
J. Indones. Math. Soc.
Vol. 32, No. 01 (2026), pp. 1–20.

Nonlocal-Adjacency Metric Dimension of Graphs

Rinurwati1∗, Syaima Shafa Az Zahra1, Falda Isna Andini1, Soleha1,

Dian Winda Setyawati1, Komar Baihaqi1, and Iis Herisman1

1Department of Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia

Abstract. Let T = {t1, t2, . . . , tk} ⊆ V (G) be an ordered subset of the vertex

set of a graph G, and let u ∈ V (G) be a vertex in G. The adjacency metric

representation of vertex u with respect to the set T is the k-vector rA(u | T ) =

(dA(u, t1), dA(u, t2), . . . , dA(u, tk)). The set T is called a nonlocal-adjacency metric

resolving set of the graph G if rA(u | T ) ̸= rA(w | T ) for every pair of vertices u, v ∈
G with u not adjacent to v. The minimum cardinality of a nonlocal-adjacency metric

resolving set of G is called the nonlocal-adjacency metric dimension of G, denoted

by dimAnl(G). In this paper, we present graphs obtained from the degree corona

product of two graphs. The degree corona product of graphs G and H, denoted

by G ⊙deg H, is the graph constructed by taking a graph G and
∑|V (G)|

i=1 deg(vi)

copies Hij of graph H, and then connecting every vertex vi ∈ V (G) to all vertices

in Hij for every j ∈ {1, 2, . . . ,deg(vi)} and i ∈ {1, 2, . . . , |V (G)|}. Furthermore,

we determine and analyze the nonlocal-adjacency metric dimension of basic graphs

Gb ∈ {Pn, Cn}, centered graphs Gc ∈ {Kn, Sn,K1 + Pn,K1 + Cn,Km + Kn},
and the degree corona product graphs Gc ⊙deg K1. In addition, we provide upper

bounds, characterizations of the nonlocal-adjacency metric dimension of graphs, and

examples of applications of this concept.

Key words and Phrases: adjacency metric representation, nonlocal-adjacency
metric resolving set, nonlocal-adjacency metric dimension, degree corona product.

1. INTRODUCTION

The metric dimension concept of graphs was first introduced by Harary and
Malter in 1976 in their book titled Distance in Graphs [1]. In this book, Harary
and Melter explained that “The metric dimension of graphs is the cardinality of the
metric basis of graphs” [1]. Shortly afterward, Slater, Harary, and Melter developed
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an algorithm to determine the metric dimension of tree graphs, demonstrating that
every tree graph has a fixed metric basis, which consists of terminal vertices [1].

Over time, numerous researchers have applied and further developed the the-
ory of the metric dimensions of graphs. In 1996, this concept was used in robotic
navigation modeling by Khuller et al. [2]. In 2004, Sebo and Tannier applied this
concept to solve combinatorial optimization problems [3]. Besides conceptual ad-
vancements, the metric dimension has also undergone development in various graph
operations. In 1970, Roberto Frucht and Frank Harary [4] introduced the corona
operation of graphs. In 2010, Hou and Shiu applied and developed the corona
operation to obtain the spectrum of the edge corona graphs [5].

In 2011, Iswadi et al. applied the concept of the metric dimension to deter-
mine this parameter for corona graphs [6]. In the same year, Yero et al. successfully
determined the metric dimension of the recursive corona graphs [7]. Gopalapillai
also advanced the corona operation, naming it the neighborhood corona operation,
and applied it to obtain the spectrum of the circular corona graphs [8]. In 2017,
Rinurwati et al. successfully extended the corona operation into the edge corona
operation, enabling the determination of the metric dimension of the edge corona
graphs [9]. Additionally, Rinurwati et al. also identified the local metric dimen-
sion of m-pendant vertex graphs [10]. In 2021, R.E. Nabila and Rinurwati further
developed the corona operation by introducing bobble-neighborhood-corona graph,
and studied its metric and edge-metric dimensions [11].

The concept of the nonlocal metric dimension was first introduced in 2022
by Sandi Klavžar and Dorota Kuziak. The nonlocal metric dimension of graphs is
the cardinality of the smallest nonlocal resolving set, which represents every pairs
of non-adjacent vertices in graphs [12]. Sandi KlavZar and Dorota Kuziak success-
fully determined the nonlocal metric dimension of block graphs, wheel graphs, and
corona vertex graphs [12]. Rinurwati et al. determined the nonlocal edge metric
dimension of graphs in 2024 [13].

The notion of adjacency in metric dimensions was initially introduced by
Jannesari and Omoomi [14], and has since gained significant attention from various
researchers. One notable application of this concept is the study of the local adja-
cency metric dimension in generalized wheel graphs featuring m-pendant vertices,
as previously investigated by Rinurwati et al. [15]. In an effort to deepen the explo-
ration of adjacency-based metric dimensions, including their nonlocal variants, this
paper focuses on local adjacency metric dimension in generalized wheel structures
and the enhancement of corona operations, particularly in the context of degree
corona graphs.

2. Preliminaries

All graphs G = (V (G), E(G)) (basic and operating) used in this study are
connected and simple. The operation graphs explained here are corona and joint.
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The concepts that will be developed are adjacency metric resolving set and nonlocal
property.

2.1. Basic Graphs Gb.

Various types of basic graphs Gb ∈ {Pn, Cn, Sn,Kn}, which are commonly
utilized in the construction of new graphs through graph operations, are described
in this part. The definitions in this subsection are referenced from [16].

Definition 2.1. [16] A path graph Pn, is a graph with order n and size n− 1. The
set of vertices in Pn is V (Pn) = {v1, v2, . . . , vn} where n ≥ 1 and the set of edges
E(Pn) = {vivi+1 | i ∈ {1, 2, . . . , n− 1}}.

Figure 1 shows the path graph with n vertices, commonly denoted as Pn.

Figure 1. Path Graph Pn

Definition 2.2. [16] A cycle graph Cn is a graph with order n and size n, where
n ≥ 3, with the vertex set V (Cn) = {v1, v2, . . . , vn} and the edge set E(Cn) =
{vivi+1 | i ∈ {1, 2, . . . , n− 1}} ∪ {vnv1}.

