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Abstract. A weak convergence of the sequence of partial sums processes of the

residuals (PSPR) when the observations are obtained from a multivariate spatial

linear regression model (SLRM) is established. The result is then applied in con-

structing the rejection region of an asymptotic test of hypothesis based on a type of

Cramér-von Mises functional of the PSPR. When the null hypothesis is true, we get

the limit process as a projection of the multivariate Brownian sheet, whereas under

the alternative it is given by a signal plus multivariate noise model. Examples of

the limit process under the null hypothesis are also studied.

Key words: Multivariate spatial linear regression model, multivariate Brownian
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Abstrak. Suatu kekonvergenan lemah dari barisan proses jumlah parsial dari sisaan

jika pengamatan diperoleh dari suatu model regresi linear spasial multivariat dite-

mukan. Hasilnya kemudian diterapkan pada pengonstruksian daerah penolakan dari

suatu uji hipotesis secara pendekatan yang berbasis pada suatu tipe dari fungsional

Cramér-von Mises dari proses jumlah parsial dari sisaan. Jika hipotesis nol berlaku,

proses limit yang diperoleh merupakan proyeksi dari lembaran Brown multivariat,

sedangkan dibawah alternatif proses limit diberikan oleh suatu model yang terdiri

dari suatu sinyal ditambah pengganggu multivariat. Contoh-contoh proses limit di

bawah hipotesis nol juga dipelajari.

Kata kunci: Model regresi linear spasial multivariat, lembaran Brown multivariate,
proses jumlah parsial, sisaan kuadrat terkecil, pemeriksaan model.
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1. Introduction

Asymptotic model check (change point check) for linear regressions based on
the PSPR has been studied in many literatures [see e.g. MacNail [14, 15], Bischoff
[6, 7, 8], and the references cited therein]. The correctness of the assumed models
and the existence of a change in the regression function or in the parameters of
the model were detected by means of the Kolmogorov, Kolmogorov-Smirnov, and
the Cramé-von Mises functionals of the PSPR. In MacNeill [16] and Xie [22], the
application of the PSPR has been extended to the problem of boundary detection
for SLRM, whereas in Bischoff and Somayasa [9], and Somayasa [18] and [19], it
has been investigated from the perspective of model check for the SLRM.

In the literatures mentioned above the attention was restricted to the uni-
variate linear regression models only. However in the practice it is frequent to
encounter a situation in which the responses consist of a simultaneous measure-
ment of two or more correlated variables (multivariate observations). Because of
such an inherent existence of the correlations within the response variables, more
effort will be needed in establishing the limit process of the PSPR.

In this paper we investigate an asymptotic model-check for multivariate SLRM.
To see the problem in detail let us consider a regression model

Y(t, s) = g(t, s) + E(t, s), (t, s) ∈ E := [a, b]× [c, d] ⊂ R2, a < b and c < d,

where g : (g(1), . . . , g(p))⊤ : E 7→ Rp is the true-unknown vector valued regression
function, Y := (Y (1), . . . , Y (p))⊤ is the p-dimensional vector of observations, and
E := (ε(1), . . . , ε(p))⊤ is the p-dimensional vector of random errors with E(E) = 0 ∈
Rp, and Cov(E) = Σ := (σij)

p,p
i=1,j=1 which is assumed to be unknown and positive

definite, with σij := Cov(ε(i), ε(j)). Thereby 0 is the p-dimensional zero vector. In
this paper the Euclidean vector x is considered as a column vector, while x⊤ is its
corresponding row vector. Furthermore we assume that for i ∈ {1, . . . , p}, g(i) is a
function of bounded variation on E in the sense of Vitali, i.e. g(i) ∈ BV V (E) [see
Clarkson and Adams [11] for the definition of BV V (E)]. For n ≥ 1, let Ξn be the
experimental condition given by a regular lattice on E. That is

Ξn :=

{
(tnℓ, snk) ∈ E : tnℓ := a+

ℓ

n
(b− a), snk := c+

k

n
(d− c), 1 ≤ ℓ, k ≤ n

}
.

Then {Ynℓk = (Y
(1)
nℓk, . . . , Y

(p)
nℓk)

⊤ := Y(tnℓ, snk) : 1 ≤ ℓ, k ≤ n, n ≥ 1} is a sequence
of p-dimensional vector of observations that satisfies the condition

Ynℓk = g(tnℓ, snk) + Enℓk, 1 ≤ ℓ, k ≤ n, (1)

where {Enℓk = (ε
(1)
nℓk, . . . , ε

(p)
nℓk)

⊤ := E(tnℓ, snk) : 1 ≤ ℓ, k ≤ n, n ≥ 1} is a sequence
of independent and identically distributed (i.i.d.) p-dimensional vector of random
errors with E(Enℓk) = 0 and Cov(Enℓk) = Σ.
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For a function h : E 7→ R, let h(Ξn) := (h(tnℓ, snk))
n,n
k=1,ℓ=1 is an n×n matrix

whose entry in the k-th row and ℓ-th column is given by h(tnℓ, snk). Let

Yn×n×p :=

 Y (1)(Ξn)
...

Y (p)(Ξn)

 ,gn×n×p :=

 g(1)(Ξn)
...

g(p)(Ξn)

 , En×n×p :=

 E(1)(Ξn)
...

E(p)(Ξn)


be the n×n× p dimensional array of observations, the n×n× p dimensional array
of the mean of Yn×n×p, and the n × n × p dimensional array of random errors,
respectively. Then Model (1) can also be written as

Yn×n×p = gn×n×p + En×n×p, n ≥ 1.

It is clear by the construction that for every n ≥ 1, En×n×p consists exactly of the set
of i.i.d. random vectors {Enℓk : 1 ≤ ℓ, k ≤ n} with E(Enℓk) = 0 and Cov(Enℓk) = Σ.

By the transformation (x, y) 7→ ((x− a)/(b− a), (y − c)/(d− c)), the experi-
mental condition Ξn in the experimental region [a, b]×[c, d] can always be converted
to a regular lattice {(ℓ/n, k/n) : 1 ≤ ℓ, k ≤ n} in the unit rectangle [0, 1] × [0, 1].
Therefore, without loss of generality and also for technical reason we consider in
this paper the space E = [0, 1]×[0, 1] =: I, and (tnℓ, snk) = (ℓ/n, k/n), 1 ≤ ℓ, k ≤ n,
n ≥ 1. As a comparison study the reader is referred to Somayasa [18] to see how the
limit process of the PSPR of univariate spatial linear regression model was estab-
lished without transforming the experimental region to the unit rectangle. It was
shown therein that the limit process was obtained as a projection of the Brownian
sheet on E.

