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Abstract. In this paper, we use the representation morphism concept to analyze the connection
between two recurrent neural networks, primarily when we evaluate the neural network function
between two isomorphic neural networks. We construct the set of all isomorphic classes of
recurrent neural networks. We build the set by the action of the isomorphism group on the set of
all recurrent neural networks that have invertible weight. By the group’s action, we get the set of
orbits and call it the moduli space. We analyze the moduli space to get its dimensions.
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1. INTRODUCTION

Artificial intelligence is a technological breakthrough that impacts our lives. Arti-
ficial intelligence can help us solve many problems [1][2]. Because of this, some people
try to understand how artificial intelligence works. The standard artificial intelligence al-
gorithm is the artificial neural network. Artificial neural networks work by imitating the
human brain. The algorithm uses some linear algebra to extract raw data to turn it into in-
formation. The algorithm uses the information to give the machine knowledge by machine
learning. Currently, there are many machine-learning algorithms for artificial intelligence,
among which artificial neural networks are the most common. Because artificial neural
networks imitate how the human brain works, we can modify the algorithm to try to mimic
how humans learn. Recurrent neural networks are one type of algorithm that try to imitate
how humans learn [3].

Like humans, who learn from experience, machines can be made to learn from data
history and experience. A recurrent neural network is an artificial algorithm using ex-
periental data to minimize learning errors. This study tries to find some mathematical
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properties of recurrent neural networks. Recurrent network quivers are used as a mathe-
matical model of recurrent neural networks. Recurrent neural networks are defined using
CG-representations of a recurrent network quiver. We will find some relations between two
neural networks using the representation theory concepts. Furthermore, the isomorphism
relation between two neural networks is discovered. A moduli space of recurrent neural
networks is created from the isomorphism relation and the dimensions are found. From
the dimensions of the moduli space, the complexity of the neural network can be seen,
primarily if the neural network uses ReLu(x) = max(0, x) as an activation function.
Furthermore, neural teleportation for recurrent neural networks with higher dimensions is
defined. Neural teleportation is a neural network algorithm that can jump processes from
one layer to another [4]. This jump will increase the algorithm’s speed because it needs
fewer layers to get the predictions.

ν1 ν2 ν3 ν4 ν5

f1 f2 f3

ϵ1 ϵ2 ϵ3 ϵ4

ϵ5

FIGURE 1. Example of Neural Teleportation

2. QUIVER REPRESENTATION AND GROUP ALGEBRA

2.1. Quiver Representation.
Let Q = (V, E , s, t) be a quiver where V is a set of vertices, E is a set of arrows, and

s, t : E → V map every arrow ϵ ∈ E to its source vertex s(ϵ) ∈ V and target vertex t(ϵ) ∈
V , respectively. A quiver can have loops[5]. An arrow ϵ ∈ E is a loop if s(ϵ) = t(ϵ).

Definition 2.1. [6] A quiver Q = (V, E , s, t) is arranged by layers if it can be drawn from
left to right, arranging its vertices in columns such that:

(1) there are no oriented edges from vertices on the right to vertices on the left,
(2) for every ϵ ∈ E , we have s(ϵ) = t(ϵ) if and only if s(ϵ), t(ϵ) in the same column .

We can enumerate every column in a quiver that is arranged by layer. The first
layer is the left-most column and is called the input layer. The last layer is the right-most
column and is called the output layer. Columns between the input and output layers are
called hidden layers. The hidden layers are enumerated from left to right (the first hidden
layer, the second hidden layer, etc.). Vertices in the input layer are called input vertices,
while vertices in the output layer are called output vertices. A vertex v is called a bias
vertex if ν is in a hidden layer and for all ϵ ∈ E , t(ϵ) ̸= ν. A vertex v is called a hidden
vertex if ν is in a hidden layer and is not a bias vertex.

Definition 2.2. [6] A quiver Q is called a network quiver if it satisfies the following con-
ditions:

(1) Q is arranged by layers,
(2) every input, output, and bias vertex does not have any loop,
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(3) every hidden vertex has exactly one loop .

A delooped quiver Q◦ = (V, E◦, s◦, t◦) of Q is a quiver Q from which all loops of
Q have been removed[6].