Figure 2 presents a cycle graph with order n, Cn.

Figure 2. Cycle Graph Cn

Definition 2.3. [17] A star graph is a tree consisting of n vertices, in which a
single vertex has degree n− 1, while each of the remaining n− 1 vertices has degree
one.

Figure 3 presents a star graph with order n, Sn.



4

Figure 3. Star Graph Sn

Definition 2.4. [16] A complete graph Kn is a graph that has n vertices, where
every vertex forms an edge with each other vertex. A Complete graph Kn has(
n
2

)
= n(n−1)

2 edges.

When n = 1, the complete graph Kn = K1 is referred to a trivial graph, and
Kn is also known as a null graph or an empty graph.

Figure 4. Complete Graph Kn

2.2. Some Graphs Operation.

In this part, the corona and joint product between graphs G and H are dis-
cussed. The corona operation was originally introduced in [4], and its construction
can be found in Definition 2.5. The joint operation was introduced in [17] and
described in Definition 2.6.

Definition 2.5. [4] Let G and H be two graphs. The corona product of G and H,
denoted by G⊙H, is a graph obtained by taking one copy of G and creating |V (G)|
copies of H, denoted as Hi for each i ∈ {1, 2, . . . , |V (G)|}, and then joininh every
vertex in Hi to the ith vertex of G. The resulting graph is referred to the corona
graph.

Figure 5 illustrates the graph obtained from the corona operation between
Pn, whose vertices are colored red, and K2, whose vertices are colored blue.
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Figure 5. Pn ⊙K2

Definition 2.6. [18] The joint operation of G and H, written as G + H, is the
graph formed by taking G and H, and adding an edge between every vertex in G
and every vertex in H. This resulting graph is referred to the joint graph.

Figure 6 illustrates the graph obtained from the joint operation between Pn,
whose vertices are colored red, and K1, with its single vertex colored blue.

Figure 6. K1 + Pn

2.3. Centered Graphs Gc.

A vertex v in graph G is referred to a center vertex of G if it is adjacent to
each other vertex in the graph. In other words, a center vertex in G is one that is
connected by an edge to all other vertices. The degree of v, deg(v), represents total
number of edges that incident to v. If n = |V (G)| is the total number of vertices
in G, and w is a center vertex, then deg(w) = n − 1. A graph G that contains all
of its center vertices is called a centered graph, denoted Gc. A centered graph can
be a basic graph or a graph produced from an operation. Some centered graphs for
which we will determine their nonlocal-adjacency metric dimensions are: graphs
Kn and Sn (including basic graphs), and graphs K1 +Pn, K1 +Cn, and Km +Kn

(including the graphs resulting from operations). From Figure 3, we can see that
the only center vertex of graph Sn is vertex vn. All vertices of graph Kn are center
vertices, and a center vertex of graphs K1 + Pn, K1 + Cn, and Km + Kn is the
vertex of K1, respectively.

2.4. Adjacency Metric Dimension.

The concept of adjacency distance is introduced by Jannesari and Omoomi
as described in Definition 2.7.
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Definition 2.7. [14] Given graph G, and let T = {t1, t2, . . . , ti} ⊆ V (G) be an
ordered set. For every vertex v ∈ V (G), the adjacency metric representation of v
with respect to T is rA (v|T ) = (dA (v, t1) , dA (v, t2) , . . . , dA (v, ti)) with

dA (v, ti) =


0 , for v = ti

1 , for v ∼ ti

2 , for v ≁ ti

where v ∼ ti means v is adjacent to ti, and v ≁ ti means v is not adjacent to ti,
i ∈ {1, 2, ..., k}.

The adjacency metric dimension of graph G is defined as follows.

Definition 2.8. [19] For an ordered subset T = {t1, t2, . . . , tk} ⊆ V (G) and
p ∈ V (G), the adjacency metric representation of p with respect to T is k-vector
rA(p|T ) = (dA(p, t1), dA(p, t2), . . . , dA(p, tk)). The set T is an adjacency metric
resolving set of G, if ∀p, q ∈ V (G) with p ̸= q holds rA(p|T ) ̸= rA(q|T ). The ad-
jacency resolving set with the minimum number of vertices is called the adjacency
basis of G. The adjacency metric dimension of G, written as dimA(G), is defined
as the number of elements in its adjacency basis.

Several researchers, as referenced in [19], have investigated and determined
the adjacency metric dimensions for numerous types of connected graphs. For any
graph G, two distinct vertices p and q can either be adjacent or non-adjacent. Based
on Definition 2.8, a resolving set T in the context of nonlocal-adjacency metric
only resolves between vertex pairs that are not adjacent. The minimum number
of elements in such a resolving set T is referred to the nonlocal-adjacency metric
dimension, represented by dimAnl(G). This study combines the adjacency metric
resolving set concept and the nonlocal property in a graph. Thus, we can construct
a concept that is produced from this development, as we can see in Definition 3.1.

3. MAIN RESULTS

A formal definition of nonlocal-adjacency metric dimension for graph G is
provided below.

Definition 3.1. Let G be a connected graph and suppose T = {t1, t2, . . . , tκ} is
an ordered subset of its vertex set. For any vertex u ∈ G, the adjacency met-
ric representation of u with respect to T is given by the κ-vector rA(u | T ) =
(dA(u, t1), dA(u, t2), . . . , dA(u, tκ)), where dA(u, ti) denotes the adjacency distance
from vertex u to vertex ti, for i ∈ {1, 2, . . . , κ}. The set T is called a nonlocal-
adjacency metric resolving set for G if, for every pair of distinct non-adjacent ver-
tices u and w in G, their representations are distinct, or rA(u | T ) ̸= rA(w | T ).The
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minimum cardinality among all such resolving sets is referred as the nonlocal-
adjacency basis of G. The number of vertices in this basis is called the nonlocal-
adjacency metric dimension of G, denoted by dimAnl(G).

3.1. Nonlocal-Adjacency Metric Dimension of Basic Graph.

In this section, we determine the nonlocal-adjacency metric dimension of basic
graph Gb, specifically non center vertex, that is path graph Pn and cycle graph Cn.
Theorem 3.2 describes nonlocal-adjacency metric dimension of Pn, n ≥ 5.