Let f1, . . . , fd : I 7→ R be known real valued regression functions which are
linearly independent as functions in C(I) ∩ BVH(I), where C(I) is the space of
continuous functions on I, andBVH(I) is the space of functions of bounded variation
on I in the sense of Hardy [see [11] for the definition of BVH(I)]. As usual C(I)
is endowed with the uniform topology. Furthermore, let W := [f1, . . . , fd] be the
linear subspace generated by f1, . . . , fd. Note that W ⊂ L2(λ, I), where L2(λ, I) is
the space of square Lebesgue integrable function on I. The model-check studied in
this paper concerns with the hypotheses

H0 : g(i) ∈ W, ∀i ∈ {1, . . . , p} versus H1 : g(i) ̸∈ W for some i ∈ {1, . . . , p}.

Equivalently, the hypotheses can also be presented by

H0 : g ∈ Wp vs. H1 : g ̸∈ Wp,

where Wp := W×· · ·×W is the product of p copies of W. Clearly Wp ⊂ Lp
2(λ, I),

where Lp
2(λ, I) is the product of p copies of L2(λ, I). In this paper the topology in

Lp
2(λ, I) is induced by the inner product defined by

⟨w,v⟩Lp
2(λ,I)

:=

∫
I

w⊤v dλ =

p∑
i=1

⟨
w(i), v(i)

⟩
L2(λ,I)

,

for any w := (w(1), . . . , w(p))⊤, and v = (v(1), . . . , v(p))⊤ in Lp
2(λ, I).
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Let Wn := [f1(Ξn), . . . , fd(Ξn)] be a linear subspace of Rn×n. The hypothe-
ses described above can in practice be realized by testing

H0 : gn×n×p ∈ Wp
n vs. H1 : gn×n×p ̸∈ Wp

n, (2)

where Wp
n is the product of p copies of Wn, which is furnished in this paper with

the inner product defined by

⟨An×n×p,Bn×n×p⟩Wp
n
:=

p∑
i=1

⟨A(i)
n×n,B

(i)
n×n⟩Rn×n :=

p∑
i=1

tr(A
(i)⊤
n×nB

(i)
n×n),

for any n× n× p dimensional arrays

An×n×p =


A

(1)
n×n
...

A
(p)
n×n

 , and Bn×n×p =


B

(1)
n×n
...

B
(p)
n×n

 ∈ Wp
n.

The least squares residuals of the model under H0 is given by

R̂n×n×p = PWp
n
⊥Yn×n×p = PWp

n
⊥En×n×p =

 PW⊥
n
E(1)(Ξn)
...

PW⊥
n
E(p)(Ξn)

 ,

(cf. Arnold[2], and Christensen [10], p.8-9), where the last equation follows from
the definition of the component wise projection. Here and throughout the paper
PV and PV⊥ = Id − PV denote the orthogonal projectors onto a linear subspace
V and onto the orthogonal complement of V, respectively.

If in addition {Enℓk : 1 ≤ ℓ, k ≤ n, n ≥ 1} are assumed to be i.i.d Np(0,Σ),
where Np is the p-variate normal distribution, then under H0 we have a normal
multivariate linear model which has been studied in many standard text books of
multivariate analysis [see e.g. [10], p.2-68]. In contrast to the classical treatment, for
our results we assume neither normal nor other distributions for the observations
since the test problem considered here will be handled asymptotically based on

the sequence of the p-variate PSPR
{
Tn×n×p(R̂n×n×p) : n ≥ 1

}
, where Tn×n×p :

(Rn×n)p → Cp(I) is a linear operator defined by

Tn×n×p(An×n×p) :=


Tn(A

(1)
n×n)
...

Tn(A
(p)
n×n)

 ∈ Cp(I), ∀An×n×p :=


A

(1)
n×n
...

A
(p)
n×n

 ,

where for every matrix A
(i)
n×n := (A

(i)
nℓk)

n,n
k=1,ℓ=1 ∈ Rn×n, and (t, s) ∈ I,

Tn(A
(i)
n×n)(t, s) :=

1

n

[ns]∑
k=1

[nt]∑
ℓ=1

A
(i)
nℓk +

(nt− [nt])

n

[ns]∑
k=1

A
(i)
n[nt]+1,k

+
(ns− [ns])

n

[nt]∑
ℓ=1

A
(i)
nℓ,[ns]+1 +

(nt− [nt])(ns− [ns])

n
A

(i)
n[nt]+1,[ns]+1. (3)
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Thereby Tn(A
(i)
n×n)(t, s) := 0, for at least t = 0 or s = 0. [see also Park [17] and

[9] for the definition of Tn]. The space Cp(I) and (Rn×n)p are the product of the
p copies of C(I) and Rn×n, respectively, where Cp(I) is endowed with a topology
induced by a metric ρ, defined by

ρ(w,u) :=

p∑
i=1

∥∥∥w(i) − u(i)
∥∥∥
∞

,w = (w(1), . . . , w(p))⊤,u = (u(1), . . . , u(p))⊤ ∈ Cp(I).

Every w ∈ Cp(I) is further assumed to satisfy w(t, s) = 0, for t = 0, or s = 0.

To test (2) the functional of the sequence of p-variate PSPR is frequently
observed. For example, a type of Cramér-von Misses statistic defined by

CMn :=

∥∥∥∥∥ 1

n2
Σ−1/2

n∑
ℓ=1

n∑
k=1

Tn×n×p(PWp
n
⊥Yn×n×p)(ℓ/n, k/n)

∥∥∥∥∥
Rp

where ∥·∥Rp is the usual Euclidean norm on Rp, is reasonable for constructing the
rejection region of the test. It is worth noting that adequateness of the assumed
model to the sample depends heavily on the length of the residuals in a sense that
the larger the residual is the worst the model will be. Therefore in the classical
theory of model check for multivariate linear regression model the question whether
the assumed model holds true is tasted based on the length of the residuals (cf.
Arnold [2], and Christensen [10], p.9-20). Since the partial sums operator is one-
to-one on (Rn×n)p, instead of investigating the length of the residuals we observe
the length of the partial sums of the residuals such as CMn. Analogously, based
on this statistic H0 will be rejected for a large value of CMn. Hence an asymptotic
size α-test, α ∈ (0, 1), will reject H0 if and only if CMn ≥ kα. Thereby kα is
a constant satisfying the equation P {CMn ≥ kα | H0} = α. For a given α, kα is
approximated by the (1 − α)-th quantiles of the asymptotic distributions of CMn

under H0.

The rest of the paper is organized as follows. In Section 2 we present in detail
the limit process of the p-variate PSPR under the H0 as well as under the K. The
proof of the invariance principle for the p-variate Brownian sheet is presented in
the same section, beforehand we discuss examples of the limit process under H0.
The paper is closed with some conclusions, see Section 3.

