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Abstract. Jacobsthal numbers satisfy a second order homogeneous recurrence
relation J, = Jn_1 + 2Jn,—2 where J, denotes the nt" Jacobsthal number. In
this paper, the Jacobsthal sine, cosine, tangent and cotangent are defined, and

some identities of Jacobsthal trigonometric functions are provided.
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1. INTRODUCTION

The well-known generalized Fibonacci sequence [I] is defined by recurrence
relation F,, = pF,,_1+qF, _2, n > 2 with initial condition Fy = a and F; = b where
p, q are positive integers and a, b are non-negative integers.

The Fibonacci sequence [2] is defined by the recurrence relation F,, = F,,_1 +
F,_2,n > 2 with F; = 0 and F; = 1. The Jacobsthal sequence [3] is defined by
the recurrence relation J, = J,_1 + 2J,_2, n > 2 with Jy = 0 and J; = 1. The

on ()
3

Binet’s formula is given by J, = where 2 and —1 are the roots of the

characteristic equation 22 — . — 2 = 0.

In 2001, Smith R.M. [4] studied the Fibonometric function by the initial value
problem y” — ¢ —y = 0 with y(0) = 0 and ¢’(0) = 1 which is analogous to the
definition of Fibonacci numbers F,, = F,,_1 + F,,_o, for n > 2 where Fy = 0 and
F1 = 1. He defined the Fibonacci sine, cosine, tangent and cotangent, and estab-
lished some theorems and elementary identities for Fibonometry.
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In 2020, Srimuk, V. and Pakapongpun, A. [5] studied Identities of k-Fibonometric
functions which are obtained from a second order linear differential equation y” —
ky' —y = 0 with y(0) = 0 and y'(0) = 1. k-Fibonometric differential equation
is analogous to the formula for k-Fibonacci numbers Fy, ,, = kF} ,—1 + Fj n—2 for
n > 2, k>1 where F,0 =0 and Fj,; = 1.

Recently, the investigation of the Jacobsthal function has continued to at-
tract interest. Abd-Elhameed, W. M., Alqubori, O. M., and Amin, A. K. (2025) [0]
introduced a class of Jacobsthal-type polynomials involving one parameter. They
presented new formulas, including expressions for derivatives, moments, and lin-
ear relations. Simultaneously, Yesilyurta, I., and Degirmenb, N. (2025) [7] pro-
posed a new version of the Jacobsthal and Jacobsthal-Lucas sequences, along with
their characteristics, formulas, and several identities—especially Cassini’s identity,
d’Ocagne’s identity, Binet’s formula, the Gelin—Cesaro identity, Honsberger’s iden-
tity, and Melham’s identity.

In this paper, we have studied the Jacobsthal trigonometric functions by the
initial value problem y” —y’—2y = 0 with y(0) = 0 and ’(0) = 1 which is analogous
to the definition of Jacobsthal numbers J,, = J,_1 + 2J,,_o for n > 2 where Jy = 1
and J; = 1. The Jacobsthal sine, cosine, tangent and cotangent are defined, and
some elementary identities for Jacobsthal trigonometric functions are provided.

2. MAIN RESULTS

The solution of Jacobsthal trigonometric differential equation is y =

2

3
where 2 and —1 are the solutions of the equation r* —r —2 = (0. By the well-known

formula sinx = %, we define the Jacobsthal sine function as follows:
i
Definition 2.1. The Jacobsthal sine function is denoted by sinJ:
2z _ —x
sin J(z) = %

It is interesting to examine the relationship between the power series coeffi-
cients and the sequence of Jacobsthal numbers as the theorem.

oo
Lemma 2.2. Ify = Z cnx™ is the solution of Jacobsthal trigonometric differential
n=0
equation y" —y' — 2y = 0 with y(0) = 0 and y'(0) = 1, then (n+ 2)(n + 1)cpy2 —
(n+1)cpe1 — 2¢, =0 for all n > 0, where ¢, is the nth coefficient of the solutions
of the Jacobsthal trigonometric differential equation.

