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Abstract. Let H be a graph with the chromatic number χ(H) and the chromatic

surplus s(H). A connected graph G of order n is called good with respect to H,

H-good, if R(G,H) = (n − 1)(χ(H) − 1) + s(H). The notation tKm represents a

graph with t identical copies of complete graphs on m vertices, Km. In this note,

we discuss the goodness of path Pn with respect to tKm. It is obtained that the

path Pn is tKm-good for m, t ≥ 2 and sufficiently large n. Furthermore, it is also

obtained the Ramsey number R(G, tKm), where G is a disjoint union of paths.

Key words and Phrases: (G,H)-free, H-good, complete graph, path, Ramsey num-
ber.

Abstrak. Notasi H menyatakan graf dengan bilangan kromatik χ(H) dan surplus

kromatik s(H). Graf G yang memiliki n titik disebut elok terhadap H, H-elok, jika

R(G,H) = (n−1)(χ(H)−1)+ s(H). Notasi tKm merepresentasikan t rangkap graf

lengkap identik dengan m titik, Km. Dalam makalah ini dapat ditunjukkan bahwa

graf lintasan Pn adalah tKm-elok untuk semua m, t ≥ 2 dan n cukup besar. Meng-

gunakan sifat elok tersebut hasil lebih jauh juga diperoleh, yaitu bilangan Ramsey

R(G, tKm) dapat ditentukan jika G adalah gabungan graf lintasan sebarang.

Kata kunci: (G,H)-kritis, H-elok, graf lengkap, lintasan, bilangan Ramsey.

1. Introduction

All graphs in this paper are finite, undirected and simple. Let G and H be
two graphs, where H is a subgraph of G, we define G − H as a graph obtained
from G by deleting the vertices of H and all edges incident to them. Let t be a
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natural number and Gi be a connected graph with the vertex set Vi and the edge
set Ei for every i = 1, 2, ..., t. The disjoint union of graphs,

⋃t

i=1 Gi, has the vertex

set
⋃t

i=1 Vi and the edge set
⋃t

i=1 Ei. Furthermore, if each Gi is isomorphic to a
connected graph G then we denote by tG the disjoint union of t copies of G.

For graphs G and H , the Ramsey number R(G,H) is the minimum n such
that in every coloring of the edges of the complete graph Kn with two colors,
say red and blue, there is a red copy of G or a blue copy of H . A graph F is
called (G,H)-free if F contains no subgraph isomorphic to G and its complement
F contains no subgraph isomorphic to H . The Ramsey number R(G,H) can be
equivalently defined as the smallest natural number n such that no (G,H)-free
graph on n vertices exists.

Determining R(G,H) is a notoriously hard problem. Burr [4] showed that the
problem of determining whether R(G,H) ≤ n for a given n is NP-hard. Further-
more in Shaeffer [8] one can find a rare natural example of a problem higher than
NP-hard in the polynomial hierarchy of computational complexity theory, that is,
Ramsey arrowing is

∏p

2-complete. The few known values of R(G,H) are collected
in the dynamic survey of Radziszowski [7].

Burr [3] proved the general lower bound

R(G,H) ≥ (n− 1)(χ(H)− 1) + s(H), (1)

where G is a connected graph of order n, χ(H) denotes the chromatic number of H
and s(H) is its chromatic surplus, namely, the minimum cardinality of a color class
taken over all proper colorings of H with χ(H) colors. Motivated by this inequality,
the graph G is said to be H-good if equality holds in (1). Chvátal [5] proved that
trees are Km-good graphs. Sudarsana et al. [10] showed that path is a good graph
with respect to 2Km, and Pn is also tW4-good in [12]. Other result concerning the
goodness of graphs with the chromatic surplus one can be found in Lin et al. [6].
However, the goodness of path Pn with respect to tKm for t ≥ 2 is still open. In
this paper, we establish that Pn is tKm-good for t ≥ 2 and sufficiently large n.

2. Known Results

For the proof of our new result, Theorem 3.1, we use the following results.

Theorem 2.1 (Chvátal [5]). Let n,m ≥ 2 be integers and Tn is a tree of order n.

Then, R(Tn,Km) = (n− 1)(m− 1) + 1.

Note that the chromatic surplus of Km, s(Km), is equal to one and path Pn

is a tree of order n. Therefore, R(Pn,Km) = (n− 1)(m− 1) + 1.

Theorem 2.2 (Sudarsana et al. [10]). Let m ≥ 2 and n ≥ 3 be integers. Then,

R(Pn, 2Km) = (n− 1)(m− 1) + 2.

Lemma 2.3 (Sudarsana et al. [10]). Let n and t be positive integers. Then,

R(Pn, tK2) =

{

n+ t− 1, t ≤ ⌊n
2 ⌋;

2t+ ⌈n
2 ⌉ − 1, t > ⌊n

2 ⌋.
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3. The Main Result

The following theorem deals with the goodness of path Pn with respect to t

identical copies of complete graphs, tKm.

Theorem 3.1. Let m, t ≥ 2 be integers and g(t,m) = (t−2)((tm−2)(m−1)+1)+3.
If n ≥ g(t,m) then R(Pn, tKm) = (n− 1)(m− 1) + t.

Proof of Theorem 3.1: The lower bound R(Pn, tKm) ≥ (n − 1)(m − 1) + t

follows from the fact that (m− 1)Kn−1 ∪Kt−1 is a (Pn, tKm)–free graph of order
(n− 1)(m− 1) + t− 1.

