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Abstract. An annihilator is defined as the set of pairs of elements in a ring R in

which the product of the elements in the pair is the zero element of R. In this paper,

we aim to determine the order of the annihilator for the finite ring of matrices of

dimension two over integers modulo prime, M2(Zp). Furthermore, the zero product

probability of a finite ring is also computed. The zero product probability is the

probability that two elements of a finite ring have product zero. Based on the order

of the annihilator, the general formula of the zero product probability of M2(Zp) is

determined.

Key words and phrases: annihilator of a ring, ring of matrices, noncommutative

ring, probability in rings.

1. INTRODUCTION

For over five decades, probability theory has been a topic widely investigated
by various researchers in the field of algebra, including group theorists. This topic
is studied to describe various characteristics of finite groups and give knowledge on
the structure of its elements. One of the well-known examples is the commutativity
degree of a finite group, which is the probability that two random elements selected
from a finite group commute. Erdos and Turan introduced this concept [1], where
the authors worked on determining the abelianness of symmetric groups. The idea
has now sparked the interest of the ring theorists, where it is studied on some finite
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rings. To begin, MacHale [2] determined the probability that two random elements
of a ring commute for noncommutative rings and found several bounds related to

the subject. The probability is written as P (R) =

∑
r∈R

|CR(r)|

|R|2
, where CR(r) is

the subring {x ∈ R|xr = rx}.
Many studies have been done on the commuting probability of finite rings,

e.g., see [3, 4, 5, 6]. Afterwards, researchers started to study the probability of the
product of elements in a finite ring. For example, Rehman et al. [7] studied the
probability of product in finite commutative rings, specifically the ring of integers
Zn, where the aim was to obtain a desirable product in Zn. The probability is
mathematically written as

Pm(Zn) =
|{(x, y) ∈ Zn × Zn|x · y = m}|

|Zn × Zn|
,

where x, y and m are the elements in Zn.

Khasraw introduced another probability associated with the product of ring
elements in [8]. The author defined the probability that the product of two ran-
domly chosen elements in a finite ring is zero. The study was done on finite com-
mutative rings with identity. Afterward, several researchers studied the probability
that two elements of a finite ring have product zero in specific rings, including
Mohammed Salih [9], who studied the probability of finite group rings. Besides
that, Dolz̆an [10] investigated the probability that two elements of a finite ring
have product zero in semisimple rings. In addition, Zai et al. [11] extended the
probability that two elements of a finite ring have product zero, focusing on the
noncommutative ring, specifically on the ring Z2 ⊕ M2(Z2). The authors in [11]
officially named the probability as the zero product probability of noncommutative
rings. Since the zero product probability is a new notion in rings, not many types
of noncommutative rings have been explored. Hence, this paper studies the zero
product probability of the ring of matrices, which is noncommutative.

This paper investigates the zero product probability for the ring of 2 × 2
matrices over integers modulo prime p. From this point on, the ring is denoted
by M2(Zp). To obtain the zero product probability, the order of the annihilator of
M2(Zp) is first determined by using the properties of the determinant of matrices.
The results in this paper primarily contribute to the theoretical results in ring
theory, especially on the annihilators of a ring, which have not yet been found in
the existing literature.

This paper is structured into four main sections. The first section serves as an
introduction to the study. The second section presents the definitions and concepts
used in this study. The third section provides the results obtained in this study.
Finally, the fourth section concludes the study.
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2. PRELIMINARIES

This section provides the definitions and concepts used in this study. One of
the crucial terms used in this study is the zero-divisors of a finite ring. The zero
divisor of a finite ring R is defined as a nonzero element x in R such that there
exists another nonzero element y in R, where the product of x and y is equal to
zero [12].

Remarkably, McCoy [13] discovered a technique for identifying the zero-
divisors of the finite ring of matrices by using the determinants of the matrices.
The finding is given in the following proposition.

Proposition 2.1. [13] Let A be a given element of the ring of n×n matrices, Mn

with elements in the commutative ring R. Then A is a zero divisor of Mn if and
only if the determinant of A is a divisor of zero in R.

In other words, the author stated that a matrix A in a ring of matrices Mn

over integers modulo m is a zero divisor if and only if its determinant is zero
(mod m) [13]. Subsequently, some basic properties of a matrix with zero determi-
nant are given in the following theorem.

Theorem 2.2. [14] Let A be a square matrix. Then, the determinant of A,
det(A) = 0 if:

(1) all elements of one of the rows or columns of A are zero.
(2) two parallel rows or columns of A are equal.
(3) two parallel lines of A are proportional.