Proof. Suppose the solution of the Jacobsthal trigonometric differential equation

y// _ y/ _ 2y = 0 with y(o) =0 and y/(o) =1is Yy = chxn.
n=0



Thus,
y = Z nepz™ ' and gy = Z n(n —1)c,z™ 2,
n=1 n=2
Hence
o0 (o) o0
Z n(n —1)cpaz™ 2 — Z nepz™ =2 Z chx =0
n=2 n=1 n=0
Z(n +2)(n+ 1)cppoa™ — Z(n + 1Deppra™ —2 Z cpx™ =0
n=0 n=0 n=0
S0,
S [ +2)(n+1))cnre — (n+ Dents — 2¢,]" = 0.
n=0
Therefore, (n +2)(n +1))cpt2 — (0 + 1)cpg1 — 2¢, = 0 for all n > 0. O

o0
Lemma 2.3. Ify = Z cpx™ is the solution of Jacobsthal trigonometric differential
n=0

equation y” —y' — 2y = 0 with y(0) = 0 and y'(0) = 1 then
_Jacr +2J, 100

Cn ]
n:

)
where J,, is the nt™ Jacobsthal number.

Proof. We use strong mathematical induction to prove this lemma. If n = 1 then
J 2J,
Jient 2ot ()er +2(0)cg = ;1. Suppose that the hypothesis is true for n =

1!
Jrc1 +2J._1¢o Jrq101 + 2J5co

1,2,3,--- ,r,r + 1. Namely, ¢, = ————  and ¢,41 = P! . We

7l
now demonstrate that it is true for n = r + 2. Now, by Lemma and from the
hypothesis, we obtain

(r+2)(r+ 1)crye = (r+ 1)cpp1 + 2¢,
Jry1c1 + 2Jrco + 2(Jrer +2Jr2100)

7l 7!

. Cl(Jr+1 + 2J7) + 2CO(J7~ + 2J7~_1)

N 7! '

_ Jryocr +2¢0Jr41

N 7!
Hence,

P Jryoc1 + 24100
r+2 — (7" ¥ 2)| 9

which follows the proof of the theorem. (I

Theorem 2.4. The Jacobsthal sine function is

o0

n
sin J(x) = Z In2

n!
n=0




th

where J,, is the n*" Jacobsthal number.

eZ:t —_e® &0
Proof. Since y = —s = g cpx™, we have
k=0

JQCl + 2J100
2!

J3Cl + 2JQCO
3!

Jncl + 2JnflCO

Ja*+( o

y = cotcra+( )x3+~ A Ja"+

Applying the initial conditions y(0) = 0 and 3’(0) = 1 on the series, we get ¢o = 0
and c¢; = 1. Therefore, we obtain

. Jox? J3x3 Jpx™
T TR
_ 2 Jpxh
B !
— nl
Therefore,
. Sy
st(:zc):Z T
n=0

O

Next, we are going to define the Jacobsthal cosine, tangent and cotangent.
We will show that sin J(z) is absolutely convergent for all real numbers x as the
following lemmas.

Lemma 2.5. If J, = In+1

sthal number.

then lim = 2 where J,, is the n'" Jacob-

n—oo

2 — (—1)n
3

n

Proof. Since

O

Lemma 2.6. The series expansion for sin J(x) is absolutely convergent for all real
numbers x.



Proof. By ratio test, we obtain

Jn+1xn+1
. m+1)! | x Iy
e v A N P
n!
J’fL
= lim 2] - lim +1
=0-2=0<1,

implies the series |sinJ(x)| is convergent. Therefore, the series expansion for

sin J(x) is absolutely convergent for all real numbers x.

Next, we introduce the Jacobsthal cosine function as the derivative of Ja-
cobsthal sine function. Since an absolutely convergent power series is infinitely
differentiable within its interval of convergence, Jacobsthal sine function is differ-

d
entiable. Then we have s sin J(z) = cos J(z).
x

Definition 2.7. The Jacobsthal cosine is denoted by cos J :
2627 4+ o=

3
Theorem 2.8. The expansion of the Jacobsthal cosine is

cos J(x) = Z M

n!
n=0

cos J(z) =

o0

J n
Proof. Since sin J(z) = Z "a': is absolutely convergent for all real numbers z.
n

We have

Jsx?  Juad Tz 1

=0+h+ S+ —+—+--+

2! 3! (n—1)!