Let Q = (V, E , s, t) be a quiver. A representation of a quiver Q is defined by a
tuple W = ({Wν}ν∈V , {Wϵ}ϵ∈E), where {Wν}ν∈V is a sequence of vector spaces that is
indexed by ν ∈ V and {Wϵ}ϵ∈E is a sequence of linear transformations that is indexed by
ϵ ∈ E such that for every ϵ ∈ E we have

Wϵ : Ws(ϵ) → Wt(ϵ).

Let U,W be two representations of Q. A morphism representation τ : W → U is
a sequence of linear transformations τ = {τν : Uν → Wν}ν∈V that is indexed by ν ∈ V
such that for every ϵ ∈ E we have

τt(ϵ)Wε = Uϵτs(ϵ).

A morphism τ is called an isomorphism if τν is invertible for every ν ∈ V . We say W is
isomorphic to U if τ is an isomorphism [6].

2.2. Convolution Representation.
Let G be a finite group and define

CG = {f : G → C}
as a set of functions from the group G to the complex number set C, We define the addition,
scalar multiplication, and inner product in CG, respectively, as follows:

(1) for every f, g ∈ CG and x ∈ G, we have (f + g)(x) = f(x) + g(x),
(2) for every f ∈ CG, z ∈ C, and x ∈ G, we have (zf)(x) = zf(x),
(3) for every f, g ∈ CG, we can define ⟨f, g⟩ =

∑
x∈G f(x)g(x); g(x) as the complex

conjugate of g(x).

We know that CG forms a vector space. We will define the pointwise multiplication (·)
operation in CG. Let f, g ∈ CG and define

(f · g)(x) = f(x)g(x);∀x ∈ C.

We can say that CG is an algebra over C, because CG is a vector space over C and a ring
with pointwise multiplication; we call CG a group algebra. We also define a convolution
operation in CG as follows:

(f ∗ g)(x) =
∑
y∈G

f(y)g(y−1x)

for every f, g ∈ CG and x ∈ G [7].
The mathematical system (CG,+, ∗) also forms a ring. Hence, CG can be consid-

ered as an algebra under the convolution operation [7].
We will consider CG as a vector space and use it to get a quiver representation. Let

Q = (V, E , s, t) be a quiver. We can define a quiver representation ({CG}ν∈V , {Wϵ}ϵ∈E),
where Wϵ is a linear map from CG to CG. The representation is called the CG-representation
of Q [8].
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Furthermore, we also can define the CG-convolution representation of Q. The CG-
convolution representation of Q is a CG-representation of Q such that for every ϵ ∈ E
there is a wϵ ∈ CG such that Wϵ(a) = wϵ ∗ a for every a ∈ CG [8].

3. RECURRENT NEURAL NETWORK

Definition 3.1. [6] The hidden quiver of Q, denoted by Q̃ = (Ṽ, Ẽ , s̃, t̃), is defined by the
hidden vertices Ṽ of Q and all arrows Ẽ between the hidden vertices of Q that are not
loops. We will refer to the layers in Q̃ as hidden layers.

Definition 3.2. [8] A recurrent network quiver Q is a network quiver Q augmented by
arrows from all vertices in the last hidden layer to all vertices in the first hidden layer.

Definition 3.3. [8] A CG-recurrent neural network over a recurrent network quiver Q is
a pair (W, f) where W is a CG-representation of delooped quiver Q◦ and f = {fv}v∈Ṽ

is a sequence of differentiable functions from CG to CG. The function fv : CG → CG is
called the activation function of vertex ν.

Let ζν = {ϵ ∈ E|t(ϵ) = ν}. We can also define ζ̂ν = {ϵ ∈ ζν |s(ϵ) in the right layer}
and ζ̄ν = {ϵ ∈ ζν |s(ϵ) in the left layer}. Therefore, we can get that ζν = ζ̂ν

⋃
ζ̄ν and

ζ̂ν
⋂
ζ̄ν = ∅. Furthermore, we know that ζ̂ν is ∅ if ν is not in the first hidden layer, which

implies that

ζν =

{
ζ̂ν

⋃
ζ̄ν ; if ν is in the first hidden layer,

ζ̄ν ; if ν is not in the first hidden layer.

