1}and j € {1,2,4,...,2|253|}. Foreveryn > 6,r4(vo—1|T) =
ra(vp—o|T) =(2,2,...,2), but v,—1 ~ v,_o. Therefore, the adjacency metric rep-
—_——
L5
resentation of non-adjacent vertices is distinct. Thus, T is a nonlocal-adjacency
metric resolving set of Ky + C,. The cardinality of T, |T| = |252], is mini-
mum, since if any ordered set 7" C T C V(K3 + Cy,) with |T’| < |T| is taken,
say 7" = T — {v;}, where j € {1,2,4,6,...,2 L”T_?’J}, then there exist vertices
v; € V(K1 + Cy,) such that ra(v;|T") = ra(v;|T") = (2,2,...,2), with 1 <i,j < n,
—_——
L1222 1-1
i # j, and v; » vj. Therefore, T' is the nonlocal-adjacency metric basis of K; +Cj,,
and diman (K1 + C,) =|T| = L”T_?’J, for even n > 6. O

Given a complete graph K, with the vertex set V(K,,) = {v1,v2,...,0m}
and a graph K,, with the vertex set V(K,,) = {x1,22,...,7,}. The graph K, + K,
is obtained by taking the graph K, and the graph K,,. Then, every vertex in K,,
is connected to all the vertices in K,,. The graph K,, + K,, has vertex set V (K, +
K,) = V(K,,) UV(K,) = {v1,v2,...,Um,21,%2,...,2,} and edge set E(K,, +
K,) = E(K;)U{viz;|i€{1,2,...,m},j € {1,2,...,n}}. This can be expanded
as E(Kp+Ky) = {v1ve, 0103, . . ., 10, JU{0203, 0204, . . ., Vo }U- - -U{0,— 10 JU
{viz1, V221, ..., U1} U {0122, V220, . .., UmTa} U+ U{01Zp, Vap, . . ., Uy Ty}

As an illustration, the graph K,, + K,, can be seen in Figure

Xn

V2 Vg

Vs

FIGURE 8. Graph K,, + K,,

In Figure , the red vertex represents the vertex of K, and the green vertex
represents the vertex of K,,. The Nonlocal-adjacency metric dimension of K,, + K,
with m > 3 and n > 1, is presented below.

Theorem 3.87.L6t G. be a complete graph K,, with m > 3 and let Hbian
empty graph K,, n > 1. Nonlocal-adjacency metric dimension of K,, + K, is
diman (K + K,) =n — 1.




15

Proof. Let T = {z; | j € {1,2,...,n — 1}} C V(K,). Adjacency metric rep-
resentations of the vertices of K,, + K, with respect to T are ra(v; | T) =
(dA(U¢,$1),dA(U¢,JZ2),...,dA(U¢,$n_1)), 1 € {1,27...,777,} with dA(UZ‘,l‘j) = 1,
je{1,2,.,n}and ra(zy | T) = (da(zh, 1), da(xh, 2), ..., da(Th, Tn-1)), hE
{1,2,...,n} with

0 ,ifj=nh
da(wp,z;) = L
2 ,ifj#h.
Since all of vertices that ra(v; | T), ¢ € {1,2,...,m} are all the same, which is
equal to (1,1,...,1) where v; are all adjacent to each other, then the adjacency
—_——

(n—1)
metric representation of every two adjacent vertices is not different. However,
for every h,j € {1,2,...,n} with h # j, xp » x; and ra(z, | T) # ra(z; | T).
Hence, although T serves as a nonlocal-adjacency metric resolving set for the graph
K,, + K,,, this does not establish it as a lower bound. Therefore, the nonlocal-
adjacency metric dimension satisfies dim g (K, + K,) <n — 1.

Now, we show that diman (K, + K,) > n—1. Let T = {z; | j €
{1,2,...,n — 1}} be a nonlocal-adjacency metric resolving set with || = n — 1.
Assume that an ordered set 7" is another minimum nonlocal-adjacency metric re-
solving set, or [T'| < |T'| = n—1. If we select an ordered set 7" C T'— {z, x;}, 1 <
h,j < n, h # j, so there is exist two vertices zj,z; € V(K,, + K,) such
that ra(zp | T') = ralz; | TV) = (2,2,...,2). It should be noted that T is

L —

<(n—1)
not a nonlocal-adjacency metric resolving set, which is contrary to the assump-
tion. So, the lower bound is diman (K, + K,) > n— 1. We conclude that
d’imAnl(Km +K,)=n—-1 O

3.3. Nonlocal-Adjacency Metric Dimension of Degree Corona Graphs.

This subsection explained definition of degree corona graph and the nonlocal-
adjacency metric dimension of the graph resulting from degree corona operation.
Degree corona operation is an extension of the corona operation discovered by [4].
The following is the definition of a degree corona graph.