= —
~= nl
> Jn+113n
Therefore, cos J(z) = Z —_
k=0



Next, we will define Jacobsthal tangent and cotangent functions which are
similar to the definition of the trigonometric tangent and cotangent functions. At
first, we have to show that cos J(z) # 0 for all real numbers z as the following
lemma.

Lemma 2.9. cos J(x) # 0 for all real numbers x.

2e%% 4 7%

Proof. Suppose that cos J(x) = 0 for some z. Thus, cosJ(z) = —s = 0.
1

Hence, e3* = —3 this is a contradiction. Therefore, cosJ(z) # 0 for all real

numbers x. U

The following theorems demonstrate the Jacobsthal tangent and cotangent
functions in terms of a power series of e*.

Definition 2.10. The Jacobsthal tangent and Jacobsthal cotangent functions are
denoted by tan J and cot J respectively:

sin J(x) e —e®

tanJ(z) = =
an J () cosJ(x) 22T e 7
and
cosJ(x) 2e* 4 e 7
t = = .
cot J () sinJ(z) e —e @ 70

The following theorems demonstrate the Jacobsthal tangent and cotangent
functions in terms of a power series of e”.

Theorem 2.11. The Jacobsthal tangent function is of the form

1 > (_1)n3673(n+1)x
tan J(z) = 5T Z ont2
n=0

Proof. By the definition we have

629: —e % B 1— 673w

2e2% +e~% 24 3

1 36—3x 36—6&0 36—9m 36—121 36—15z

T2 4 T8 T TTm T Tw

1 e (_1)n3673(n+1)w
=5 * Z on+2
n=0

tan J(z) =

[\

Theorem 2.12. The Jacobsthal cotangent function is of the form

cot J(z) =2+3 Z e 3n+l)z,

n=0



Proof. Since,
262$ +e—w 2+6—3I
e2m — ez 1— e—Sm

cot J(x) =

=2+3e ¥ +3e7 % + 3¢ 4.

[ee]
-9 + 3 Z e—3(n+1)m.

n=0

O

We will define a definition of Jacobsthal secant and cosecant, and some ele-
mentary identities of Jacobsthal trigonometric functions are obtained.

Definition 2.13. The Jacobsthal secant and Jacobsthal cosecant are denoted by
sec J and cosecJ respectively:

1
sin J ()

secJ(x) = and cosecJ(x) = ,x#0

1
cos J(x)
The following theorems are the expansion of the Jacobsthal tangent and
cotangent.

Theorem 2.14. The expansion of the Jacobsthal secant and Jacobsthal cosecant

respectively are
B oo (_1)nef(3n+2)w
sec J(x) =3 Z T

n=0
and

cosecJ(x) =3 Z e~ (Bn+2)z,
n=1

Proof. The proofs are similar to the proof of the Jacobsthal tangent and Jacobsthal
cotangent. O

3. SOME IDENTITIES OF JACOBSTHAL TRIGONOMETRIC FUNCTIONS

The trigonometric identities sin®2 + cos?z = 1, sin(z + y) = sinzcosy +
coszsiny, cos(x + y) = coszcosy F sinzsiny and the hyperbolic trigonometric
identities cosh? z — sinh® 2 = 1, sinh(z % y) = sinh 2 cosh y & cosh z sinh y, cosh(z %
y) = cosh & cosh y £ sinh z sinh y are quite well known. Then the following theorem
looks like trigonometric formulas.