Theorem 3.2. Nonlocal-adjacency metric dimension of Pn, n ≥ 5 is

dimAnl(Pn) =

{
2 , for n ∈ {5, 6}
⌊n+1

2 ⌋ , for n ≥ 7.

Proof. Let Pn be labeled as shown in the Figure 1. The vertices set of Pn is V (Pn) =
{v1, v2, . . . , vn}, deg(v1) = 1 = deg(vn) and deg(vi) = 2 for i ∈ {2, 3, . . . , n− 1}
The proof is analyzed under two separate conditions:
Case 1. For n ∈ {5, 6}. We choose W5 = {v1, v3} = W6. The vertices in V (Pn)
have adjacency metric representations with respect to W5.

rA(v1|W5) = (0, 2) = rA(v1|W6)

rA(v2|W5) = (1, 1) = rA(v2|W6)

rA(v3|W5) = (2, 0) = rA(v3|W6)

rA(v4|W5) = (2, 1) = rA(v4|W6)

rA(v5|W5) = (2, 2) = rA(v5|W6).

rA(v5|W6) = (2, 2) = rA(v6|W6), but v5 is adjacent to v6 in P6. The cardinality
of Wn, |Wn| =

⌊
n−1
2

⌋
= 2, for n ∈ {5, 6} is minimum, because if we take a set

W ′
5 = W ′

6 with cardinality one, then rA(v3|W ′
5) = rA(v4|W ′

5) = rA(v5|W ′
5) = (2),

but v3 ≁ v5. In P6, rA(vi|W ′
6) = (2) for 3 ≤ i ≤ 6, v3 ≁ v5, v3 ≁ v6, and v4 ≁ v6.

So W ′
5 = W ′

6 is not a nonlocal-adjacency metric resolving set of P5 and P6. So,
|W5| = |W6| = 2 is minimum, such that dimAnl(Pn) = 2 for n ∈ {5, 6}.
Case 2. For n ≥ 7. An ordered set T = {v4, v6, v8, . . . v2(⌊n+1

3 ⌋+1) } is chosen with

cardinality T , |T | =
⌊
n+1
3

⌋
. The adjacency metric representation vertex vi ∈ V (Pn)

with respect to T is

rA(vi | T ) =
(
dA(vi, v4), dA(vi, v6), dA(vi, v8), . . . dA(vi, v2(⌊n+1

3 ⌋+1))
)

︸ ︷︷ ︸
⌊n+1

3 ⌋

, with

dA(vi, vj) =


0 , if i = j

1 , if |i− j| = 1

2 , if |i− j| ≥ 2
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for i ∈ {1, 2, . . . , n} and j ∈ {4, 6, 8, . . . , 2
(
⌊n+1

3 ⌋+ 1
)
}. We have rA(v1|T ) =

(2, 2, , . . . 2)︸ ︷︷ ︸
⌊n+1

3 ⌋

= rA(v2|T ) but v1 ∼ v2 and rA(v3|T ) = (1, 2, , . . . 2)︸ ︷︷ ︸
⌊n+1

3 ⌋

. Hence, all non-

adjacent vertices in Pn, n ≥ 7, have different adjacency metric representations.
Therefore, T is a nonlocal-adjacency metric resolving set of Pn. The cardinality of
T , |T | = ⌊n+1

3 ⌋ is minimum. If we take any ordered subset T ′ ⊆ T ⊆ V (Pn) with

|T ′| < |T |, and we choose T ′ = T \ {vi}, i ∈ {4, 6, . . . , 2(
⌊
n+1
3

⌋
+ 1)}, then there

exists a vertex vj ∈ V (Pn) such that rA(vi | T ′) = rA(vj | T ′) = (2, 2, . . . , 2)︸ ︷︷ ︸
⌊n+1

3 ⌋−1

with

1 ≤ i, j ≤ n, i ̸= j, and vi ̸∼ vj . Therefore, T is a minimum nonlocal-adjacency
metric resolving set of Pn. So, the nonlocal-adjacency metric dimension of Pn is
dimAnl

(Pn) = |T | =
⌊
n+1
3

⌋
. □

Nonlocal-adjacency metric dimension of Cn, n ≥ 5, is given in Theorem 3.3.

Theorem 3.3. Nonlocal-adjacency metric dimension of Cn, n ≥ 5 is

dimAnl(Cn) =

{⌊
n+1
3

⌋
, for odd n ≥ 5⌊

n−1
2

⌋
, for even n ≥ 6.

Proof. Suppose the graph Cn is labeled as shown in Figure 2, so that the vertex
set of Cn is V (Cn) = {v1, v2, . . . , vn}. An ordered subset T ⊆ V (Cn) is chosen,
that is T = {v1, v3, v5, . . .}. It will be shown that T is a nonlocal-adjacency metric
resolving set of Cn. The proof is divided into two cases, that is for odd n ≥ 5 and
for even n ≥ 6.

Case 1 For odd n ≥ 5.
Choose the set T = {v1, v3, v5, . . .}︸ ︷︷ ︸

⌊n+1
3 ⌋

= {v2k−1 | k ∈ {1, 2, 3, . . . ,
⌊
n+1
3

⌋
}}. The

adjacency metric representation of vi ∈ V (Cn) with respect to T , is rA(vi | T ) =
(dA(vi, v1), dA(vi, v3), dA(vi, v5), . . . , dA(vi, v2k−1)), with

dA(vi, vj) =


0 , if i = j

1 , if |i− j| = 1

2 , if |i− j| ≥ 2

for i ∈ {1, 2, . . . , n} and j = 2k−1, k ∈ {1, 2, . . . ,
⌊
n+1
3

⌋
}. All vertices have distinct

adjacency metric representations, except for vn−1 and vn−2, which have the same
representation {2, 2, . . . , 2}︸ ︷︷ ︸

⌊n+1
3 ⌋

, but vn−1 is adjacent to vn−2. Hence, the adjacency

metric representations of non-adjacent vertices are all different. Therefore, T is
a nonlocal-adjacency metric resolving set for Cn when n ≥ 5 and n is odd. The
cardinality of T = |T | =

⌊
n+1
3

⌋
is minimum because if an ordered subset T ′ ⊆ T ⊆
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V (Cn) is taken with |T ′| < |T |, say T ′ = T \{vi} for some i ∈ {1, 3, . . . , 2
⌊
n+1
3

⌋
−1},

then there exists a vertex vj ∈ V (Cn) such that

rA(vi | T ′) = rA(vj | T ′) = {2, 2, . . . , 2}︸ ︷︷ ︸
⌊n+1

3 ⌋−1

with 1 ≤ i, j ≤ n, i ̸= j, and vi ≁ vj .