Let Q be a CG-recurrent network quiver. Let d be the number of input vertices of
Q. Let (W, f) be a CG-recurrent neural network over a recurrent network quiver Q. We
will define a sequence of functions an(W, f)v : (CG)d → CG that maps an input data
x = {xν}ν∈Vin

∈ (CG)d to the output value of a vertex in Q where:

an(W, f)ν(x) =



xν ; if ν is an input vertex,
1 ; if ν is a bias vertex,

f
(∑

δ∈ζ̂ν
Wϵan−1(W, f)s(δ)(x)

+
∑

ϵ∈ζ̄ν
Wϵan(W, f)s(ϵ)(x)

)
; if ν is a hidden vertex,∑

ϵ∈ζν
Wϵan(W, f)s(ϵ)(x) ; if ν is an output vertex,

and a0(W, f)ν(x) = 0 for every ν ∈ V [8].

Definition 3.4. [8] Let (W, f) be a CG-recurrent neural network over a recurrent network
quiver Q. Let d be the number of input vertices of Q and k be the number of output vertices
of Q. Let us now define the recurrent neural network function as follows:

Ψ(W, f) :(CG)d → l((CG)k)

x 7→ {an(W, f)ν(x)}ν∈Vout

where Vout is the set of all vertices in the output layer and l((CG)k) is the set of all
sequences of (CG)k.
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Definition 3.5. [8] Let (W, f) and (U, g) be two CG-recurrent neural networks over a
network quiver Q. A morphism of CG-recurrent neural networks is a morphism of CG-
representations τ : (W, f) → (U, g) that satisfies

(1) τν = 1 for every ν /∈ Ṽ;
(2) for every ν ∈ Ṽ , we have this commutative diagram:

CG CG

CG CG

fν

τν τν

gν

FIGURE 2. Commutative Diagram for Morphism of CG-recurrent neu-
ral networks

where Ṽ is the set of all vertices in the hidden layer. If for every ν ∈ V , τν is bijective, then
τ is an isomorphism and (W, f) is isomorphic to (U, g) .

Lemma 3.6. [8] Let Q = (V, E , s, t) be a recurrent network quiver, G be a finite group.
Define

CΓ(Q) = {I}ν∈Vin
×

∏
v∈Ṽ

GL(CG)× {I}v∈Vout

where GL(CG) is a general linear group of CG. Then CΓ(Q) is the group of all isomor-
phism of CG-recurrent neural networks over recurrent network quiver Q.

Proof. It is clear that CΓ(Q) is a group. Let τ ∈ CΓ(Q). Let (W, f) is a recurrent neural
network over network quiver Q. Define

(U, g) = (τWτ−1, τgτ−1) = ({τt(ϵ)Wϵτ
−1
s(ϵ }ϵ∈E , {τvgτ−1

v }ν∈Ṽ)

where Ṽ is the set of all vertex in hidden quiver Q̃ of recurrent network quiver Q. From the
definition of (U, g), we get that τ is a morphism of CG-recurrent neural network between
(W, f) and (U, g). Therfore, CΓ(Q) is the group of all isomorphism of CG-recurrent neural
network over network quiver Q. □

Theorem 3.7. If (W, f) and (U, g) are two isomorphic CG-recurrent neural networks
then

Ψ(W, f)(x) = Ψ(U, g)(x).

Proof. Let (W, f) and (U, g) be two isomorphic CG-recurrent neural networks. This
means there is an isomorphism τ such that τ ⋄(W, f) = (V, g). Let x ∈ (CG)d be an input
vertex for (W, f) and (U, g). For n = 0, we know that a0(W, f)v(x) = 0 = a0(U, g)v(x)
for every vertex v in quiver Q. For n = 1, we have

a1(W, f)v(x) = a1(U, g)v(x) =

{
xν ; ν is an input vertex,
1 ; ν is a bias vertex,

because τv = 1. If v is in the first hidden layer, we have
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a1(U, g)ν(x) = gν

∑
δ∈ζ̂ν

Uδa0(U, g)s(δ)(x) +
∑
ϵ∈ζ̄v

Uϵa1(U, g)s(ϵ)(x)


= gv

0 +
∑
ϵ∈ζ̄v

Uϵa1(U, g)s(ϵ)(x)


= τνfν

τ−1
ν

∑
ϵ∈ζ̄ν

Uϵa1(U, g)s(ϵ)(x)


= τνfν

τ−1
ν

∑
ϵ∈ζν

τt(ϵ)Wϵτ
−1
s(ϵ)a1(U, g)s(ϵ)−1(x)


= τνfν

∑
ϵ∈ζν

τ−1
ν τνWϵa1(U, g)s(ϵ)(x)

 ; since τs(ϵ) = 1 = τ−1
s(ϵ)

= τvfv

∑
ϵ∈ζv

Wϵa1(U, g)s(ϵ)(x)

 .

