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Abstract. This study discusses the representation matrices of the coprime graph

of the generalized quaternion group. The representation matrices are adjacency

matrix, anti adjacency matrix, Laplacian matrix, and signless Laplacian matrix.

Furthermore, the eigenvalues of each representation matrix are determined. As a

result, we obtained the construction of the four representation matrices and their

eigenvalues. The matrix determinant is zero based on the matrix form, so the

matrices have zero eigenvalues except for the signless Laplacian matrix. As for the

non-zero eigenvalues, the values depend on the type of representation matrices, the

order of the graph, and its algebraic multiplicity.
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1. INTRODUCTION

A finite group can be represented as a graph. Some research on representation
graphs of finite groups have been done, for instance, undirected power graphs of
semigroups by Chakrabarty et al. [1], conjugate graphs of finite groups by Erfanian
et al. [2], commuting graph of the dihedral group by Ali et al. [3], non-commuting
graph of dihedral group by Khasraw et al. [4], twin g-noncommuting graph of a
finite group by Zahidah et al. [5], and coprime graph of the generalized quater-
nion group by Zahidah et al. [6]. Meanwhile, a graph can be represented as a
matrix. Research on graphs representation matrices that have been published are
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the adjacency matrix of circulant graphs on cyclic groups by So [7], adjacency and
antiadjacency matrix of cyclic directed wheel graphs by Widiastuti et al. [8]. More
specifically, some research studied on eigenvalues of representation matrices such
as directed prism circle graph by Stin et al. [9], directed dumbbell circle graph by
Budiyanto et al. [10] and Cayley graphs of group Zn by Daniel et al. [11].

Based on these research developments, we want to continue the study from
Zahidah et al. [6]. We determine the construction of representation matrices of
obtained graphs on Zahidah et al. [6]. Here, we study four representation matrices,
i.e., adjacency matrix, antiadjacency matrix, Laplacian matrix, and signless Lapla-
cian matrix. Furthermore, we determine the eigenvalues of each representation
matrix. Notations and terminologies related to groups can be found in Dummit
and Fraleigh [12, 13], for graphs can be found in Chartrand et al. and Ma et al.
[14, 15], meanwhile for matrices can be found in Anton et al. and Bapat [16, 17].
We remind definitions of the generalized quaternion group Q4n and the coprime
graph of a group as follows.

Definition 1.1. A generalized quaternion group (Q4n) is a finite group of order 4n,
generated by two elements a and b with the properties a2n = b4 = e and ab = ba−1,
where e is the identity element of Q4n.

Definition 1.2. The coprime graph of a finite group G is a graph with the vertices
as elements of G and two vertices are adjacent if and only if its order as group
elements is relatively prime.

The following theorem is a result from Zahidah et al. [6] gives structure of
coprime graph of Q4n.

Theorem 1.3. The coprime graph of the generalized quaternion group Q4n are

i. a star graph if n is a power of 2, and
ii. a tripartite graph if n is an odd prime.

According to the above objective and previous results, we divide our discus-
sion into four sections based on the type of representation matrices. Each section
includes two studies based on the type of graphs used. For simplicity, we denote
graph in Theorem 1.3 (i) as G1 and G2 for Theorem 1.3 (ii).

2. ADJACENCY MATRIX OF COPRIME GRAPH OF Q4n

In this section, firstly, we determine the construction of the adjacency matrix
of G1 and G2. As we know, the elements of the adjacency matrix are binary
numbers, one if two vertices are adjacent and zero if they are not. Referring to the
definition of adjacency matrix and Theorem 1.3, we create the construction of the
matrix as shown in the following theorems.
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Theorem 2.1. Let G1 be the coprime graph of generalized quaternion group with
the vertex set V (G1) = {e, a, a2, . . . , a2n−1, b, ab, a2b, . . . , a2n−1b}. Then the adja-
cency matrix of graph G1 is

A(G1) =

[
[aj ]1×1

[bj ](4n−1)×1

]
where [aj ] and [bj ] are row vectors of order 1× 4n and

aj =
{ 0, j = 1

1, otherwise
; bj =

{ 1, j = 1
0, otherwise.