Thus, any ordered subset T ′ ⊆ T ⊆ V (Cn) with |T ′| < |T | is not a nonlocal-
adjacency metric resolving set of Cn. Consequently, the nonlocal-adjacency metric
dimension of Cn is dimAnl(Cn) = |T | =

⌊
n+1
3

⌋
.

Case 2 For n ≥ 6, n even.
Choose the ordered set T = {v2k−1 | k ∈ {1, 2, . . . ,

⌊
n−1
2

⌋
}} ⊆ V (Cn). The adja-

cency metric representation of the vertices vi ∈ V (Cn) with respect to T is

rA(vi | T ) =
(
dA(vi, v1), dA(vi, v3), . . . , dA(vi, v2⌊n−1

2 ⌋−1)
)
,with

dA(vi, vj) =


0 , if i = j

1 , if |i− j| = 1

2 , if |i− j| ≥ 2

for i ∈ {1, 2, . . . , n} and j = 2k − 1, k ∈ {1, 2, . . . ,
⌊
n−1
2

⌋
}.

Hence, every vertex has a distinct nonlocal-adjacency metric representation. So, T
is a nonlocal-adjacency metric resolving set of Cn. The cardinality |T | =

⌊
n−1
2

⌋
is

minimum because if any ordered subset T ′ ⊆ T ⊆ V (Cn) is taken with |T ′| < |T |,
say T ′ = T \ {vi}, for some i ∈ {1, 3, . . . , 2

⌊
n−1
2

⌋
− 1}, then there exists a vertex

vj ∈ V (Cn) such that rA(vi | T ′) = rA(vj | T ′) = {2, 2, . . . , 2}︸ ︷︷ ︸
⌊n−1

2 ⌋−1

, with 1 ≤ i, j ≤ n,

i ̸= j, and vi ≁ vj .

Hence, any ordered subset T ′ ⊆ T ⊆ V (Cn) with |T ′| < |T | cannot serve as
a nonlocal-adjacency metric resolving set for Cn. Consequently, the nonlocal-
adjacency metric dimension of Cn is given by dimAnl(Cn) = |T | =

⌊
n−1
2

⌋
, where n

is even and n ≥ 6. □

3.2. Nonlocal-Adjacency Metric Dimension of Centered Graphs Gc.

Non local-adjacency metric dimension of centered graphs that are basic graphs
are presented in Theorem 3.4 and Theorem 3.5. The following theorems, up to
Theorem 3.8, address the nonlocal-adjacency metric dimension of centered graph
that are the result of an operation. Characterization of nonlocal-adjacency metric
dimension of a graph is presented in Theorem 3.4.

Theorem 3.4. Nonlocal-adjacency metric dimension of Gc, dimAnl(Gc) = 0 if
and only if Gc = Kn.
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Proof. (⇐) It is known that Gc = Kn. From Definition 2.4, we know that all
vertices in Gc = Kn are adjacent to each other. So, there is no vertex in Gc

that is not adjacent to another. Hence, there is no vertex that can be chosen as
a candidate for the element of the nonlocal-adjacency metric resolving set of Gc.
Therefore, the nonlocal-adjacency metric resolving set of Gc is the empty set. Thus,
the minimum cardinality of the nonlocal-adjacency metric resolving set is zero or
dimAnl(Gc) = 0.

(⇒) It is known that the nonlocal-adjacency metric dimension of Gc is zero.
This means the cardinality of the nonlocal-adjacency metric resolving set of Gc is
zero. Therefore, the nonlocal-adjacency metric resolving set of Gc is the empty set.
This means there is no vertex in Gc that is not adjacent to another. Hence, all
vertices in Gc are adjacent to each other. The only connected graph that has this
property is Kn. □

So, zero is lower bound of the nonlocal-adjacency metric dimension of graphs.
This lower bound is sharp because dimAnl(G) = 0 is achieved by G = Kn. Thus,
we can write 0 ≤ dimAnl(G).

Theorem 3.5 presents the nonlocal-adjacency metric dimension of star graph
Sn, n ≥ 4.

Theorem 3.5. Nonlocal-adjacency metric dimension of Sn, n ≥ 4 is dimAnl(Sn) =
n− 2.

Proof. Suppose the graph Sn is labeled as shown in Figure 3. The vertex set of Sn

is V (Sn) = {v1, v2, v3, . . . , vn−1, vn}, with deg(vi) = 1 for i ∈ {1, 2, 3, . . . , n − 1},
and deg(vn) = n − 1. Every vertex vi with i ∈ {1, 2, 3, . . . , n − 1} is not adjacent
to one another. Let us choose the set T = {v1, v2, v3, . . . , vn−2} ⊆ V (Sn). We will
show that T is a nonlocal-adjacency metric resolving set for Sn. The adjacency
metric representations of the vertices in Sn with respect to the set T are:

rA(vn | T ) = (1, 1, 1, . . . , 1)︸ ︷︷ ︸
(n−2)

, rA(vn−1 | T ) = (2, 2, 2, . . . , 2)︸ ︷︷ ︸
(n−2)

,

rA(vi | T ) = (dA(vi, v1), dA(vi, v2), . . . , dA(vi, vn−2)) ,

with

dA(vi, vj) =

{
0 , if i = j

2 , if i ̸= j

and vi ≁ vj for all i, j ∈ {1, 2, 3, . . . , n − 1}, i ̸= j, while vn ∼ vi for all i ∈
{1, 2, 3, . . . , n− 1}.