Definition 3.9. The degree corona graph of two graphs G and H, denoted by
G Odeg H, is a graph obtained by taking a graph G and ZLZ&G)Ideg(vi) copies
of the graph H, denoted by H;; (the ij™" copy of H). For each i verter v; €
V(Q), connect v; to every vertex in each H;j, where i € {1,2,...,|[V(G)|} and
je{1,2,...,deg(v;)}.

As an illustration, the degree corona graph can be seen in Figure []
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X1 X

Xo(n-1)
VUn-1

X2 Xn—1

FIGURE 9. Graph S,, ®geg K1

In Figure[d] the red vertex represents the vertex of the graph S,, and the blue
vertex represents the vertex of the graph K.

Observation 3.10. Given a connected graph G, and H is a graph with at least
two vertices. In any subgraph H; of G ©geg H, the vertices u and v are considered
similar adjacency distance with respect to H;.

Based on the above observation, we can formulate the lemma below.

Lemma 3.11. Let G = (V(G), E(G)) be a connected graph with order n > 2, and
let H be a graph of order at least two such that H is not isomorphic to the complete
graph K,,. For each i, let H; = (Vi(H;), E;(H;)) represent the subgraph in G ®qeq H
associated with the i copy of H.

(1) For any pair of vertices o, € V;(H;), it holds that dAGQdegH(a,p) =

dAGQdegH(B,p) for every vertex p € V(G ®aeg H) \ Vi(H;).

(2) If T is a nonlocal-adjacency metric resolving set for the graph G Oqeq H,

then for each i € {1,2,...,n}, we have V;(H;) NT # 0.

(8) If T is a nonlocal-adjacency metric resolving set with minimum cardinality

for G ®qeg H, then we have V(G)NT = (.

(4) If H be a graph, and let T be a nonlocal-adjacency metric resolving set for

Proof.

the graph G @geg H. Then, for each i € {1,2,...,n}, the subset V;(H;)NT
serves as a monlocal-adjacency metric resolving set for the subgraph H;.

(1) Suppose ¢ = f; € V(G). The conclusion follows immediately
from the fact that dAGGdegH(mp) = dAGOdegH(a,q) + dAGGdegH(q’p) =
dAGOdegH (ﬁ7 C]) + dAGQdegH (qup) = dAGQdegH (ﬁvp)'

We suppose V;(H;) N T = 0 for some i € {1,2,...,n}. Let p,q € V;(H;).
By (1), we have dAG@ngH(p7 a) = dAc@dch<Q7 a) for every vertex a € T,
which is a contradiction.

In the following, we show that 77 = T\ V(G) is a nonlocal-adjacency metric
resolving set for G Oqeg H. Let p, ¢ € V(®@degH) with p # ¢q. We examine
the proof by considering the following cases.
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Case 1. p,q € V;(H;). By (1), we conclude that there exists g € V;(H;) N T’
such that dAc@degH(p’ B) # dAGQdegH(q,B).

Case 2. pe V;, and ¢ € V}, with i # j. Let 8 € V;(H;) NT". Then we have
dAcedegH(pv B)=2= dAGQdegH(QMB)'

Case 3. p,q € V(G). Let p = §; and § € V;NT'. Then we have dAGGdegH(p, B) =

1< (1+ dAGQdegH(Q7p)) = dAc:@degH(%B) =2
Case 4. ¢ € V;(H;), and ¢ € V(G). If ¢ ~ ¢, then ¢ = 3;. Let 5; € V,
with j # ¢, and let 5 € V; NT’. Then we have dAGQdegH(pvﬂ) =
1+ dAc:@degH((LB) =2= dAc@degH(%B)' For q + q = B;, we take 3 €
ViNT" and obtain dAGQdegH (p,B) = dAGOdegH (p,q) + dAGQdegH (q,8) >
d AGogegH (¢, B). Therefore, T” is a nonlocal-adjacency metric resolving
set for G Ogeg H.
(4) Let T; = T NV;(H;). For any ¢q € T;, the conclusion is immediate. Now
suppose p,q € V; \ T;. Since T is a nonlocal-adjacency metric resolving
set for G @geg H, it follows that r(p | T) # r(q | T). According to (1),
for every vertex o in G ®geg H that does not belong to V;(H;), we have
dAGQdegH(p,a) = dAGQdegH(q,a). Therefore, there must exist some 5 €
T; such that dAGQdegH(p7 B) # dAGQdegH(q,ﬁ). This implies that either
B ~ p and 8 o g, or the other way around. In the first case, we obtain
dAGQngH(p,B) = dpu,(p,B) = 1, while dAGQngH(q,B) > 1. The second
case, where 5 ~ g and (8 +¢ p, yields a similar conclusion. Hence, T; forms
a nonlocal-adjacency metric resolving set for H;. O

An observation regarding the element of basis of the degree corona graph was
also obtained as follows.