2. Main Results

A stochastic process Bp := {B(1)(t, s), . . . , B(p)(t, s) : (t, s) ∈ I} is called
a p-variate Brownian sheet, if it satisfies the conditions: Bp(t, s) ∼ Np(0, tsIp),
∀(t, s) ∈ I, where Ip is the p× p identity matrix, and

Cov(Bp(t, s), Bp(t′, s′)) = p(t ∧ t′)(s ∧ s′), ∀(t, s), (t′, s′) ∈ I,

where t ∧ s is the minimum between t and s. This is a simple extension of the
definition of the multivariate Brownian motion on the unit interval [0, 1] studied
e.g. in Kiefer [12].
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Theorem 2.1. Let {En×n×p : n ≥ 1} be a sequence of n × n × p arrays of
random variables such that for every n ≥ 1, En×n×p consists of the set {Enℓk =

(ε
(1)
nℓk, . . . , ε

(p)
nℓk)

⊤ : 1 ≤ ℓ, k ≤ n} of i.i.d. random vectors with E(E111) = 0 and

Cov(E111) = Σ. Then as n → ∞, Σ−1/2Tn×n×p(En×n×p)
D−→ Bp. Here and

throughout this paper ”
D−→” stands for the convergence in distribution (weakly),

and Σ−1/2 is the root square of Σ−1, i.e. Σ−1 = Σ−1/2Σ−1/2.

Proof. Let Un,p := Σ−1/2Tn×n×p(En×n×p). By Theorem 8.2 in [4] it suffices to
show the sequence of finite dimensional distributions of Un,p converges to that
of Bp, and the sequence of the distributions of Un,p is tight. To prove the first

condition we define Sq,v
o,u :=

∑q
ℓ=o

∑v
k=u Enℓk, with Enℓk = (ε

(1)
nℓk, · · · , ε

(p)
nℓk)

⊤, for
o, q, u, v ∈ N, o ≤ q and u ≤ v. Hence by Equation (3), for every (x, y) ∈ I, we
have a decomposition

Un,p(x, y) =
1

n
Σ−1/2S

[nx],[ny]
1,1 +Σ−1/2Ψ[nx][ny],

where

Ψ[nx][ny] :=
(nx− [nx])

n

[ny]∑
k=1

En[nx]+1,k +
(ny − [ny])

n

[nx]∑
k=1

Enℓ,[ny]+1

+
(nx− [nx])(ny − [ny])

n
En[nx]+1,[ny]+1

Let us consider an arbitrary fixed point (t, s) ∈ I. It will be shown

Un,p(t, s)
D−→ Bp(t, s), as n → ∞.

Since the Lindeberg-Levy multivariate central limit theorem (cf. [21], p.16) guar-
antees that

1

n
Σ−1/2S

[nt],[ns]
1,1

D−→ Np(0, tsIp), as n → ∞,

then by recalling Theorem 4.1 in [4], the assertion will follow if we show∥∥∥∥Un,p(t, s)−
1

n
Σ−1/2S

[nt],[ns]
1,1

∥∥∥∥
Rp

P−→ 0, as n → ∞,

where
P−→ denotes the convergence in probability (stochastically). But this is

straightforward, since by the preceding decomposition we get∥∥∥∥Un,p(t, s)−
1

n
Σ−1/2S

[nt],[ns]
1,1

∥∥∥∥
Rp

=
∥∥∥Σ−1/2Ψ[nt][ns]

∥∥∥
Rp

,

and by using the well known Chebyshev’s inequality, ∀v ∈ Rp, and ∀ε > 0, it holds

P
{∣∣∣v⊤Σ−1/2Ψ[nt][ns]v

∣∣∣ ≥ ϵ
}
≤

V ar(v⊤Σ−1/2Ψ[nt][ns]v)

ε2

≤ 1

ε2

(
2v⊤v

n
+

v⊤v

n2

)
−→ 0, as n → ∞.
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Next we consider two arbitrary different points (t, s), (t′, s′) ∈ I. It must be

shown that (Un,p(t, s),Un,p(t
′, s′))⊤

D−→ (Bp(t, s), Bp(t′, s′))⊤, as n → ∞. For
that we consider in this stage two possible cases only, for which t < t′ and s < s′,
and t < t′ and s′ < s. In the first situation we have

(Un,p(t, s),Un,p(t
′, s′))⊤ = (Un,p(t, s), (Un,p(t

′, s′)−Un,p(t, s)) +Un,p(t, s))
⊤,

where Un,p(t
′, s′)−Un,p(t, s) and Un,p(t, s) are stochastically independent. Hence

by the preceding result and the well known Cramér-Wold device, it suffices to show

Un,p(t
′, s′)−Un,p(t, s)

D−→ Np(0, (t
′s′ − ts)Ip).

Since 1
nΣ

−1/2
(
S
[nt′],[ns′]
1,1 − S

[nt],[ns]
1,1

)
= 1

nΣ
−1/2

(
S
[nt′],[ns′]
[nt]+1,1 + S

[nt],[ns′]
1,[ns]+1

)
, and

1

n
Σ−1/2

(
S
[nt′],[ns′]
[nt]+1,1 + S

[nt],[ns′]
1,[ns]+1

)
D−→ Np(0, (t

′s′ − ts)Ip),

then by using the same reason as in the case of a single point, it is enough to show∥∥∥∥Un,p(t
′, s′)−Un,p(t, s)−

1

n
Σ−1/2

(
S
[nt′],[ns′]
1,1 − S

[nt],[ns]
1,1

)∥∥∥∥
Rp

P−→ 0.

But this is also an immediate consequence of the fact

Un,p(t
′, s′)−Un,p(t, s)−

1

n
Σ−1/2

(
S
[nt′],[ns′]
1,1 − S

[nt],[ns]
1,1

)
= Σ−1/2

(
Ψ[nt′][ns′] −Ψ[nt][ns]

) P−→ 0.

In the second case we can rewrite (Un,p(t, s),Un,p(t
′, s′))⊤ as

(Un,p(t, s),Un,p(t
′, s′))⊤ = (Un,p(t, s)−Un,p(t, s

′) +Un,p(t, s
′),

Un,p(t
′, s′)−Un,p(t, s

′) +Un,p(t, s
′))⊤.