Hence, all pairs of non-adjacent vertices in Sn have distinct representations.
Therefore, T is a nonlocal-adjacency metric resolving set for Sn. The cardinality of
T , |T | = n− 2 is minimum because if we take any ordered subset T ′ ⊂ T ⊆ V (Sn)
with |T ′| < |T | = n− 2, and we choose T ′ = T \ {vi}, i ∈ {1, 2, ..., n− 1} then there
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is exist a vertex vj ∈ V (Sn) such that rA(vi | T ′) = rA(vj | T ′) = (2, 2, 2, . . . , 2)︸ ︷︷ ︸
n−3

,

with 1 ≤ i, j ≤ n− 1, i ̸= j, vi ≁ vj . Therefore, T is a minimum nonlocal-adjacency
metric resolving set for Sn. Hence, the nonlocal-adjacency metric dimension of Sn

is dimAnl
(Sn) = n− 2. □

The next centered graph to be discussed is the fan graph. Let Gc be a fan
graph K1 + Pn whose vertices are labeled as shown in figure 6 .The vertex set
of K1 + Pn is V (K1 + Pn) = {v1, v2, v3, . . . , vn, vn+1}, so the order of the graph
K1 + Pn is |V (K1 + Pn)| = n+ 1 = m. The nonlocal-adjacency metric dimension
of the graph K1 + Pn is given in the following theorem.

Theorem 3.6. Nonlocal-adjacency metric dimension of fan graph Fm = K1 +Pn,
for n ≥ 4 is

dimAnl(Fm) =


1 , for m = 5

2 , for m = 6⌊
n− 3

2

⌋
, for m ≥ 7

with m = n+ 1.

Proof. Let the vertices of graph K1 + Pn labeled as v0, v1, . . . , vn, where v0 is the
vertex of degree n, v1 and vn are the vertices of degree two, and v2, v3, . . . , vn−1

are the vertices of degree three. Hence, the vertex set of K1 +Pn is V (K1 +Pn) =
{v0, v1, v2, . . . , vn}. The proof is given in three cases.

Case 1. For m = 5.
Then n = m− 1 = 4, so V (K1 + P4) = {v0, v1, v2, v3, v4}.
Choose the set T = {v1}. The vertices in K1 + P4 have the following adjacency
metric representations with respect to the set T .

rA(v1 | T ) = (0), rA(v2 | T ) = rA(v0 | T ) = (1), rA(v3 | T ) = rA(v4 | T ) = (2)

However, v2 ∼ v0 and v3 ∼ v4. Therefore, T is a nonlocal-adjacency metric re-
solving set of K1 + P4, and the cardinality T , |T | = 1 is minimum. Thus, the
nonlocal-adjacency metric dimension of K1 + P4 is dimAnl(K1 + P4) = 1.

Case 2. For m = 6.
Then n = 6− 1 = 5, so V (K1 + P5) = {v0, v1, v2, v3, v4, v5}.
Choose the set T = {v1, v3}. The vertices in K1 + P5 have the following adjacency
metric representations with respect to the set T

rA(v1 | T ) = (0, 2), rA(v2 | T ) = rA(v0 | T ) = (1, 1),

rA(v3 | T ) = (2, 0), rA(v4 | T ) = (2, 1), rA(v5 | T ) = (2, 2).

Nevertheless, v2 is adjacent to v0. Therefore, T constitutes a nonlocal-adjacency
metric resolving set for the graph K1 +P5, and its cardinality |T | = 2 is minimum.
To justify minimumity, assume there exists a set T ′ with |T ′| = 1, for instance
T ′ = T \ {vi}, where i ∈ {1, 3}. In such a case, at least one pair of distinct vertices
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in the graph would share an identical nonlocal-adjacency metric representation with
respect to T ′.

If T ′ = T \ {v1} = {v3}, then rA(v3 | T ′) = rA(v5 | T ′) = (2), and v3 ≁ v5
If T ′ = T \ {v3} = {v1}, then rA(v1 | T ′) = rA(v5 | T ′) = (2), and v1 ≁ v5.

Thus, T ′ is not a nonlocal-adjacency metric resolving set. Therefore, dimAnl(K1 +
P5) = 2.

Case 3. For m ≥ 7.
Choose the ordered set T = {v4, v6, v8, . . . , v2⌊m−1

2 ⌋}. The vertices vi ∈ V (K1+Pn),

have the adjacency metric representations with respect to T .

rA(vi | T ) =
(
dA(vi, v4), dA(vi, v6), dA(vi, v8), . . . , dA

(
vi, v2⌊m−1

2 ⌋

))
with the distance defined by:

dA(vi, vj) =


0, if i = j

1, if |i− j| = 1

2, if |i− j| ≥ 2.

Hence, we obtain the adjacency metric representation rA(v1 | T ) = rA(v2 | T ) =
(2, 2, . . . , 2)︸ ︷︷ ︸

⌊m−3
2 ⌋

, with v1 ∼ v2. While all other vertices in V (K1 + Pn) \ {v1, v2}

have distinct representations. Thus, T is a nonlocal-adjacency metric resolving
set, and its cardinality |T | =

⌊
m−3
2

⌋
is minimum, because if we choose any subset

T ′ ⊆ T with |T ′| < |T | will result the adjacency metric representasion rA(v1 | T ′) =
rA(v2 | T ′) = (2, 2, . . . , 2)︸ ︷︷ ︸

⌊m−1
2 ⌋−1

, with v1 ≁ v2. Thus, T ′ is not a nonlocal-adjacency

metric resolving set. Therefore, we conclude dimAnl(K1 + Pn) =
⌊
m−3
2

⌋
. □

Let Gc be a wheel graph K1 + Cn with vertices labeled as shown in the
following figure.

Figure 7. K1 + Cn

The vertex set of K1+Cn is V (K1+Cn) = {v1, v2, . . . , vn+1}. The nonlocal-
adjacency metric dimension of K1 + Cn is given in the following theorem.
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Theorem 3.7. Nonlocal-adjacency metric dimension of K1 + Cn, for n ≥ 5, is

dimAnl(K1 + Cn) =

{⌊
n+1
3

⌋
, for odd n ≥ 5⌊

n−1
2

⌋
, for even n ≥ 6.

Proof. Proof is divided into two cases.