Since s(ϵ) is an input vertex, then a1(U, g)s(ϵ)(x) = a1(W, f)s(ϵ)(x). Hence, we get

a1(U, g)v(x) = τνfν

∑
ϵ∈ζν

Wϵa1(W, f)s(ϵ)(x)

 .

Therefore, we get
a1(U, g)v(x) = τva1(W, f)v(x). (1)

For ν in other hidden layers, we will have ζν = ζ̄ν from the definition of a recurrent neural
network. If ν is in the second hidden layer, we have

a1(U, g)ν(x)(x) = gν

∑
δ∈ζ̂ν

Uδa0(U, g)s(δ)(x) +
∑
ϵ∈ζ̄ν

νϵa1(U, g)s(ϵ)(x)


= gν

∑
ϵ∈ζν

Uϵa1(U, g)s(ϵ)(x)

 ; from the definition of

recurrent neural network

= τνfν

τ−1
ν

∑
ϵ∈ζν

Uϵa1(U, g)s(ϵ)(x)


= τνfν

τ−1
ν

∑
ϵ∈ζν

τt(ϵ)Wϵτ
−1
s(ϵ)a1(U, g)s(ϵ)(x)


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= τνfν

∑
ϵ∈ζν

τ−1
ν τνWϵτ

−1
s(ϵ)τs(ϵ)an(W, f)s(ϵ)(x)

 ; since ϵ ∈ ζν

= τνfν

∑
ϵ∈ζν

Wϵa1(W, f)s(ϵ)(x)


= τνa1(W, f)ν(x) ; from the definition of (W, f).

This means that if ν is in the second hidden layer, we get

a1(U, g)ν(x) = τνa1(W, f)ν(x).

Inductively, we get a1(U, g)ν(x) = τνa1(W, f)ν(x) for every ν in a hidden layer. If ν is
an output vertex, we have

a1(U, g)ν(x) =
∑
ϵ∈ζν

Uϵa1(U, g)s(ϵ)(x)

=
∑
ϵ∈ζν

τt(ϵ)Wϵτs(ϵ)a1(U, g)s(ϵ)(x)

=
∑
ϵ∈ζν

τνWϵτ
−1
s(ϵ)τs(ϵ)a1(W, f)s(ϵ)(x) ; since s(ϵ) is in a hidden layer

=
∑
ϵ∈ζν

Wϵa1(W, f)s(ϵ)(x) ; since τν = 1 for ν ∈ Vout.

Therefore, we get

a1(U, g)ν(x) = a1(W, f)ν(x).

For n = 2, 3, · · · , we have

an(W, f)ν(x) = an(U, g)ν(x) =

{
xν ; ν is an input vertex
1 ; ν is a bias vertex

because τν = 1. If ν is in the first hidden layer, we have

an(U, g)ν(x) = gν

∑
δ∈ζ̂ν

Uδan−1(U, g)s(δ)(x) +
∑
ϵ∈ζ̄ν

Uϵan(U, g)s(ϵ)(x)


= τνfν

τ−1
ν

∑
δ∈ζ̂ν

Uδan−1(U, g)s(δ)(x) +
∑
ϵ∈ζ̄ν

Uϵan(U, g)s(ϵ)(x)


= τνfν

τ−1
ν

∑
δ∈ζ̂ν

τt(δ)Wδτ
−1
s(δ)an−1(U, g)s(δ)(x)
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+ +
∑
ϵ∈ζ̄v

τt(ϵ)Wϵτ
−1
s(ϵ)an(U, g)s(ϵ)(x)


= τνfν

τ−1
ν

∑
δ∈ζ̂ν

τνWδτ
−1
s(δ)τs(δ)an−1(W, f)s(δ)(x)

+ +
∑
ϵ∈ζν

τνWϵτ
−1
s(ϵ)an(U, g)s(ϵ)(x)


= τνfν

τ−1
ν τν

∑
δ∈ζ̂ν

Wδτ
−1
s(δ)τs(δ)an−1(W, f)s(δ)(x)

+
∑
ϵ∈ζν

Wϵan(U, g)s(ϵ)(x)

 ; since τs(ϵ) = 1

= τνfν

∑
δ∈ζ̂ν

Wδan−1(W, f)s(δ)(x) +
∑
ϵ∈ζν

Wϵan(U, g)s(ϵ)(x)

 .