Subsequently, another important term used in this study is the annihilator of
a finite ring. Khasraw [8] considered the annihilator of a finite commutative ring
R as a set of pairs of elements in R, in which the product of the elements in each
pair is zero. In other words, the zero-divisors of R are paired and written in a set
called the annihilator. Following that, Zaid et al. [15] extended the definition of
the annihilator to finite noncommutative rings. The definition is given as follows:

Definition 2.3. [15] Let R be a noncommutative ring. Then, the annihilator of R
is the set of ordered pairs (x, y) ∈ R×R such that xy = 0. The set is mathematically
written as Ann(R) = {(x, y) ∈ R×R|xy = 0} .

The order of the annihilator of a ring, denoted by |Ann(R)|, is the number
of elements in the set. In addition to the annihilator, another notion in the focus
of this paper is the zero product probability. The zero product probability of
noncommutative rings was introduced by Zai et al. [11], intending to study the
zero product attributes of noncommutative rings. The definition of the zero product
probability of noncommutative rings is given as follows:

Definition 2.4. [11] Let R be a noncommutative ring. Then, the zero product
probability of R is

P (R) =
|{(x, y) ∈ R×R|xy = 0} |

|R×R|
.
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One important method used to obtain the main results is the linear Dio-
phantine method, which involves two variables. The method is explained in the
following theorem.

Theorem 2.5. [16] The linear Diophantine equation ax+ by = c has a solution if
and only if d|c where d is the greatest common divisor of a and b, i.e., gcd(a, b) = d.
If x0 and y0 are any particular solution of the equation, then all other solutions of
the equation are given by

x = x0 +

(
b

d

)
t, y = y0 −

(a
d

)
t,

where t is an arbitrary integer.

The following section discusses the main results found in this study, which
includes the order of the annihilator of M2(Zp), which then leads to the general
formula for the zero product probability of M2(Zp).

3. MAIN RESULTS

In this section, the main results of this study are presented. First, the order
of the annihilator is determined for M2(Zp) by using its definition. The order of
the annihilator of M2(Zp) is given in the following proposition.

Proposition 3.1. Given S =

{[
x1 x2

x3 x4

]∣∣∣∣x1, x2, x3, x4 ∈ Zp

}
is a noncommu-

tative ring and R =

{[
x1 x2

x3 x4

]∣∣∣∣ x1, x2, x3, x4 ∈ Zp − {0}
}

is a subset of S.

Then, the order of the annihilator of R, |Ann(R)| = p5 − 2p4 − 2p3 +8p2 − 7p+2.

Proof. Given S =

{[
x1 x2

x3 x4

]∣∣∣∣x1, x2, x3, x4 ∈ Zp

}
and a subset of S, R ={[

x1 x2

x3 x4

]∣∣∣∣ x1, x2, x3, x4 ∈ Zp − {0}
}
. The elements X ∈ R and Y ∈ S are

determined using the following matrix multiplication.[
x1 x2

x3 x4

] [
y1 y2
y3 y4

]
=

[
0 0
0 0

]
(mod p).

The matrix multiplication leads to the following system.

x1y1 + x2y3 ≡ 0 (mod p) (1)

x1y2 + x2y4 ≡ 0 (mod p) (2)

x3y1 + x4y3 ≡ 0 (mod p) (3)

x3y2 + x4y4 ≡ 0 (mod p). (4)

First, the number of possible elements of X is determined. The calculations
are divided into two cases:
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(Case 1) When X is a zero divisor.
(Case 2) When X is not a zero divisor.

Case 1: When X is a zero divisor.
IfX is a zero divisor of R, based on Proposition 2.1, the determinant ofX, det(X) =
0. According to the properties of determinant as stated in Theorem 2.2, there are
two conditions where det(X) = 0, which are:

(1) when two rows (or columns) of X are identical; and
(2) when the rows of X are proportional.

For the first condition, the number of possible elements in X with identical
rows is (p − 1)(p − 1) = p2 − 2p + 1 since there are p − 1 possible nonzero values
for elements x1 and x2 in the first row. In contrast, the second row has the same
element as the first, i.e., x1 = x3 and x2 = x4. The same goes for elements X
with identical columns. However, p− 1 elements are removed from the total since
the elements which x1 = x2 = x3 = x4 have been considered in the situation
where X has identical rows. Therefore, for this condition, |X| =

(
p2 − 2p+ 1

)
+(

p2 − 2p+ 1
)
− (p− 1) = 2p2 − 5p+ 3.

Next, for the second condition, the number of possible elements in X with

proportional rows, X =

[
x1 x2

kx1 kx2

]
∈ R, where k ∈ Zp − {0, 1} is determined.