Proof. According to Theorem 1.3, graph G1 is a star graph

S4n−1
∼= K1,4n−1

∼= K|V1|,|V2|

where V1 = {e} and V2 = {a, a2, . . . , a2n−1, b, ab, a2b, . . . , a2n−1b}. Therefore, ver-
tex e (identity element) is adjacent to every vertex in V2. Thus, the adjacency
matrix of G1 is

□

Theorem 2.2. Let G2 be the coprime graph of generalized quaternion group with
the vertex set V (G2) = {a, . . . , a2k+1, an, b, ab, . . . , a2n−1b, a2, ..., a2k, e : 1 ≤ k ≤
n− 1, 2k + 1 ̸= n}. Then the adjacency matrix of graph G2 is

A(G2) =


[aj ](n−1)×1

[bj ](2n+1)×1

[cj ](n−1)×1

[dj ]1×1


where [aj ] , [bj ] , [cj ] and [dj ] are row vectors of order 1× 4n and

aj =
{

1, j = 4n
0, otherwise

; bj =
{

1, j = 3n+ 1, 3n+ 2, ..., 4n
0, otherwise

;

cj =
{ 0, j = 1, 2, ..., n− 1, 3n+ 1, 3n+ 2, ..., 4n− 1

1, otherwise.
; dj =

{ 0, j = 4n
1, otherwise.
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Proof. According to Theorem 1.3, graph G2 is a 3-partite graph with partition set
V1 = {a2m+1, aib : 0 ≤ m ≤ n − 1, 0 ≤ i ≤ 2n − 1}, V2 = {a2m : 1 ≤ m ≤ n − 1}
and V3 = {e}, thus |V2| = n − 1 and |V3| = 1. Then we divide partition V1

into two subpartitions, i.e., S1 = {a2m+1 : 0 ≤ m ≤ n − 1, 2m + 1 ̸= n} and
S2 = {an, aib : 0 ≤ i < 2n − 1}, thus |S1| = n − 1 and |S2| = 2n + 1. Therefore,
every vertex in S1 is only adjacent to every vertice in V3, while for every vertex in
S2 is adjacent to every vertice in V3 and V2. For other adjacencies, every vertex
in V2 is adjacent to every vertex in V3 and S2, and lastly, every vertex in V3 is
adjacent to every vertex in V2 and V1. Hence, the adjacency matrix of G2 is

□

Based on Theorem 2.1 and Theorem 2.2, it can be seen that the adjacency
matrix of both graphs G1 and G2 have some rows with the same entries. Hence,
the vectors are not linearly independent and we get the following corollary.

Corollary 2.3. Determinant of the adjacency matrix of graphs G1 and G2 are
zero. Thus, zero is one of its eigenvalues.

In the following discussion, we determine the eigenvalues of the adjacency
matrix using MATLAB that refer to construction in Theorem 2.1 and Theorem
2.2. The program’s output can be seen in Table 1 and Table 2 for the matrix of
graphs G1 and G2, respectively. We use the result to determine the pattern of the
eigenvalues and then prove it theoretically.

Based on the results in Table 1, we get the eigenvalues of the adjacency matrix
as follows.

Theorem 2.4. Let A be the adjacency matrix of graph G1. Then the eigenvalues of
A are 0 and ±

√
4n− 1 where the algebraic multiplicity concerning each eigenvalue

are 4n− 1 and 1, respectively.
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Table 1. Eigenvalues of The Adjacency Matrix of G1

k n λ1 λ2 λ3

1 2 0 −2.6458 = −
√
7 2.6458 =

√
7

2 4 0 −3.8730 = −
√
15 3.8730 =

√
15

6 64 0 −15.9687 = −
√
255 15.9687 =

√
255

9 512 0 45.2438 = −
√
2047 45.2438 =

√
2047

...
...

...
...

...
k 2k 0 −

√
4n− 1

√
4n− 1

Algebraic multiplicity 4n− 2 1 1

Proof. Let A be the adjacency matrix of graph G1. According to Theorem 2.4,
matrix A can be written as

A =


0 a2 a3 · · · a4n
a2 0 0 · · · 0
a3 0 0 · · · 0
...

...
...

. . .
...

a4n 0 0 · · · 0


where a2, a3, . . . , a4n = 1, hence the polynomial characteristic of A is

|λI −A| = λ4n−2(λ2 − 4n+ 1). (1)

We will prove Equation 1 by mathematical induction through the second row
expansion. For n = 2, it is easy to get |λI − A| = λ6(λ2 − 7). Suppose for n = p
we have

|λI −A| =


λ −a2 −a3 · · · −a4p

−a2 λ 0 · · · 0
−a3 0 λ · · · 0
...

...
...

. . .
...

−a4p 0 0 · · · λ


where a2, a3, . . . , a4p = 1 and

|λI −A| = λ4p−2(λ2 − 4p+ 1). (2)

Now, observe for n = p+ 1, then we have

|λI −A| =


λ −a2 −a3 · · · −a4(p+1)

−a2 λ 0 · · · 0
−a3 0 λ · · · 0
...

...
...

. . .
...