Since s(ϵ) is an input vertex, then an(U, g)s(ϵ)(x) = an(W, f)s(ϵ)(x). Hence, we get

an(U, g)ν(x) = τνfν

∑
δ∈ζ̂ν

Wδan−1(W, f)s(δ)(x) +
∑
ϵ∈ζv

Wϵan(W, f)s(ϵ)(x)

 .

Therefore, we get
an(U, g)ν(x) = τνan(W, f)ν(x). (2)

For ν is in other hidden layers, we will have ζν = ζ̄ν from the definition of a CG-
recurrent neural network. So, we have

an(U, g)ν(x)(x) = gν

∑
δ∈ζ̂ν

Uδan−1(U, g)s(δ)(x) +
∑
ϵ∈ζ̄ν

Uϵan(U, g)s(ϵ)(x)


= gν

∑
ϵ∈ζν

Uϵan(U, g)s(ϵ)(x)

 ; from the definition of

recurrent neural network

= τνfν

τ−1
ν

∑
ϵ∈ζν

Uϵan(U, g)s(ϵ)(x)


= τνfν

τ−1
ν

∑
ϵ∈ζν

τt(ϵ)Wϵτ
−1
s(ϵ)an(U, g)s(ϵ)(x)





9

= τνfν

∑
ϵ∈ζν

τ−1
ν τνWϵτ

−1
s(ϵ)τs(ϵ)an(W, f)s(ϵ)(x)

 ; since ϵ ∈ ζν

= τνfν

∑
ϵ∈ζν

Wϵan(W, f)s(ϵ)(x)


= τνan(W, f)v(x) ; from the definition of (W, f).

So, we get that
an(U, g)ν(x) = τνan(W, f)ν(x)

for every ν in a hidden layer. For ν is an output layer, we will get

an(U, g)ν(x) =
∑
ϵ∈ζν

Uϵan(U, g)s(ϵ)(x)

=
∑
ϵ∈ζν

τt(ϵ)Wϵτs(ϵ)an(U, g)s(ϵ)(x)

=
∑
ϵ∈ζν

τνWϵτ
−1
s(ϵ)τs(ϵ)an(W, f)s(ϵ)(x) ; since s(ϵ) is in a hidden layer

=
∑
ϵ∈ζν

Wϵan(W, f)s(ϵ)(x) ; since τν = 1 for ν ∈ Vout

Therefore, we get
an(U, g)ν(x) = an(W, f)ν(x).

This means we get
Ψ(W, f) = Ψ(U, g).

□

Remark 3.1. This theorem tells us that if we have two neural networks over the same
quiver and they are isomorphic, then we can use a neural network that is simpler for
calculation and more efficient in memory usage [6],[4].

Example 3.8. Let Q be a recurrent network quiver that can be drawn as follows:
Let G = Z2 and (W, f) be a CG-representation of Q with

Wϵ1 =

(
1 3
4 6

)
, Wϵ2 =

(
1 5
7 4

)
, Wϵ3 =

(
4 3
2 2

)
, Wϵ4 =

(
1 1
3 2

)
,

Wϵ5 =

(
4 1
0 1

)
, Wϵ6 =

(
2 1
1 0

)
, Wϵ7 =

(
1 0
0 2

)
, Wϵ8 =

(
2 0
0 3

)
,

Wϵ9 =

(
0 1
1 0

)
, Wϵ10 =

(
0 1
2 0

)
, Wϵ11 =

(
0 1
1 1

)
, Wϵ12 =

(
3 0
1 2

)
.

Let τ = {τv : Wv 7→ Uv}v∈V be a morphism representation of Q that induces a morphism
of a recurrent neural network from (W, f) to (U, g) over recurrent network quiver Q with

τν1 = τν6 =

(
1 0
0 1

)
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ν2 ν4

ν1 ν6

ν3 ν5

f1 f3

f2 f4

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6

ϵ7

ϵ8

ϵ9

ϵ10

ϵ11

ϵ12

FIGURE 3. Example of Recurrent Network Quiver

and

τν2 =

(
1 2
0 1

)
, τν3 =

(
1 2
1 0

)
, τν4 =

(
1 −1
0 1

)
, τν5

=

(
1 2
1 −1

)
.