Since all entries must be nonzero, x1 has p − 1 possible values. Then, there are
p − 2 possible values for x2 since x1 ̸= x2 so that both columns are not identical.
For the second row, there are p− 2 possible multiples since k ∈ Zp −{0, 1}. Hence,
|X| = (p− 1)(p− 2)(p− 2) = p3 − 5p2 + 8p− 4.

Combining both cases, then the total number of possible elements of X when
X is a zero divisor in R is |X| =

(
2p2 − 5p+ 3

)
+
(
p3 − 5p2 + 8p− 4

)
= p3− 3p2+

3p− 1.

The next calculations are focused in solving for Y ∈ S whereXY =

[
0 0
0 0

]
.

Only the system formed by congruence (1) and congruence (2) is solved since they
are in similar forms as congruence (3) and congruence (4). Congruence (1) and (2)
are solved by using linear Diophantine method.

Congruence (1) has a solution if and only if its greatest common divisor,
gcd(x1, x2) = q and q|0, where q is any positive integer. Since all integers divide 0,
thus this argument is true, and congruence (1) has solutions, where the solutions
are given by:

y1 = y1
′ + (

x2

q
)t

y3 = y3
′ − (

x1

q
)t.

It is found that regardless of the value of q ∈ {1, 2, ..., p− 1}, y3 is uniquely
dependent on the value of y1 since y3 − y3

′ = −x1

x2
(y1 − y1

′). Therefore, there are p
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possible solutions for y1 and y3 in congruence (1). Similarly, there are p solutions
for y2 and y4 in congruence (2). This indicates that for Y ∈ S, |Y | = p× p = p2.

Case 2: When X is not a zero divisor.
Meanwhile, if X is not a zero divisor of R, the number of possible elements X is
(p− 1)

4 −
(
p3 − 3p2 + 3p− 1

)
= p4 − 5p3 + 9p2 − 7p + 2. Since X is not a zero

divisor, the only Y ∈ S where the product XY =

[
0 0
0 0

]
is the zero matrix itself.

Therefore by combining both cases, the order of the annihilator,

|Ann(R)| =
[(
p3 − 3p2 + 3p− 1

)
× p2

]
+

[(
p4 − 5p3 + 9p2 − 7p+ 2

)
× 1

]
= p5 − 2p4 − 2p3 + 8p2 − 7p+ 2.

□

The following example presents the order of the annihilator of the ring R
when p = 2.

Example 3.2. Given a ring S =

{[
x1 x2

x3 x4

]∣∣∣∣x1, x2, x3, x4 ∈ Z2

}
and a subset

of S, R =

{[
x1 x2

x3 x4

]∣∣∣∣ x1, x2, x3, x4 ∈ Z2 − {0}
}
. Based on Definition 2.3, the

annihilator of R is given in the following set.

Ann(R) =

{([
1 1
1 1

]
,

[
0 0
0 0

])
,

([
1 1
1 1

]
,

[
0 1
0 1

])
,([

1 1
1 1

]
,

[
1 0
1 0

])
,

([
1 1
1 1

]
,

[
1 1
1 1

])}
.

Therefore, |Ann(R)| = 4. The result is consistent with Proposition 3.1, where the
order of the annihilator of R, |Ann(R)| = (2)5−2(2)4−2(2)3+8(2)2−7(2)+2 = 4.

Next, the following theorem gives the zero product probability of the ring R
by using Definition 2.4 and the results found in Proposition 3.1.

Theorem 3.3. Given a ring S =

{[
x1 x2

x3 x4

]∣∣∣∣x1, x2, x3, x4 ∈ Zp

}
and the ring

R =

{[
x1 x2

x3 x4

]∣∣∣∣ x1, x2, x3, x4 ∈ Zp − {0}
}

is a subset of S. Then, the zero

product probability of R, P (R) =
2

p8
− 7

p7
+

8

p6
− 2

p5
− 2

p4
+

1

p3
.

Proof. Based on Proposition 3.1, the number of the annihilators of R, Ann(R) =
p5 − 2p4 − 2p3 + 8p2 − 7p+ 2. Therefore, the zero product probability of R,

P (R) =
|Ann(R)|

|S|2
=

p5 − 2p4 − 2p3 + 8p2 − 7p+ 2

(p4)
2

=
2

p8
− 7

p7
+

8

p6
− 2

p5
− 2

p4
+

1

p3
.
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□

4. CONCLUDING REMARKS

In this paper, the general formula is established for the zero product probabil-
ity of the ring of 2× 2 matrices over integers modulo prime, M2(Zp). To formulate
the general formula of the probability, the general formula of the order of its an-
nihilator is first formed. It is found that the general formula of the annihilator of
M2(Zp) depends on the value of p. In addition, for future studies, the order of the
annihilator can be studied on matrices over all integers, not only limited to the
prime integers.
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