To prove the upper bound R(Cn, tKm) ≤ (n−1)(m−1)+ t we use inductions
on t and m. For t = 2, we have g(2,m) = 3 and therefore Theorem 2.2 implies that
R(Pn, 2Km) = (n− 1)(m− 1) + 2 for n ≥ g(2,m) = 3. Hence, the assertion holds
for n ≥ g(2,m) = 3. Assume that the theorem is true for n ≥ g(t − 1,m), that is
R(Pn, (t− 1)Km) ≤ (n− 1)(m− 1) + t− 1.

From Lemma 2.3, we have R(Pn, tK2) = n+t−1 for n ≥ 2t. Note that if t ≥ 2
then n ≥ g(t, 2) > 2t. Therefore, the theorem holds for m = 2. Assume that m ≥ 3
and the theorem is true for n ≥ g(t,m−1), that is R(Pn, tKm−1) ≤ (n−1)(m−2)+t.

Now we will show that the theorem is also valid for n ≥ g(t,m). Let F be
an arbitrary graph on (n− 1)(m− 1) + t vertices. We shall show that F contains
Pn or F contains tKm. Note that Theorem 2.1 guarantees that F contains Pn or
F contains Km. If F contains Pn then we are done. Thus we may assume that F
contains Km. Since the subgraph F −Km of F has (n− 2)(m− 1) + t− 1 vertices
and n − 1 ≥ g(t,m) − 1 > g(t − 1,m), by the induction hypothesis on t we know
that F − Km contains Pn−1 or the complement of F − Km contains (t − 1)Km.
If the complement of F − Km contains (t − 1)Km then by companying with the
first ones we have a tKm in F and hence the proof is done. Thus, F has a path
Pn−1. Therefore, the subgraph F −Pn−1 of F has (n− 1)(m− 2)+ t vertices. Note
that n ≥ g(t,m) > g(t,m − 1). By the induction hypothesis on m, we know that
F −Pn−1 contains Pn or the complement of F −Pn−1 contains tKm−1. If F −Pn−1

contains Pn then we are done. Hence we may assume that F contains a path Pn−1

with vertex set, say p1, p2, . . . , pn−1 and edges pipi+1 (subscripts modulo (n− 1)),
and that F contains t disjoint copies K1

m−1,K
2
m−1, ...,K

t
m−1 of the complete graph

with m−1 vertices. It is clear that the subgraphs Pn−1 and tKm−1 have no vertices
in common.

Assume that F contains no Pn. We will show that F contains tKm. Thus,
the end vertices p1 and pn−1 of path Pn−1 must not be adjacent to any vertices
in K1

m−1,K
2
m−1, ...,K

t
m−1. Therefore, the set D = {{p1} ∪ V (K1

m−1)} ∪ {{pn−1} ∪

V (K2
m−1)} forms a 2Km in F . Let us now consider the relation between the vertices

in A′ = {p2, p3, ..., pn−2} and in B′ = V (K3
m−1) ∪ V (K4

m−1) ∪ ... ∪ V (Kt
m−1).

Since there is no Pn in F , it follows that every two consecutive vertices pi, pi+1

in A′ can not be adjacent to any vertices in B′ for every i ∈ {2, 3, ..., n−2}. Suppose
that the neighborhoodNA′(u) inA′ of a vertex u ∈ B′ satisfies |NA′(u)∩V (Pn−1)| ≥
tm−1. Let pi, pj ∈ NA′(u)∩V (Pn−1) with i < j. Note that j−i > 1 since otherwise
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we can extend Pn−1 to a path of order n containing u. If pi+1pj+1 is an edge in
F then we also have a new path {p1p2....piupjpj−1pj−2...pi+1pj+1pj+2....pn−1} of
length n − 1 in F . If pi+1pj+1 is not an edge for every pair pi, pj ∈ NA′(u) ∩
V (Pn−1) then {pi+1 : pi ∈ NA′(u) ∩ V (Pn−1)} ∪ {u} is a set of tm independent
vertices in F and we obtain that F contains tKm. Hence, for each u ∈ B′ we have
|NA′(u) ∩ V (Pn−1)| ≤ tm− 2. Therefore,

∣

∣

∣

∣

A \
⋃

u∈B′

NA′(u)

∣

∣

∣

∣

≥ n− 3− (t− 2)(tm− 2)(m− 1). (2)

Since n ≥ g(t,m), it follows that there are at least t− 2 vertices in A′ which
are adjacent to no vertex in B′ and hence together with D we have that F contains
tKm. This concludes the proof of Theorem 3.1. �

By extending previous results of Baskoro et al. [1] and Stahl [9], Bielak [2]
and Sudarsana et al. [11] independently proved a formula for R(G,H) when every
connected component of G is an H-good graph. This result motivates the study
of general families of H-good graphs. In particular, Theorem 3.1 provides the
following computation of R(G, tKm), if G is a set of disjoint paths (linear forest).

Corollary 3.2. Let m, t ≥ 2 be integers and g(t,m) = (t−2)((tm−2)(m−1)+1)+3.

Let G ≃
⋃k

i=1 liPni
, where li ≥ 1 and each Pni

is a path of order ni.

If n1 ≥ n2 ≥ ... ≥ nk ≥ g(t,m) then

R(G, tKm) = max
1≤i≤k

{

(ni − 1)(m− 2) +

i
∑

j=1

ljnj

}

+ t− 1. (3)
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