It is clear by the definition, Un,p(t, s)−Un,p(t, s
′) and Un,p(t, s

′), and Un,p(t
′, s′)−

Un,p(t, s
′) andUn,p(t, s

′) are stochastically independent, respectively. Hence by the

same argument, it suffices to show Un,p(t, s)−Un,p(t, s
′)

D−→ Np(0, (ts−ts′)Ip) and

Un,p(t
′, s′)−Un,p(t, s

′)
D−→ Np(0, (t

′s′ − ts′)Ip). Since by applying the Lindeberg-
Levy multivariate central limit theorem (cf. [21], p.16), we get

1

n
Σ−1/2

(
S
[nt],[ns]
1,1 − S

[nt],[ns′]
1,1

)
=

1

n
Σ−1/2

(
S
[nt],[ns]
1,[ns′]+1

)
D−→ Np(0, t(s− s′)Ip),

and
1

n
Σ−1/2

(
S
[nt′],[ns′]
1,1 − S

[nt],[ns′]
1,1

)
=

1

n
Σ−1/2

(
S
[nt′],[ns′]
[nt]+1,1

)
D−→ Np(0, (t

′ − t)s′Ip).

then once again by using Theorem 4.1 in [4], the assertion will follow, if both∥∥∥∥Un,p(t, s)−Un,p(t, s
′)− 1

n
Σ−1/2

(
S
[nt],[ns]
1,1 − S

[nt],[ns′]
1,1

)∥∥∥∥p
R

P−→ 0,

and ∥∥∥∥Un,p(t
′, s′)−Un,p(t, s

′)− 1

n
Σ−1/2

(
S
[nt′],[ns′]
1,1 − S

[nt],[ns′]
1,1

)∥∥∥∥p
R

P−→ 0.
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But these can be directly obtained from the equations

Un,p(t, s)−Un,p(t, s
′)− 1

n
Σ−1/2

(
S
[nt],[ns]
1,1 − S

[nt],[ns′]
1,1

)
= Σ−1/2Ψ[nt][ns′],

and

Un,p(t
′, s′)−Un,p(t, s

′)− 1

n
Σ−1/2

(
S
[nt′],[ns′]
1,1 − S

[nt],[ns′]
1,1

)
= Σ−1/2Ψ[nt′][ns′],

where both Σ−1/2Ψ[nt][ns′] and Σ−1/2Ψ[nt′][ns′] converge in probability to 0, as
n → ∞. The proof for the cases of a set of three and more points on I can be
handled analogously.

Since Un,p(t, s) = 0, for either t = 0 or s = 0, in order to prove the tightness
of the sequence of the distributions of Un,p, it is sufficient to show

lim
δ→0

lim sup
n→∞

P{W (Tn×n×p(En×n×n); δ) ≥ ε} = 0, ∀ε > 0,

(c.f. Theorem 8.2 in [4]), where for every x = (x(1), . . . , x(p))⊤ ∈ Cp(I), W (x; δ) is
the modulus of continuity of x, defined by

W (x; δ) := sup
∥(t,s)−(t′,s′)∥≤δ

∥x(t, s)− x(t′, s′)∥Rp , 0 < δ < 1.

The proof will be finished, if for i = 1, . . . , p we show

lim
δ→0

lim sup
n→∞

P{W (U(i)
n,p; δ) ≥ ε} = 0, ∀ε > 0,

where U
(i)
n,p := Tn(E(i)(Ξn)), by the reason W (x; δ) ≤

∑p
i=1 W (x(i); δ).

Let {Iℓk := [tℓ−1, tℓ]× [sk−1, sk] : 1 ≤ ℓ ≤ p, 1 ≤ k ≤ q} be a partition on I ,
where 0 = t0 < t1 < . . . < tp = 1, 0 = s0 < s1 < . . . < sq = 1, such that

min
1≤ℓ≤p

(tℓ − tℓ−1) ≥ δ, and min
1≤k≤q

(sk − sk−1) ≥ δ, δ ∈ (0, 1).

Then for every ε > 0, it holds

P
{
W (U(i)

n,p; δ
√
2) ≥ 3ε

}
≤

q∑
k=1

p∑
ℓ=1

P

{
sup

(t,s)∈Iℓk

∣∣∣U(i)
n,p(t, s)−U(i)

n,p(tℓ−1, sk−1)
∣∣∣ ≥ ε

}
.

To be easier in analyzing the last inequality, let us chose tℓ = mℓ/n, and
sk = m′

k/n, for 0 ≤ ℓ ≤ p, and 0 ≤ k ≤ q, where mℓ and m′
k are integers that

satisfy the condition

0 = m0 < m1 < . . . < mℓ−1 < mℓ < . . . < mp = n,

0 = m′
0 < m′

1 < . . . < m′
k−1 < m′

k < . . . < m′
q = n.

Let S
(i)q,v
o,u :=

∑q
ℓ=o

∑v
k=u ε

(i)
nℓk be the i-th component of Sq,v

o,u. Then by the polyg-
onal property of the partial sums, we get

P
{
W (U(i)

n,p; δ
√
2) ≥ 3ε

}
≤

q∑
k=1

p∑
ℓ=1

P

 max
mℓ−1≤i1≤mℓ

m′
k−1

≤i2≤m′
k

∣∣∣S(i)i1,i2
1,1 − S

(i)mℓ−1,m
′
k−1

1,1

∣∣∣ ≥ εn

 ,
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whenever

mℓ

n
− mℓ−1

n
≥ δ, and

m′
k

n
−

m′
k−1

n
≥ δ, for 1 ≤ ℓ ≤ p, 1 ≤ k ≤ q.

Furthermore, the stochastically independence of {ε(i)nℓk : 1 ≤ ℓ, k ≤ n} implies

P
{
W (U(i)

n,p; δ
√
2) ≥ 3ε

}
≤

q∑
k=1

p∑
ℓ=1

P

 max
0≤i1≤mℓ−mℓ−1

0≤i2≤m′
k
−m′

k−1

∣∣∣S(i)i1,i2
1,1

∣∣∣ ≥ εn

 .

For further simplification we chose mℓ = ℓm and m′
k = km′, for some integers

m and m′ that satisfy mℓ − mℓ−1 = m ≥ nδ and m′
k − m′

k−1 = m′ ≥ nδ, for
0 ≤ ℓ < p and 0 ≤ k < q. Since the indexes p and q must satisfy (p − 1)m <

n ≤ pm and (q − 1)m′ < n ≤ qm′, then we have p = ⌈n/m⌉ n→∞−→ 1/δ < 2/δ

and q = ⌈n/m′⌉ n→∞−→ 1/δ < 2/δ, where ⌈x⌉ := min{z ∈ N : x ≤ z}. Moreover,

n/m
n→∞−→ 1/δ > 1/2δ and n/m′ n→∞−→ 1/δ > 1/2δ. Hence, for large n and for every

ε > 0, we have

P
{
W (U(i)

n,p; δ
√
2) ≥ 3ε

}
≤ 4

δ2
P

 max
0≤i1≤m

0≤i2≤m′

∣∣∣S(i)i1,i2
1,1

∣∣∣ ≥ ε
√
mm′

2δ


≤12

δ2
max

0≤i1≤m

0≤i2≤m′

P

{∣∣∣S(i)i1,i2
1,1

∣∣∣ ≥ ε
√
mm′

6δ

}
,

where the last inequality is obtained by applying Etemadi’s inequality (cf. Theorem
22.5 in [5]). Consequently we get

lim
δ→0

lim sup
n→∞

P
{
W (U(i)

n,p; δ
√
2) ≥ 3ε

}
≤ lim

δ→0
lim sup
m,m′→∞

12

δ2
max

0≤i1≤m

0≤i2≤m′

P

{∣∣∣S(i)i1,i2
1,1

∣∣∣ ≥ ε
√
mm′

6δ

}

= lim
δ→0

lim sup
n→∞

12

δ2
max

0≤i1≤n
0≤i2≤n

P
{∣∣∣S(i)i1,i2

1,1

∣∣∣ ≥ εn

6δ

}
. (4)