Case 1. For odd n ≥ 5. Choose the ordered set T = {v1, v3, v5, . . . , v2⌊n+1
3 ⌋−1} ⊆

V (K1 + Cn). For every vertex vi in K1 + Cn, the adjacency metric representation
with respect to T is

rA(vi|T ) =
(
dA(vi, v1), dA(vi, v3), dA(vi, v5), . . . , dA(vi, v2⌊n+1

3 ⌋−1)
)

with

dA(vi, vj) =


0 , if i = j

1 , if |i− j| = 1

2 , if |i− j| ≥ 2

for i ∈ {1, 2, . . . , n + 1} and j ∈ {1, 3, 5, . . . , 2
⌊
n+1
3

⌋
− 1}. Specifically for n = 5,

rA(v1|T ) = rA(vn+1|T ) = (1, 1) but v1 and vn+1 are adjacent. Similarly for n = 7,
rA(v1|T ) = rA(vn+1|T ) = (1, 1) and rA(vn−1|T ) = rA(vn−2|T ) = (2, 2), but the
vertices with the same adjacency metric representation are still adjacent. For n ≥ 9,
rA(vn−1|T ) = rA(vn−2|T ) = (2, 2, . . . , 2)︸ ︷︷ ︸

⌊n+1
3 ⌋

, but vn−1 ∼ vn−2. It follows that the

adjacency metric representation of non-adjacent vertices in K1 +Cn is all distinct.
Consequently, T is a nonlocal-adjacency metric resolving set of K1 + Cn. The
cardinality of T , |T | =

⌊
n+1
3

⌋
, is minimum, since if any ordered set T ′ ⊆ T ⊆

V (K1 + Cn) with |T ′| < |T | is taken, say T ′ = T \ {vj}, j ∈ {1, 3, . . . ,
⌊
n+1
3

⌋
− 1},

then there exist vertices vi, i ∈ {1, 2, ..., n} such that rA(vi|T ′) = rA(vj |T ′) =
(2, 2, . . . , 2)︸ ︷︷ ︸

⌊n+1
3 ⌋−1

, where 1 ≤ i, j ≤ n, and i ̸= j, that is T ′ not being a nonlocal-

adjacency metric resolving set of K1 + Cn. Therefore, T is the nonlocal-adjacency
metric basis of K1 + Cn, and dimAnl(K1 + Cn) = |T | =

⌊
n+1
3

⌋
, for odd n ≥ 5.

Case 2. For even n ≥ 6. Choose the ordered set T = {v1, v2, v4, v6, . . . , v2⌊n−3
2 ⌋}.

The adjacency metric representation of the vertices in K1 + Cn is

rA(vi|T ) =
(
dA(vi, v1), dA(vi, v2), dA(vi, v4), . . . , dA(vi, v2⌊n−3

2 ⌋)
)

with

dA(vi, vj) =


0 , if i = j

1 , if |i− j| = 1

2 , if |i− j| ≥ 2
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for i ∈ {1, 2, . . . , n+1} and j ∈ {1, 2, 4, . . . , 2
⌊
n−3
2

⌋
}. For every n ≥ 6, rA(vn−1|T ) =

rA(vn−2|T ) = (2, 2, . . . , 2)︸ ︷︷ ︸
⌊n−3

2 ⌋

, but vn−1 ∼ vn−2. Therefore, the adjacency metric rep-

resentation of non-adjacent vertices is distinct. Thus, T is a nonlocal-adjacency
metric resolving set of K1 + Cn. The cardinality of T , |T | =

⌊
n−3
2

⌋
, is mini-

mum, since if any ordered set T ′ ⊆ T ⊆ V (K1 + Cn) with |T ′| < |T | is taken,
say T ′ = T − {vj}, where j ∈ {1, 2, 4, 6, . . . , 2

⌊
n−3
2

⌋
}, then there exist vertices

vi ∈ V (K1 +Cn) such that rA(vi|T ′) = rA(vj |T ′) = (2, 2, . . . , 2)︸ ︷︷ ︸
⌊n−3

2 ⌋−1

, with 1 ≤ i, j ≤ n,

i ̸= j, and vi ≁ vj . Therefore, T is the nonlocal-adjacency metric basis of K1+Cn,
and dimAnl(K1 + Cn) = |T | =

⌊
n−3
2

⌋
, for even n ≥ 6. □

Given a complete graph Km with the vertex set V (Km) = {v1, v2, . . . , vm}
and a graph Kn with the vertex set V (Kn) = {x1, x2, . . . , xn}. The graph Km+Kn

is obtained by taking the graph Km and the graph Kn. Then, every vertex in Km

is connected to all the vertices in Kn. The graph Km+Kn has vertex set V (Km+
Kn) = V (Km) ∪ V (Kn) = {v1, v2, . . . , vm, x1, x2, . . . , xn} and edge set E(Km +
Kn) = E(Km) ∪ {vixj | i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}}. This can be expanded

as E(Km+Kn) = {v1v2, v1v3, . . . , v1vm}∪{v2v3, v2v4, . . . , v2vm}∪· · ·∪{vm−1vm}∪
{v1x1, v2x1, . . . , vmx1} ∪ {v1x2, v2x2, . . . , vmx2} ∪ · · · ∪ {v1xn, v2xn, . . . , vmxn}.

As an illustration, the graph Km +Kn can be seen in Figure 8.

Figure 8. Graph Km +Kn

In Figure 8], the red vertex represents the vertex of Km and the green vertex
represents the vertex of Kn. The Nonlocal-adjacency metric dimension of Km+Kn,
with m ≥ 3 and n ≥ 1, is presented below.

Theorem 3.8. Let Gc be a complete graph Km with m ≥ 3 and let H be an
empty graph Kn, n ≥ 1. Nonlocal-adjacency metric dimension of Km + Kn is
dimAnl(Km +Kn) = n− 1.
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Proof. Let T = {xj | j ∈ {1, 2, . . . , n − 1}} ⊆ V (Kn). Adjacency metric rep-

resentations of the vertices of Km + Kn with respect to T are rA(vi | T ) =
(dA(vi, x1), dA(vi, x2), . . . , dA(vi, xn−1)), i ∈ {1, 2, . . . ,m} with dA(vi, xj) = 1,
j ∈ {1, 2, ..., n} and rA(xh | T ) = (dA(xh, x1), dA(xh, x2), . . . , dA(xh, xn−1)), h ∈
{1, 2, . . . , n} with

dA(xh, xj) =

{
0 , if j = h

2 , if j ̸= h.