Let (U, g) = τ(W, f)τ−1 then (U, g) is isomorphic to (W, f). So, we obtain

Uϵ1 =

(
9 15
4 6

)
, Uϵ2 =

(
15 13
1 5

)
, Uϵ3 =

(
2 1
2 2

)
, Uϵ4 =

(
7 5
3 2

)
,

Uϵ5 =

(
4 3
4 1

)
, Uϵ6 =

(
1 1
1 0

)
, Uϵ7 =

(
1 2
1 −4

)
, Uϵ8 =

(
6 −9
−2 1

)
,

Uϵ9 =

(
3 −6
0 −1

)
, Uϵ10 =

(
1
2

7
2

1
5 − 5

2

)
, Uϵ11 =

(
2 −1
−1 0

)
, Uϵ12 =

(
3 0
0 −3

)
.

Let us have f1(x) = f2(x) = f3(x) = f4(x) = (x2
g)g∈G, then we will have

g1(x) = τν3
f1(τ

−1
ν3

x), g2(x) = τν4
f2(τ

−1
ν4

x), g3(x) = τν5
f3(τ

−1
ν5

x), g4(x) = τν6
f4(τ

−1
ν6

x).

We try to calculate an example of a result from recurrent neural network (W, f) and

(U, g) using input x1 =

(
2
1

)
using matlab program (you can see the code https://bit.ly/3ZyrZeI)

that is shown in the below.

TABLE 1. Example of a result of the neural network function

Iteration (n) Ψ(W, f)(x) Ψ(U, g)(x)

0
(
0
0

) (
0
0

)
1

(
1827103
2991981

) (
1827103
2991981

)
2 1027

(
3.4767
6.9831

)
1027

(
3.4767
6.9831

)
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The table shows that the neural network function of two isomorphic neural networks will
be the same.

4. MODULI SPACE OF RECURRENT NEURAL NETWORK

Definition 4.1. [9] Let G be a group and X be a set. An action of G on X is a map
· : G×X → X , denoted by a · x, such that

(1) e · x = x for every x ∈ X where e is the identity in G,
(2) a · (b · x) = (a · b) · x for all a, b ∈ G and all x ∈ X .

The set O = {a · x|a ∈ G} is called an orbit of the action.

Let CG(Q) be the set of CG-representations of Q such that for every ϵ ∈ E , Wϵ

is invertible. Define Γ(Q) as a group of all isomorphisms of representations of quiver Q.
Define an action of Γ(Q) on CG(Q) as follows:

τ ·W = τWτ−1 = {τt(ϵ)Wϵτ
−1
s(ϵ)}ϵ∈E . (3)

Definition 4.2. [8] Let Q = (V, E , s, t) be a recurrent network quiver. Let C be a sub-
group of Γ(Q). Let C act on CG(Q) where the action is defined by τ · W = τWτ−1 =
{τt(ϵ)Wϵτ

−1
s(ϵ)}ϵ∈E . The moduli space M(Q) of the CG-representation is the set of all

orbits of the action of C on CG(Q). The dimensions of the moduli space M(Q) is the
number of orbits of the group action.

Lemma 4.3. Let Q = (V, E , s, t) be a cycle quiver. Let µ ∈ V and define

Cµ(Q) = {τ = {τν}ν∈V ∈ Γ(Q)|τµ = 1}.
Let Cµ(Q) acts on CG(Q) where the action is defined by τ ·W = τWτ−1 = {τt(ϵ)Wϵτ

−1
s(ϵ)}ϵ∈E .

The action of Cµ(Q) on CG(Q) will form a moduli space M(Q) with

dim(M(Q)) = |G|2.

Proof. We know that Cµ(Q) is a subset of Γ(Q). We also know that Cµ(Q) contains
1 = {1ν}ν∈V . Let τ, σ ∈ Cµ(Q), we have τ · σ−1 = {τνσ−1

ν }ν∈V . If ν = µ, we have
τνσ

−1
ν = τµσ

−1
µ = 1 ∗ 1 = 1. If ν ̸= µ, we have τνσ

−1
ν ∈ GL(CG). Thus, Cµ(Q) is a

subgroup of Γ(Q). Therefore, M(Q) is a moduli space. Let Q = (V, E , s, t) be a cycle.
Without losing generality, let E = {ϵ0, ϵ1, · · · , ϵn−1} and V = {ν0, ν1, · · · , νn−1} with
s(ϵi) = νi and t(ϵi) = νi+1(mod n) where mod is the modulo operator. Let W ∈ CG(Q).
Now, we will construct a morphism of quiver representations τ = {τν}{ν∈V}. Without
losing generality, we set µ = ν0 and for i = 1, 2, · · · , n− 1