Let ℓδ and kδ be large enough such that ℓδ ≤ i1 ≤ n and kδ ≤ i2 ≤ n, then by the
central limit theorem and Markov’s inequality (cf. Athreya and Lahiri [3], p.83),

P
{∣∣∣S(i)i1,i2

1,1

∣∣∣ ≥ εn

6δ

}
≤P
{∣∣∣S(i)i1,i2

1,1

∣∣∣ ≥ ε
√
ℓδkδ
6δ

}
= P

{
|Z| ≥ ε

6δσ

}
≤ E |Z|4

( ε
6δσ )

4

=

(
var |Z|2 +

[
E |Z|2

]2)
64δ4σ4

ε4
=

(2 + 1)64δ4σ4

ε4
=

3888δ4σ4

ε4
.

For i1 ≤ ℓλ ≤ n and i2 ≤ kλ ≤ n, we can apply Chebyshev’s inequality to get

P
{∣∣∣S(i)i1,i2

1,1

∣∣∣ ≥ εn

6δ

}
≤ 36(i1i2)δ

2σ2

ε2n2
≤ 36(ℓδkδ)δ

2σ2

ε2n2
.
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Thus, the maximum on the right side of (4) is dominated by

max

{
3888δ4σ4

ε4
,
36(ℓδkδ)δ

2σ2

ε2n2

}
.

Hence, we finally get

lim
δ→0

lim sup
n→∞

P
{
W (U(i)

n,p; δ
√
2) ≥ 3ε

}
≤ lim

δ→0
lim sup
n→∞

max

{
46656δ2σ4

ε4
,
432(ℓδkδ)σ

2

ε2n2

}
which is clearly equal to 0. This leads us to the conclusion that the sequence of the
distributions of Un,p is tight. �

To be able to project Bp, the so-called reproducing kernel Hilbert space
(RKHS) of Bp is decisive. It can be obtained by applying the method proposed in
Lifshits [13], p.93. According to this method, the RKHS of Bp, denoted by HBp ,
is given by

HBp :=

{
h : I → Rp, ∃f ∈ Lp

2(λ, I),h(t, s) =

∫
[0,t]×[0,s]

fdλ, (t, s) ∈ I

}
.

It is understood that the integral considered here and throughout this paper is
defined component wise. We furnish HBp with the inner product and the norm
defined by ⟨h1,h2⟩HBp := ⟨f1, f2⟩Lp

2(λ,I)
, and ∥hi∥HBp

:= ∥fi∥Lp
2(λ,I)

, for which

hi(t, s) =
∫
[0,t]×[0,s]

fidλ, (t, s) ∈ I, fi ∈ Lp
2(λ, I), i = 1, 2. Under such defined

inner product and norm, HBp becomes a Hilbert space, since it is isometry with
the Hilbert space Lp

2(λ, I). For a fixed (t′, s′) ∈ I the function K(·; (t′, s′)) : I → R,
defined by K((t, s); (t′, s′)) := p(t∧ t′)(s∧ s′), for (t, s) ∈ I is an element of HBp . It
describes the covariance of Bp. In the work of Somayasa [20] the role of RKHS of
the one dimensional Brownian sheet was demonstrated in analyzing the power of a
test based on the Kolmogorov functional of the PSPR of univariate regression.

Associated with the regression functions f1, . . . , fd, let WHB := [h1, . . . , hd]
be a linear subspace generated by {h1, . . . , hd}, where hj(t, s) :=

∫
[0,t]×[0,s]

fjdλ, for

(t, s) ∈ I, j = 1, . . . , d. Furthermore, let WHBp := [h1, . . . ,hd] ⊂ HBp , where hj :
I → Rp, with hj(t, s) :=

∫
[0,t]×[0,s]

(fj , . . . , fj)
⊤ dλ, for (t, s) ∈ I, j = 1, . . . , d. It can

be seen that Wp
HB

⊆ WHBp , where Wp
HB

:= WHB
× · · · × WHB

. The equality

Tn(PWnBn×n) = PWnHB
Tn(Bn×n), for every Bn×n ∈ Rn×n, was investigated

in Proposition 2.2 of [9], where WnHB
:= {Tn(An×n) : An×n ∈ Wn}. Hence by

using the definition of Tn×n×p and the component wise projection, it holds

Tn×n×p(PWp
n
An×n×p) = Tn×n×p


PWn

A
(1)
n×n

...

PWnA
(p)
n×n

 =


Tn(PWn

A
(1)
n×n)

...

Tn(PWnA
(p)
n×n)


= (PWnHB

Tn(A
(1)
n×n), . . . , PWnHB

Tn(A
(p)
n×n))

⊤

= PWp
nHB

Tn×n×p(An×n×p), ∀An×n×p ∈ (Rn×n)p.
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The linearity of PWnHB
further implies

CTn×n×p(PWp
n
An×n×p) = PWp

nHB
CTn×n×p(An×n×p), (5)

for every p × p dimensional matrix C, and An×n×p ∈ (Rn×n)p. Furthermore,
Lemma A.15 in [9] guarantees the existence of a projection P ∗

WHB
: C(I) → WHB

with the property∥∥∥P ∗
WnHB

un − P ∗
WHB

u
∥∥∥
∞

→ 0, in C(I), as n → ∞, (6)

whenever ∥un − u∥∞ converges to 0, as n → ∞, where PWnHB
and PWHB

consti-
tute the restrictions of P ∗

WnHB
and P ∗

WHB
on the reproducing kernel Hilbert space

of the Brownian sheet, respectively. Thereby P ∗
WHB

u :=
∑d

j=1⟨hj , u⟩hj , where

⟨hj , u⟩ := ∆I(ufj)−
∫ (R)

[0,1]

u(t, 1)dfj(t, 1)−
∫ (R)

[0,1]

u(1, s)dfj(1, s)

+

∫ (R)

[0,1]

u(t, 0)dfj(t, 0) +

∫ (R)

[0,1]

u(0, s)dfj(0, s) +

∫ (R)

I

u(t, s)dfj(t, s),

∆I(w) := w(1, 1)−w(1, 0)−w(0, 1) +w(0, 0), for w : I 7→ R,
∫ (R)

is the Riemann-
Stieltjes integral, and {f1, . . . , fd} is assumed to build an orthonormal basis (ONB)
for W. We refer the reader to Lemma A.15 in [9] for a complete investigation
regarding the properties of this bilinear form.