Theorem 3.1. The Fundamental Identities for Jacobsthal trigonometric functions
are
(1): cos J2(x) — cos J(x)sin J(z) — 2sin J?(z) = €%,
(2): cot J2(z) — cot J(x) — 2 = e®cosec?(x),
(8): 1 —tanJ(x) — 2tan J?(x) = e® sec J?(x),
(4): sinJ(x +y) =sinJ(x)cos J(y) — sin J(x) sin J(y) + cos J(x) sin J (y),
(5): sinJ(x—y) =sinJ(x) cos J(—y)—sin J(x) sin J (—y)+cos J(z) sin J (—y),
(6): cosJ(x+y) = cosJ(x)cos J(y) + 2sin J(z) sin J(y),



(7): cosJ(x —y) = cos J(x)cos J(—y) + 2sin J(z) sin J(—y),
(8): sinJ(2x) = 2sin J(x) cos J(z) — sin J?(x),
(9): cosJ(2z) = cos J?(x) + 2sin J?(x).

2z _ —x 2 2z —x
c and cos J(z) = i

Proof. Since we have defined sin J(z) = 3 3

obtain the results as follows:

(1)

cos J%(z) — cos J(x)sin J(x) — 2sin J?(z)

- 2623: + e T 2 B 26236 + e~ T 6290 —e 2 Ly 6237 — ez 2
B 3 3 3 3

1 1 2
= —(4e* 4+ 4e” + %) — 5(264’” —2e% e — ) — 5(464“” — 2" + e %"

9
1 4z Az 4z 1 T T T 1 —2x —2x —2
25(46 —2e™ — 2e )+§(4e +e® +4e )—|—§(e +eTH —2e7)

= e”.

(2) From (1) we get,

9 cos J2(z)  cosJ(x)

cot J*(z) —cot J(x) — 2 = snJ2(z)  sinJ(z) -2

cos J2(x) — cos J(z) sin J(x) — 2sin J?(z)
sin J2(x)

= e” cosec J*(x).

(3) From (1) we get,

1 —tan J(z) — 2tan J?(z) = cos 7 (x) — sin JC(:S);;)Z])(CU) —2ein o)
~ cos J2(x)

= e®sec J?(x).



(4)
sin J(z) cos J(y) — sin J( )st( ) + cos J(x)sin J(y)

() () () (5
L))

[(262(z+y) + 621 y 2€2y—z _ e—z—y) _ <€2(m+y) _ eQm—y

<o\»—~

_e2y7x + efxfy) + (62(x+y) _ 262m7y + 62y71’ _ efzrfy):l
62(3’3+y) — e_($+y)
3
=sinJ(z + y).

()

sin J(z) cos J(—y) — sin J(x) sin J(—y) + cos J(x) sin J(—y)
e — e 7 2e72 — Y e — e e~ — Y
(7)) ()
N <262‘” + e””) (er — ey>
3 3
[(262(;1;71,) L2ty _ 9oy _ eﬂﬂ/) _ (62(%;,) 2ty _ g2y 67w+y)

1
9
+ (62(1_y) _ 2621"1‘2/ + e—2y—l’ _ e—m+y):|

e2x—y) _ o—(z—y)

cos J(x) cos J(y) + 2sin J(x) sin J(y)

_ 2e% — e~ 2e% — eV 49 e —e %\ (e —e7Y
B 3 3 3 3

_ % [4e2x+2y 4 2e2TTY L 972 | pmTy 4 9 2042y 9 20—y

—2e” " 4 267" Y]

1
_ 5 [6e2$+2y + 367:10731}
262(I+y) —+ ef(z“"y)
3
=cosJ(z+y).




10

cos J(x) cos J(—y) + 2sin J(z) sin J(—y)

B 2e2r _ g% e~ — ety 42 e — e e~y — ¥
B 3 3 3 3

- é [42772 4 2627+ 4 97T~ | o=THY | 902072 _ g2ty

—2e7TTW 4 Qe*”y]

1
= § [6€2z_2y + 3€_z+yj|
2e2(@=y) 4 g—(z—y)

3
= cos J(z — y).

(8) From (4), we have
sin J(x + x) = sin J(x) cos J(z) — sin J(z) sin J(x) + cos J(z) sin J ()
= 2sin J(z) cos J(x) — sin J*(x).
(9) From (6), we have
cos J(x + x) = cos J(z) cos J(x) + 2sin J(z) sin J(x)
cos J%(z) + 2sin J?(x)

O
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