τνi = τs(ϵi−1)W
−1
ϵi−1

= τνi−1W
−1
ϵi−1

Now, we get a new CG-representation of quiver Q, that is:

U = τWτ−1 = {τνi+1(mod n)
Wϵiτνi}n−1

i=0

So, we get Uϵi = 1 for i = 0, 1, · · · , n−2 and Un−1 = τν0
Wϵn−1

τ−1
νn−1

=
∏n−1

i=0 Wϵn−1−i
.

From the algorithm, we know that Wϵn−1 is not necessarily an identity map. Furthermore,
we know that the group action is free. So the number of orbits of the action must be equiv-
alent to the number of arrows with free weight; in this case, we have ϵn−1. On the other
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hand, we know that Wϵn−1
∈ GL(CG), where GL(CG) is a general linear group of CG.

So we can conclude that the number of orbits of the action must be the same as the size of
Wϵn−1 . Therefore, we can conclude that

dim(M(Q) = dim(CG) = |G|2

□

Theorem 4.4. Let Q be a recurrent network quiver. Let Vin be the set of input vertices of
Q and Vout be the set of output vertices of Q. Define

CΓ(Q) = {I}ν∈Vin ×
∏
v∈Ṽ

GL(CG)× {I}v∈Vout

where GL(CG) is a general linear group of CG. Let CΓ(Q) acts on CG(Q) where the
action is defined by τ · W = τWτ−1 = {τt(ϵ)Wϵτ

−1
s(ϵ)}ϵ∈E . Let M(Q) be the set of all

orbits from the action of CΓ(Q) on CG(Q), then the set M(Q̃) will form the moduli space.
Furthermore, the dimension of the moduli space is |G|2(|E◦| − |Ṽ|).

Proof. Firstly, we know that CΓ(Q) is a subset of
∏
ν∈V

GL(CG) = Γ(Q) and {1ν}ν∈V ∈

CΓ(Q). Let τ, σ ∈ CΓ(Q). We know that τ · σ−1 ∈ CΓ(Q) because for ν ∈ Vin

⋃
Vout,

we have τνσ
−1
ν = 1 ∗ 1 = 1 and for ν ∈ Ṽ , we have τν ∗ σ−1

ν ∈ GL(CG). Thus, CΓ(Q)
is a subgroup of Γ(Q). Therefore, M(Q) is a moduli space. Now, we will show that
the action of CΓ(Q̃) on M(Q̃) by · is free. This means that we must show that for all
(W, f) ∈ M(Q̃) we have τ · (W, f) = (W, f) implies τ = {τν = 1}ν∈V . Let (W, f) be
an element of M(Q̃). From the definition of the group action, we have

τ · (W, f) = (τ ·W, τ · f) = ({τt(ϵ)Wϵτ
−1
s(ϵ)}ϵ∈E , {τνfντ−1

ν }ν∈Ṽ).

If s(ϵ) is in the input layer, then we have

τt(ϵ)Wϵτ
−1
s(ϵ) = τt(ϵ)Wϵ

This means that if τ · (W, f) = (W, f) then τt(ϵ) must be an identity. If s(ϵ) in the first
hidden layer we will also get τ · (W, f) implies τt(ϵ) = 1. So, using strong mathematical
induction, we will get that τv = 1 for every v in V . Thus, we have that the action of CΓ(Q̃)

on M(Q̃) by · is free.
Now, we will count arrows that have free weight. Let Q be a recurrent network

quiver with Q̃ as the hidden quiver and Q◦ as the delooped quiver. Let W be a CG-
representation of quiver Q◦. Let ν ∈ Ṽ . We know that there is an ϵ ∈ E◦ such that
t(ϵ) = ν. We only choose one ϵ ∈ E◦ that t(ϵ) = ν for every ν ∈ Ṽ to build a new quiver
Qν . Because of the construction, no two arrows have the same target, which implies
that Qν is a union of trees, and the intersection of any two trees can only be a source
vertex of Q. Furthermore, for any of those trees, only a hidden vertex is a unique source
corresponding to that tree. Now, we will construct a morphism of quiver representations
τ = {τν}{ν∈V}. If ν is the input vertex, set τν = 1. If ν is not the input vertex, we have
an arrow α ∈ Qν such that t(α) = ν. Therefore, we can set τν = W−1