Now we are ready to state the limit process of the p-variate PSPR for the
model specified in the preceding section.

Theorem 2.2. Let {f1, . . . , fd} be an ONB of W ⊂ C(I) ∩ BVH(I). If H0 holds
true, then we have

Σ−1/2Tn×n×p(R̂n×n×p)
D−→ Bp

(f1,...,fd)
:= Bp − P ∗

Wp
HB

Bp, as n → ∞,

where P ∗
Wp

HB

Bp = (P ∗
WHB

B(1), · · · , P ∗
WHB

B(p))⊤, and fj in the index (f1, . . . , fd)

stand for the p-copies of the regression function fj. Moreover Bp
f1,...fd

is a centered
Gaussian process with the covariance function K(f1,...,fd) : I× I → R, defined by

K(f1,...,fd)((t, s), (t
′, s′)) := p[(t ∧ t′)(s ∧ s′)−

d∑
j=1

hj(t, s)hj(t
′, s′)],

where for j = 1, . . . , d, hj(t, s) =
∫
[0,t]×[0,s]

fj dλ, (t, s) ∈ I.

Proof. By the linearity of Tn×n×p and the definition of R̂n×n×p, we get under H0

Σ−1/2Tn×n×p(R̂n×n×p) = Σ−1/2Tn×n×p(En×n×p)−Σ−1/2Tn×n×p(PWp
n
En×n×p)

Furthermore, by using Equation (5) and Proposition 2.2 in [9], it holds for the
second term in the right-hand side

Σ−1/2Tn×n×p(PWp
n
En×n×p) = P ∗

Wp
nHB

Σ−1/2Tn×n×p(En×n×p).
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The termΣ−1/2Tn×n×p(En×n×p) converges to B
p in Cp(I), by Theorem 2.1. To get

the limit of the second term, suppose for the moment (un)n≥1, un := (u
(1)
n , . . . , u

(p)
n )⊤

and u := (u(1), . . . , u(p))⊤ are functions in Cp(I), such that ρ(un,u) → 0 as n → ∞.
Then (6) and the definition of component wise projection imply

ρ(P ∗
Wp

nHB

un, P
∗
Wp

HB

u) =

p∑
i=1

∥∥∥P ∗
WnHB

u(i)
n − P ∗

WHB
u(i)
∥∥∥
∞

→ 0, as n → ∞.

This shows that P ∗
Wp

nHB

has the property P ∗
Wp

nHB

un converges to P ∗
Wp

HB

u in Cp(I),

whenever un converges to u in Cp(I). On the other hand it is known from the
definition of Tn×n×p presented in Section 1, that Σ−1/2Tn×n×p(En×n×p) has the
sample path in Cp(I). Hence, by applying Theorem 2.1 and the mapping theorem of
Rubin (Theorem 5.5 in Billingsley [4]), P ∗

Wp
nHB

Σ−1/2Tn×n×p(En×n×p) converges

weakly to P ∗
Wp

HB

Bp in Cp(I). �

What follows is a direct consequence of the well-known continuous mapping
theorem [see e.g. [4], p.29].

Corollary 2.3. Suppose the condition of Theorem 2.2 is satisfied. Then under H0

it holds∥∥∥∥∥ 1

n2
Σ−1/2

n∑
ℓ=1

n∑
k=1

Tn×n×p(R̂n×n×p)(ℓ/n, k/n)

∥∥∥∥∥
Rp

D−→
∥∥∥∥∫

I

Bp
(f1,...,fd)

dλ

∥∥∥∥
Rp

.

Proof. We note that 1
n2Σ

−1/2
∑n

ℓ=1

∑n
k=1 Tn×n×p(R̂n×n×p)(ℓ/n, k/n) can also be

written as the Lebesgue integral
∫
I
Σ−1/2Tn×n×p(R̂n×n×p)(t, s)λ(dt, ds). Since the

mapping Cp(I) ∋ f 7→
∫
I
f dλ ∈ Rp is continuous, the continuous mapping theorem

and Theorem 2.2 imply

1

n2
Σ−1/2

n∑
ℓ=1

n∑
k=1

Tn×n×p(R̂n×n×p)(ℓ/n, k/n)
D−→
∫
I

Bp
(f1,...,fd)

dλ as n → ∞.

Similarly, we get for n → ∞,∥∥∥∥∥ 1

n2
Σ−1/2

n∑
ℓ=1

n∑
k=1

Tn×n×p(R̂n×n×p)(ℓ/n, k/n)

∥∥∥∥∥
Rp

D−→
∥∥∥∥∫

I

Bp
(f1,...,fd)

dλ

∥∥∥∥
Rp

,

by the fact ∥·∥Rp is continuous on Rp. �

To get the asymptotic distribution of the PSPR and the CMn under the
alternative, we consider a localized model, defined by

Yn×n×p = gloc
n×n×p +En×n×p,where gloc

n×n×p :=


1
ng

(1)(Ξn)
...

1
ng

(p)(Ξn)

 .
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Theorem 2.4. Suppose {f1, . . . , fd} constitutes an ONB of W ⊂ C(I) ∩ BVH(I).
Then under the alternative H1 : gn×n×p ̸∈ Wp

n, we have

Σ−1/2Tn×n×p(R̂n×n×p)
D−→ P ∗

Wp⊥
HB

Σ−1/2hg + P ∗
Wp⊥

HB

Bp,

CMn
D−→
∥∥∥∥∫

I

(P ∗
Wp⊥

HB

Σ−1/2hg + P ∗
Wp⊥

HB

Bp) dλ

∥∥∥∥
Rp

where hg := (hg(1) , · · · , hg(p))⊤ : I → Rp, with hg(i)(t, s) :=
∫
[0,t]×[0,s]

g(i) dλ.

Proof. For n ∈ N, if gn×n×p ̸∈ Wn, then gloc
n×n×p ̸∈ Wn. Hence the n×n×p array

of the residuals of the localized model under H1 is given by

R̂n×n×p =PWp⊥
n

(gloc
n×n×p +En×n×p)

=gloc
n×n×p − PWp

n
gloc
n×n×p +En×n×p − PWp

n
En×n×p.