Since all of vertices that rA(vi | T ), i ∈ {1, 2, . . . ,m} are all the same, which is
equal to (1, 1, . . . , 1)︸ ︷︷ ︸

(n−1)

where vi are all adjacent to each other, then the adjacency

metric representation of every two adjacent vertices is not different. However,
for every h, j ∈ {1, 2, . . . , n} with h ̸= j, xh ≁ xj and rA(xh | T ) ̸= rA(xj | T ).
Hence, although T serves as a nonlocal-adjacency metric resolving set for the graph
Km + Kn, this does not establish it as a lower bound. Therefore, the nonlocal-
adjacency metric dimension satisfies dimAnl(Km +Kn) ≤ n− 1.

Now, we show that dimAnl(Km + Kn) ≥ n − 1. Let T ′ = {xj | j ∈
{1, 2, . . . , n − 1}} be a nonlocal-adjacency metric resolving set with |T ′| = n − 1.
Assume that an ordered set T ′ is another minimum nonlocal-adjacency metric re-
solving set, or |T ′| < |T | = n−1. If we select an ordered set T ′ ⊆ T −{xh, xj}, 1 ≤
h, j ≤ n, h ̸= j, so there is exist two vertices xh, xj ∈ V (Km + Kn) such
that rA(xh | T ′) = rA(xj | T ′) = (2, 2, . . . , 2)︸ ︷︷ ︸

<(n−1)

. It should be noted that T is

not a nonlocal-adjacency metric resolving set, which is contrary to the assump-
tion. So, the lower bound is dimAnl(Km + Kn) ≥ n − 1. We conclude that
dimAnl(Km +Kn) = n− 1. □

3.3. Nonlocal-Adjacency Metric Dimension of Degree Corona Graphs.

This subsection explained definition of degree corona graph and the nonlocal-
adjacency metric dimension of the graph resulting from degree corona operation.
Degree corona operation is an extension of the corona operation discovered by [4].
The following is the definition of a degree corona graph.

Definition 3.9. The degree corona graph of two graphs G and H, denoted by

G ⊙deg H, is a graph obtained by taking a graph G and
∑|V (G)|

i=1 deg(vi) copies
of the graph H, denoted by Hij (the ijth copy of H). For each ith vertex vi ∈
V (G), connect vi to every vertex in each Hij, where i ∈ {1, 2, . . . , |V (G)|} and
j ∈ {1, 2, . . . , deg(vi)}.

As an illustration, the degree corona graph can be seen in Figure 9
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Figure 9. Graph Sn ⊙deg K1

In Figure 9, the red vertex represents the vertex of the graph Sn and the blue
vertex represents the vertex of the graph K1.

Observation 3.10. Given a connected graph G, and H is a graph with at least
two vertices. In any subgraph Hi of G⊙deg H, the vertices u and v are considered
similar adjacency distance with respect to Hi.

Based on the above observation, we can formulate the lemma below.

Lemma 3.11. Let G = (V (G), E(G)) be a connected graph with order n ≥ 2, and
let H be a graph of order at least two such that H is not isomorphic to the complete
graph Kn. For each i, let Hi = (Vi(Hi), Ei(Hi)) represent the subgraph in G⊙degH
associated with the ith copy of H.

(1) For any pair of vertices α, β ∈ Vi(Hi), it holds that dAG⊙degH
(α, p) =

dAG⊙degH
(β, p) for every vertex p ∈ V (G⊙deg H) \ Vi(Hi).

(2) If T is a nonlocal-adjacency metric resolving set for the graph G ⊙deg H,
then for each i ∈ {1, 2, . . . , n}, we have Vi(Hi) ∩ T ̸= ∅.

(3) If T is a nonlocal-adjacency metric resolving set with minimum cardinality
for G⊙deg H, then we have V (G) ∩ T = ∅.

(4) If H be a graph, and let T be a nonlocal-adjacency metric resolving set for
the graph G⊙deg H. Then, for each i ∈ {1, 2, . . . , n}, the subset Vi(Hi)∩T
serves as a nonlocal-adjacency metric resolving set for the subgraph Hi.

Proof. (1) Suppose q = βi ∈ V (G). The conclusion follows immediately
from the fact that dAG⊙degH

(α, p) = dAG⊙degH
(α, q) + dAG⊙degH

(q, p) =

dAG⊙degH
(β, q) + dAG⊙degH

(q, p) = dAG⊙degH
(β, p).

(2) We suppose Vi(Hi) ∩ T = ∅ for some i ∈ {1, 2, . . . , n}. Let p, q ∈ Vi(Hi).
By (1), we have dAG⊙degH

(p, α) = dAG⊙degH
(q, α) for every vertex α ∈ T ,

which is a contradiction.
(3) In the following, we show that T ′ = T \V (G) is a nonlocal-adjacency metric

resolving set for G⊙deg H. Let p, q ∈ V (⊙degH) with p ̸= q. We examine
the proof by considering the following cases.
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Case 1. p, q ∈ Vi(Hi). By (1), we conclude that there exists β ∈ Vi(Hi) ∩ T ′

such that dAG⊙degH
(p, β) ̸= dAG⊙degH

(q, β).

Case 2. p ∈ Vi, and q ∈ Vj , with i ̸= j. Let β ∈ Vi(Hi) ∩ T ′. Then we have
dAG⊙degH

(p, β) = 2 = dAG⊙degH
(q, β).

Case 3. p, q ∈ V (G). Let p = βi and β ∈ Vi∩T ′. Then we have dAG⊙degH
(p, β) =

1 < (1 + dAG⊙degH
(q, p)) = dAG⊙degH

(q, β) = 2.