α τs(α). Using the
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recursive formula, we can get a new CG-representation of Qν such that every arrow in Qν

will be represented as an identity linear map from CG to CG. We get that the number of
arrows with free weight is the number of arrows in Q◦ that are not necessarily the same as
an identity map. On the other hand, we know that every weight of the arrow is an element
of GL(CG). Therefore, the dimension of the moduli space is |G|2(|E◦| − |Ṽ|) □

Remark 4.1. This theorem tells us to create a new way to make a more effective and effi-
cient recurrent neural network algorithm. We have tried to expand the approach proposed
by Armenta et al. [6],[4]. We used group algebra to build the neural teleportation model
in Theorem 4.4. Unlike the neural network with additive time-varying delays proposed by
Shanmugam et al. in [10], which optimizes operation between vertices, we consider some
combinatorics aspects of reducing arrows between vertices.

Example 4.5. Let Q be a recurrent network quiver that can be drawn as follows:

ν3 ν6

ν1 ν9

ν4 ν7

ν2 ν10

ν5 ν8

f1 f4

f2 f5

f3 f8

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6

ϵ7

ϵ8

ϵ9ϵ10

ϵ11

ϵ12ϵ13

ϵ14

ϵ15

ϵ16

ϵ17

ϵ18

ϵ19

ϵ20

ϵ21

ϵ22

ϵ23

ϵ24

ϵ25

ϵ26

ϵ27

ϵ28

ϵ29

ϵ30

FIGURE 4. Recurrent Network Quiver Q

We will remove all loops from the quiver and make quiver Q◦.
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ν3 ν6

ν1 ν9

ν4 ν7

ν2 ν10

ν5 ν8

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6

ϵ7

ϵ8

ϵ9ϵ10

ϵ11

ϵ12ϵ13

ϵ14

ϵ15

ϵ16

ϵ17

ϵ18

ϵ19

ϵ20

ϵ21

ϵ22

ϵ23

ϵ24

ϵ25

ϵ26

ϵ27

ϵ28

ϵ29

ϵ30

FIGURE 5. Delooped Quiver of Q

Now, we will make a new quiver, denoted by Qν , as follows:

ν3 ν6

ν1 ν9

ν4 ν7

ν2 ν10

ν5 ν8

ϵ1

ϵ5

ϵ6

ϵ7

ϵ11

ϵ15

ϵ22

ϵ26

ϵ30

FIGURE 6. Quiver Qν

If we have (W, f) is a neural network over Q, we choose τν3
= Wϵ1

−1, τν4
= W−1

ϵ5 ,
τν5 = W−1

ϵ6 , τν6 = Wϵ1
−1Wϵ7

−1, τν7 = Wϵ5
−1Wϵ11

−1, τν8 = Wϵ6
−1Wϵ15

−1, and
τν1

= τν2
= τν9

= τν10
= 1 Thus, we will get a new representation for Qν as follows:

From this, we can conclude that the dimensions of the moduli spaces of recurrent neural
networks over Q are 24× |G|2.
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ν3 ν6

ν1 ν9

ν4 ν7

ν2 ν10

ν5 ν8

I

I

I

I

I

I

Wϵ1
Wϵ22

Wϵ7
Wϵ1

Wϵ5Wϵ26Wϵ11Wϵ5

Wϵ6
Wϵ30

Wϵ15Wϵ6

FIGURE 7. The New Representation for Qν

5. CONCLUSION AND FURTHER RESEARCH

We have obtained some properties of recurrent neural networks. We got the dimen-
sions of the moduli space from the morphism group action on the set of recurrent neural
networks with the invertible weight of the arrow. From this work, we can minimize the
algorithm complexity of recurrent neural networks. We need help applying this model to
actual data, which is possible because our model is used for raw data and is not equipped
with a prepossessing data algorithm. In further research, we will try to combine topo-
logical data analysis and recurrent neural networks. We will also use the present work in
future research for applications like picture recognition. We also want to see the moduli
space’s topology. We will combine this work with topological data analysis to create a
more effective and efficient neural network algorithm.
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