The linearity of Tn×n×p, Equation (5) and Proposition 2.2 of [9] further imply

Σ−1/2Tn×n×p(R̂n×n×p) = Σ−1/2Tn×n×p(g
loc
n×n×p)−Σ−1/2Tn×n×p(PWp

n
gloc
n×n×p)

+Σ−1/2Tn×n×p(En×n×p)−Σ−1/2Tn×n×p(PWp
n
En×n×p)

= Σ−1/2Tn×n×p(g
loc
n×n×p)− PWp

nHB
Σ−1/2Tn×n×p(g

loc
n×n×p)

+Σ−1/2Tn×n×p(En×n×p)− PWp
nHB

Σ−1/2Tn×n×p(En×n×p). (7)

Let us consider first the term Tn×n×p(g
loc
n×n×p) in (7), whose i-th component is

given by Tn(g
(i)(Ξn)/n) =

1
nTn(g

(i)(Ξn)), where Tn(g
(i)(Ξn)) is defined by Equa-

tion (3), and g(i) is assumed in BV V (I), ∀i ∈ {1, . . . , p}. By Theorem 5 in Adams

and Clarkson [1], there exist non decreasing functions g
(i)
1 and g

(i)
2 on the compact

set I, such that g(i) = g
(i)
1 − g

(i)
2 , for all i. Hence g

(i)
1 and g

(i)
2 are bounded respec-

tively by Mi1 :=
∣∣∣g(i)1 (1, 1)

∣∣∣ and Mi2 :=
∣∣∣g(i)2 (1, 1)

∣∣∣ on I. Let us define a sequence of

step functions S
(i)
n (t, s) :=

∑n
ℓ=1

∑n
k=1 g

(i)(ℓ/n, k/n)1Cℓk
(t, s), for (t, s) ∈ I, n ≥ 1,

where 1A stands for the indicator of A ⊆ I, and Cℓk is the half-open rectangle
((ℓ− 1)/n, ℓ/n]× ((k − 1)/n, k/n], for 1 ≤ ℓ, k ≤ n. Similarly, for n ≥ 1, let

S
(i)
n1 :=

n∑
ℓ=1

n∑
k=1

g
(i)
1 (ℓ/n, k/n)1Cℓk

, and S
(i)
n2 :=

n∑
ℓ=1

n∑
k=1

g
(i)
2 (ℓ/n, k/n)1Cℓk

be the sequence of step functions associated with g
(i)
1 and g

(i)
2 , respectively. It is

clear by the definition that
∣∣∣S(i)

n1

∣∣∣ ≤ Mi1 and
∣∣∣S(i)

n2

∣∣∣ ≤ Mi2, for all n ≥ 1, and both

S
(i)
n1 and S

(i)
n2 converge uniformly to g

(i)
1 and g

(i)
2 , respectively, as n → ∞. Hence, by
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using Lebesgue dominated convergence theorem (cf. Athreya and Lahiri [3] p.57),

lim
n→∞

∫
[0,t]×[0,s]

S
(i)
n1 (x, y) λ(dx, dy) =

∫
[0,t]×[0,s]

g
(i)
1 (x, y)λ(dx, dy)

lim
n→∞

∫
[0,t]×[0,s]

S
(i)
n2 (x, y)λ(dx, dy) =

∫
[0,t]×[0,s]

g
(i)
2 (x, y)λ(dx, dy).

On the other hand the computation of the Lebesgue integral of S
(i)
n over the rec-

tangle [0, t]× [0, s] results in the equality Tn(g
(i)(Ξn)/n)(t, s) =

∫
[0,t]×[0,s]

S
(i)
n dλ.

This implies

lim
n→∞

Tn(g
(i)(Ξn)/n)(t, s) = lim

n→∞

∫
[0,t]×[0,s]

S(i)
n (x, y)λ(dx, dy)

= lim
n→∞

∫
[0,t]×[0,s]

S
(i)
n1 (x, y)λ(dx, dy)− lim

n→∞

∫
[0,t]×[0,s]

S
(i)
n2 (x, y)λ(dx, dy)

=

∫
[0,t]×[0,s]

g
(i)
1 (x, y)λ(dx, dy)−

∫
[0,t]×[0,s]

g
(i)
2 (x, y)λ(dx, dy)

=

∫
[0,t]×[0,s]

g(i)(x, y)λ(dx, dy) = hg(i)(t, s).

We note that both Tn(g
(i)(Ξn)/n) and hg(i) are absolutely continuous on I having

the densities S
(i)
n and g(i), respectively. Actually the convergence of Tn(g

(i)(Ξn)/n)
to hg(i) is uniformly convergence, since we have∥∥∥Tn(g

(i)(Ξn)/n)− hg(i)

∥∥∥
∞

= sup
0≤t,s≤1

∣∣∣∣∣
∫
[0,t]×[0,s]

S(i)
n (x, y)λ(dx, dy)−

∫
[0,t]×[0,s]

g(i)(x, y)λ(dx, dy)

∣∣∣∣∣
≤ sup

0≤t,s≤1

∫
[0,t]×[0,s]

∣∣∣S(i)
n (x, y)− g(i)(x, y)

∣∣∣λ(dx, dy)
≤
∫
I

∣∣∣(S(i)
n1 − S

(i)
n2 )− (g

(i)
1 − g

(i)
2 )
∣∣∣ dλ

≤
∥∥∥S(i)

n1 − g
(i)
1

∥∥∥
∞

+
∥∥∥S(i)

n2 − g
(i)
2

∥∥∥
∞

→ 0, as n → ∞.

Next let C := (c1, . . . , cp)
⊤ ∈ Rp×p, where for 1 ≤ i ≤ p, ci := (ci1, . . . , cip)

⊤ ∈ Rp.
By the last result, and the condition that

CTn×n×p(g
loc
n×n×p) =

(
p∑

i=1

c1iTn(g
(i)(Ξn)/n), . . . ,

p∑
i=1

cpiTn(g
(i)(Ξn)/n)

)⊤

Chg =

(
p∑

i=1

c1ihg(i) , . . . ,

p∑
i=1

cpihg(i)

)⊤

,
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then we further get for n → ∞,

ρ
(
CTn×n×p(g

loc
n×n×p)−Chg

)
=

p∑
i=1

∥∥∥∥∥∥
p∑

j=1

cijTn(g
(j)(Ξn)/n)−

p∑
j=1

cijhg(j)

∥∥∥∥∥∥
∞

≤
p∑

i=1

p∑
j=1

|cij |
∥∥∥Tn(g

(j)(Ξn)/n)− hg(j)

∥∥∥
∞

→ 0.

This result leads us to the conclusion that

Σ−1/2Tn×n×p(g
loc
n×n×p) → Σ−1/2hg, uniformly in Cp(I) as n → ∞.

The rest terms of (7) can be handled by applying the similar technique as in the
proof of Theorem 2.2. The second assertion of the theorem is a direct consequence
of the continuous mapping theorem. It can be proven analogously with the proof
of Corollary 2.3. �

Remark 2.5. In the application Σ is sometimes unknown. In such a case Σ can be
directly replaced with a consistent estimator without altering the asymptotic results,
for example with that defined in [2].