Observation 3.12. Given a connected graph G, and H be an empty graph con-
taining one or more vertices. In any subgraph H; (the i*"-copy of H) of the graph
G Odeg H, the vertex g € V;(H;) is the element of basis of the graph G ©deg H.

In addition to the definition of the degree corona graph, this research also
presents a theorem on the nonlocal-adjacency metric dimension of the degree corona
graph of centered graphs G. € {S,, K1 + P, K1 + Cy, K, + K7n} and the trivial
graph K;.

Theorem 3.13. Let G, be a centered graph, G € {Sy, K1+ Py, K1+Cp, Ky + K, }
with n > 4 and H is the trivial graph Ky. The nonlocal-adjacency metric dimension
of the degree corona graph G. ®Ogeg K1,

[V(Ge)l

dimAnl(Gc ®dcg Kl) = Z deg(vl) -1
=1
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Proof. Based on Observation let T" be the nonlocal-adjacency metric resolving
set of G¢ Odeg K1, that is T = {z1,22,. .. 7I[ZLZ§GC)| deg(vi)]_l} but this is insuffi-

cient to establish it as the lower bound. So, the upper bound is dim an;(Ge Odeg
Ky) < [EL‘QG“)' deg(vi)] — 1. If the basis selection, aside from the vertex of H;,
then it is not a basis.

Now, we show that dimani(Ge @deg K1) > {ZLZQGC)‘ deg(vi)} —1. Let T =

{x1,229,... ’x([zgﬁcmdeg(vi)]—l)} be a nonlocal-adjacency metric resolving set

with |T'| = [ZLZ(IGC)‘ deg(vi)} —1. Assume that an ordered set 7" is another mini-
. . . V GC

mum nonlocal-adjacency metric resolving set, or |T'| < |T'| = [Z‘l:(l ) deg(vi)} -

1. If we select an ordered set 77 C T\{x;, z;}, 1<14,j < [ZLZ&G”)‘ deg(vi)] , 1#£

Jj, so that there exist two vertices z;,x; € V(G¢ Odeg K1) such that ra(x; |
T) =ryg(x; | T) = (2,2,...,2) . It should be noted that T is not a
—_——

<([ILie deg(v)] 1)
nonlocal-adjacency metric resolving set, which is contrary to the assumption. So,
the lower bound is dim ani(Ge @deg K1) > [ZLZ&G“” deg(v;)| —1. We conclude that

dimani (Ge Oaeg K1) = [zg@')' deg(vi)} ~1 O

3.4. Upper Bound of dim a,(G).
Based on the above research results, the upper bound of the nonlocal-adjacency
metric dimension is obtained as follows

diman(G) <n —r, achieved by G=S5,, r=radius(G).

3.5. Example of Application.

In the modern era, where online shopping platforms are rapidly growing,
the logistics distribution system has become a key focus for optimization by ship-
ping and expedition companies. In a distribution network, when two major cities
are directly connected through a main transportation route, the shipping sched-
ule can be carried out routinely and efficiently. However, for cities that are not
directly connected (non-adjacent), shipment planning must be done carefully; the
logistics must pass through other cities, and the shipping schedules need to be ad-
justed to minimize travel time and costs. In determining the metric dimension of
nonlocal-adjacency, the vertices in the graph represent the cities. Cities that have a
direct transportation route are represented as adjacent vertices in the graph, while
cities without a direct transportation route are represented as non-adjacent ver-
tices. These non-adjacent vertices need to be resolved, as they require a transit
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warehouse for collecting logistics, which are then scheduled for shipment accord-
ing to the delivery schedule. By modeling the distribution network as a graph
and applying the concepts of adjacency and metric dimension, we can identify key
points such as warehouse locations and transit warehouses that can improve overall
distribution efficiency.

4. CONCLUDING REMARKS

This study presents the determination and analysis of the nonlocal-adjacency
metric dimension for basic graphs P, and C,,, centered graphs including K,,, S,
K, + P,, Ki +C,, K,, + K,,, and for the degree corona product of a centered
graph G. € {S,, K1 + P, K1 + C,, K, + K,,} with the trivial graph K;. From
the discussion, it can be concluded that: Adding a vertex as a central vertex of
a connected graph G one by one can increase the order of the graph, while the
size of the nonlocal-adjacency metric dimension of graphs obtained remains the
same as the original graph, thus diman (K1 + (K1 4+ + (K1 + (K1 +G))--+)) =
dimani(G). Also, we obtained the upper bound, characteristics, and an example
of the application of nonlocal-adjacency metric dimension concept of graphs.
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