Case 4. q ∈ Vi(Hi), and q ∈ V (G). If q ∼ q, then q = βi. Let βj ∈ V ,
with j ̸= i, and let β ∈ Vj ∩ T ′. Then we have dAG⊙degH

(p, β) =

1 + dAG⊙degH
(q, β) = 2 = dAG⊙degH

(q, β). For q ̸∼ q = βi, we take β ∈
Vi∩T ′ and obtain dAG⊙degH

(p, β) = dAG⊙degH
(p, q)+dAG⊙degH

(q, β) >

dAG⊙degH
(q, β). Therefore, T ′ is a nonlocal-adjacency metric resolving

set for G⊙deg H.
(4) Let Ti = T ∩ Vi(Hi). For any q ∈ Ti, the conclusion is immediate. Now

suppose p, q ∈ Vi \ Ti. Since T is a nonlocal-adjacency metric resolving
set for G ⊙deg H, it follows that r(p | T ) ̸= r(q | T ). According to (1),
for every vertex α in G ⊙deg H that does not belong to Vi(Hi), we have
dAG⊙degH

(p, α) = dAG⊙degH
(q, α). Therefore, there must exist some β ∈

Ti such that dAG⊙degH
(p, β) ̸= dAG⊙degH

(q, β). This implies that either

β ∼ p and β ̸∼ q, or the other way around. In the first case, we obtain
dAG⊙degH

(p, β) = dHi(p, β) = 1, while dAG⊙degH
(q, β) > 1. The second

case, where β ∼ q and β ̸∼ p, yields a similar conclusion. Hence, Ti forms
a nonlocal-adjacency metric resolving set for Hi. □

An observation regarding the element of basis of the degree corona graph was
also obtained as follows.

Observation 3.12. Given a connected graph G, and H be an empty graph con-
taining one or more vertices. In any subgraph Hi (the ith-copy of H) of the graph
G⊙deg H, the vertex q ∈ Vi(Hi) is the element of basis of the graph G⊙deg H.

In addition to the definition of the degree corona graph, this research also
presents a theorem on the nonlocal-adjacency metric dimension of the degree corona
graph of centered graphs Gc ∈ {Sn,K1 + Pn,K1 + Cn,Km +Kn} and the trivial
graph K1.

Theorem 3.13. Let Gc be a centered graph, Gc ∈ {Sn,K1+Pn,K1+Cn,Km+Kn}
with n ≥ 4 and H is the trivial graph K1. The nonlocal-adjacency metric dimension
of the degree corona graph Gc ⊙deg K1,

dimAnl(Gc ⊙deg K1) =

|V (Gc)|∑
i=1

deg(vi)

− 1.
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Proof. Based on Observation 3.12, let T be the nonlocal-adjacency metric resolving
set of Gc ⊙deg K1, that is T = {x1, x2, . . . , x[∑|V (Gc)|

i=1 deg(vi)
]
−1

} but this is insuffi-

cient to establish it as the lower bound. So, the upper bound is dimAnl(Gc ⊙deg

K1) ≤
[∑|V (Gc)|

i=1 deg(vi)
]
− 1. If the basis selection, aside from the vertex of Hi,

then it is not a basis.

Now, we show that dimAnl(Gc ⊙deg K1) ≥
[∑|V (Gc)|

i=1 deg(vi)
]
− 1. Let T =

{x1, x2, . . . , x([∑|V (Gc)|
i=1 deg(vi)

]
−1

)} be a nonlocal-adjacency metric resolving set

with |T ′| =
[∑|V (Gc)|

i=1 deg(vi)
]
− 1. Assume that an ordered set T ′ is another mini-

mum nonlocal-adjacency metric resolving set, or |T ′| < |T | =
[∑|V (Gc)|

i=1 deg(vi)
]
−

1. If we select an ordered set T ′ ⊆ T\{xi, xj}, 1 ≤ i, j ≤
[∑|V (Gc)|

i=1 deg(vi)
]
, i ̸=

j, so that there exist two vertices xi, xj ∈ V (Gc ⊙deg K1) such that rA(xi |
T ′) = rA(xj | T ′) = (2, 2, . . . , 2)︸ ︷︷ ︸

<
([∑|V (Gc)|

i=1 deg(vi)
]
−1

). It should be noted that T ′ is not a

nonlocal-adjacency metric resolving set, which is contrary to the assumption. So,

the lower bound is dimAnl(Gc⊙degK1) ≥
[∑|V (Gc)|

i=1 deg(vi)
]
−1. We conclude that

dimAnl(Gc ⊙deg K1) =
[∑|V (Gc)|

i=1 deg(vi)
]
− 1. □

3.4. Upper Bound of dimAnl(G).

Based on the above research results, the upper bound of the nonlocal-adjacency
metric dimension is obtained as follows

dimAnl(G) ≤ n− r, achieved by G = Sn, r = radius(G).

3.5. Example of Application.

In the modern era, where online shopping platforms are rapidly growing,
the logistics distribution system has become a key focus for optimization by ship-
ping and expedition companies. In a distribution network, when two major cities
are directly connected through a main transportation route, the shipping sched-
ule can be carried out routinely and efficiently. However, for cities that are not
directly connected (non-adjacent), shipment planning must be done carefully; the
logistics must pass through other cities, and the shipping schedules need to be ad-
justed to minimize travel time and costs. In determining the metric dimension of
nonlocal-adjacency, the vertices in the graph represent the cities. Cities that have a
direct transportation route are represented as adjacent vertices in the graph, while
cities without a direct transportation route are represented as non-adjacent ver-
tices. These non-adjacent vertices need to be resolved, as they require a transit
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warehouse for collecting logistics, which are then scheduled for shipment accord-
ing to the delivery schedule. By modeling the distribution network as a graph
and applying the concepts of adjacency and metric dimension, we can identify key
points such as warehouse locations and transit warehouses that can improve overall
distribution efficiency.

4. CONCLUDING REMARKS

This study presents the determination and analysis of the nonlocal-adjacency
metric dimension for basic graphs Pn and Cn, centered graphs including Kn, Sn,
K1 + Pn, K1 + Cn, Km + Kn, and for the degree corona product of a centered
graph Gc ∈ {Sn,K1 + Pn,K1 + Cn,Km + Kn} with the trivial graph K1. From
the discussion, it can be concluded that: Adding a vertex as a central vertex of
a connected graph G one by one can increase the order of the graph, while the
size of the nonlocal-adjacency metric dimension of graphs obtained remains the
same as the original graph, thus dimAnl(K1 + (K1 + · · ·+ (K1 + (K1 +G)) · · · )) =
dimAnl(G). Also, we obtained the upper bound, characteristics, and an example
of the application of nonlocal-adjacency metric dimension concept of graphs.
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