2.1. Examples. We present examples of the limit processes corresponding to the
model under the null hypothesis.

2.1.1. Constant regression model. Let us consider H0 : g(i) ∈ W = [f1], i =
1, . . . , p, where f1(t, s) = 1, for (t, s) ∈ I. Then we get Wp = [f1], W

p
HB

= [h1],

where f1 = 1 := (1, . . . , 1)⊤ ∈ Rp, h1(t, s) = (ts, . . . , ts)⊤, for (t, s) ∈ I. By using
the definition of P ∗

WHB
, we have for every u ∈ Cp(I), P ∗

Wp
HB

u = u(1, 1)h1, by the

assumption u(t, s) = 0, for t = 0 or s = 0. Hence, the limit of the sequence of the
PSPR of this model is given by

Bp
(f1)

(t, s) := Bp(t, s)− tsBp(1, 1), (t, s) ∈ I,

which is the p-variate Brownian pillow, having the covariance function

K(f1)((t, s), (t
′, s′)) = p [(t ∧ t′)(s ∧ s′)− tst′s′] , (t, s), (t′, s′) ∈ I.

2.1.2. First-order regression model. Suppose underH0 a first-order regression model
is assumed, i.e. for i = 1, . . . , p, g(i) ∈ W = [f1, f2, f3], where f1(t, s) = 1,

f2(t, s) = t, and f3(t, s) = s. The Gram-Schmidt ONB of W is f̃1(t, s) = 1,

f̃2(t, s) =
√
3(2t − 1), and f̃3(t, s) =

√
3(2s − 1). So we have Wp = [̃f1, f̃2, f̃3],

where f̃1(t, s) = 1, f̃2(t, s) = (
√
3(2t− 1), . . . ,

√
3(2t− 1))⊤, and f̃3(t, s) = (

√
3(2s−

1), . . . ,
√
3(2s− 1))⊤. Consequently Wp

HB
is generated by h1(t, s) = (ts, . . . , ts)⊤,

h2(t, s) = (
√
3ts(t−1), . . . ,

√
3ts(t−1))⊤, and h3(t, s) = (

√
3ts(s−1), . . . ,

√
3ts(s−

1))⊤, (t, s) ∈ I. By the definition of the integral componentwise, we get for every
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u ∈ Cp(I),

P ∗
Wp

HB

u = f̃1(1, 1)u(1, 1)h1+

(
f̃2(1, 1)u(1, 1)− 2

√
3

∫
[0,1]

u(t, 1)dt

)
h2

+

(
f̃3(1, 1)u(1, 1)− 2

√
3

∫
[0,1]

u(1, s)ds

)
h3.

Thus the limit of the p-variate PSPR under H0 is given by

Bp
(f1,f2,f3)

(t, s) := Bp
(f1)

(t, s)− 3ts(t+ s− 2)Bp(1, 1)

+ 6ts(t− 1)

∫
[0,1]

Bp(t, 1)dt+ 6ts(s− 1)

∫
[0,1]

Bp(1, s)ds,

with the covariance function

K(f1,f2,f3)((t, s), (t
′, s′)) = p [(t ∧ t′)(s ∧ s′)

−tst′s′ − 3tst′s′(t− 1)(t′ − 1)− 3tst′s′(s− 1)(s′ − 1)] .

2.1.3. Second-order regression model. For the last example we consider H0 : g(i) ∈
W = [f1, f2, f3, f4, f5, f6], for i = 1, . . . , p, where f1(t, s) = 1, f2(t, s) = t, f3(t, s) =
s, f4(t, s) = t2, f5(t, s) = ts, and f6(t, s) = s2. The associated Gram-Schmidt ONB

of W is f̃1(t, s) = 1, f̃2(t, s) =
√
3(2t − 1), f̃3(t, s) =

√
3(2s − 1), f̃4(t, s) =√

5(6t2 − 6t + 1), f̃5(t, s) = 1
3 (4ts − 2t − 2s + 1), f̃6(t, s) =

√
5(6s2 − 6s + 1).

Hence Wp = [̃f1, f̃2, f̃3, f̃4, f̃5, f̃6], and Wp
HB

= [h1,h2,h3,h4,h5,h6], where f̃j =

(f̃j , . . . , f̃j)
⊤, and hj(t, s) =

∫
[0,t]×[0,s]

f̃j dλ, j = 1, . . . , 6. Thus the limit process of

the p-variate PSPR associated to this model is given by

Bp
(f1,...,f6)

(t, s) = Bp
(f1,f2,f3)

(t, s)

− (10t3s+ t2s2/9− 136t2s/9− 136ts2/9 + 10ts3 + 91ts)Bp(t, s)

+ (120t3s− 180t2s+ 60ts)

∫
[0,1]

Bp(x, 1)xdx

+ (2t2s2/9− 60t3s+ 808t2s/9− 2ts2/9− 268ts/9)

∫
[0,1]

Bp(x, 1)dx

+ (2t2s2/9− 2t2s/9 + 808ts2/9− 60ts3 − 268ts/9)

∫
[0,1]

Bp(1, y)dy

+ (120ts3 − 180ts2 + 60ts)

∫
[0,1]

Bp(1, y)ydy

− 4/9(t2s2 − t2s− ts2 + ts)

∫
I

Bp(x, y)dxdy,
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with the covariance function

K(f1,...,f6)((t, s), (t
′, s′)) = p [(t ∧ t′)(s ∧ s′)

−tst′s′ − 3tst′s′(t− 1)(t′ − 1)− 3tst′s′(s− 1)(s′ − 1)

−5(2t3s− 3t2s+ ts)(2t′3s′ − 3t′2s′ + t′s′)

−1

9
(t2s2 − t2s− ts2 + ts)(t′2s′2 − t′2s′ − t′s′2 + t′s′)

−5(2ts3 − 3ts2 + ts)(2t′s′3 − 3t′s′2 + t′s′)
]

3. Concluding Remarks

The limit process of the sequence of the PSPR for multivariate linear regres-
sion model assumed under H0 has been derived by applying the method proposed
in [9]. As a by product, the limit process is the component-wise projection of the
p-variate Brownian sheet onto its reproducing kernel Hilbert space. The experi-
mental design under which the results have been determined sofar is given by a
sequence of regular lattices. Our results however can also be immediately extended
to a more general sampling scheme such as under the one proposed in [6]. The
partial sums deal with in this paper are indexed by a family of rectangles with the
origin (0, 0) as an essential corner of each rectangle. In a forthcoming paper by
Somayasa, the limit of the multivariate PSPR indexed by a family of Borel sets is
investigated [see also [19] for the univariate case].
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