−a4(p+1) 0 0 · · · λ


where a2, a3, . . . , a4(p+1) = 1. We can see that the order of matrix (λI − A) above
is (4p + 4) × (4p + 4). Thus, to determine its determinant, firstly we need to
determine the determinant of three matrices with the same construction of order
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(4p+1)× (4p+1), (4p+2)× (4p+2), and (4p+3)× (4p+3) which are explained
as follows.

i.: Suppose X is a matrix of order (4p+ 1)× (4p+ 1) defined as

X =


λ −a2 −a3 · · · −a4p+1

−a2 λ 0 · · · 0
−a3 0 λ · · · 0
...

...
...

. . .
...

−a4p+1 0 0 · · · λ


where a2, a3, . . . , a4p+1 = 1. By the second row expansion and based on
Equation 2 we get

det(X) = (−1)(−1)(−a2)λ
4p−1 + λ(λ4p−2(λ2 − 4p+ 1)) = λ4p−1(λ2 − 4p). (3)

ii.: Suppose Y is a matrix of order (4p+2)× (4p+2). Using similar way and
Equation 3, then we get

det(Y ) = (−1)(−1)(−a2)λ
4p + λ(λ4p−1(λ2 − 4p)) = λ4p(λ2 − 4p− 1). (4)

iii.: Suppose Z is a matrix of order (4p + 3) × (4p + 3). Using similar way
and Equation 4, then we get

det(Z) = (−1)(−1)(−a2)λ
4p+1 + λ(λ4p(λ2 − 4p− 1)) = λ4p+1(λ2 − 4p− 2). (5)

Therefore, to determine the determinant of matrix |λI−A| of order (4p+4)×(4p+4),
we use similar way and Equation 5. Therefore

|λI−A| = (−1)(−1)(b2)λ
4p+2+λ(λ4p+1(λ2−4p−2)) = λ4(p+1)−2(λ2(p+1)+1). (6)

It means that we proved Equation 1, hence we get the eigenvalues of A are the
roots of λ4n−2(λ2 − 4n + 1) = 0 i.e., λ = 0 or λ = ±

√
4n− 1. Furthermore, the

algebraic multiplicity corresponding to the eigenvalue λ = 0, λ = −
√
4n− 1, and

λ =
√
4n− 1 are 4n− 2, 1, and 1, respectively. □

Corollary 2.5. The adjacency matrix of graph G1 has two non-zero eigenvalues.

Corollary 2.6. The energy of graph G1 is E(G1) =
∑4n

i=1 |λi| = 2
√
4n− 1.

Now, we discuss the eigenvalues of the adjacency matrix of graph G2. The
output of the program in MATLAB can be seen in Table 2.

Table 2. Eigenvalues of The Adjacency Matrix of G2

n λ1 λ2 λ3 λ4 λ5

3 -4.0458 -2 0.6401 5.4057 0
5 -6.8012 -2.7429 1.1199 8.4241 0
7 -9.6144 -3.2517 1.5277 11.3434 0
61 -85.9733 -8.6996 6.7321 87.9408 0
...

...
...

...
...

...
523 -739.3407 -23.8346 21.8384 741.3369 0

Algebraic multiplicity 1 1 1 1 4n− 4
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As we can see at the Table 2, there is no pattern of nonzero eigenvalues of
the adjacency matrix of graph G2. Therefore, in this case we only discuss on the
number of zero and non-zero eigenvalues.

Theorem 2.7. Let A be the adjacency matrix of graph G2. Then A has four non-
zero eigenvalues with each algebraic multiplicity is one and zero eigenvalues with
algebraic multiplicity is 4n− 4.

Proof. Suppose A is the adjacency matrix of graph G2, then based on Theorem
2.2, we have four vectors, which are

[aj ] = [0 0 · · · 0 0 · · · 0 0 1]
[bj ] = [0 0 · · · 0 0 · · · 1 1 1]
[cj ] = [0 0 · · · 1 1 · · · 0 0 1]
[dj ] = [1 1 · · · 1 1 · · · 1 1 0].

We will show that the vectors are linearly independent. Observe that

α1[aj ] + α2[bj ] + α3[cj ] + α4[dj ] = 0 = [0 0 · · · 0 0 · · · 0 0 0].

Thus, we get α1 = α2 = α3 = α4 = 0, that implies the set of vectors

{[aj ], [bj ], [cj ], [dj ]}

is linearly independent. Since the vectors are linearly independent, then the rank(A)
is four. Furthermore, since the adjacency matrix is a symmetry matrix, then ma-
trix A has four non-zero eigenvalues with each algebraic multiplicity is one. Con-
sequently, the algebraic multiplicity of zero eigenvalues of A is 4n− 4. □

3. ANTIADJACENCY MATRIX OF COPRIME GRAPH OF Q4n

In this section, we determine the construction of antiadjacency matrix of
graphs G1 and G2 and its eigenvalues. Antiadjacency matrix is constructed from
adjacency matrix by exchanging the elements of matrix, i.e., the elements 1 into 0
and vice versa. Thus, we also have the following corollary.

Corollary 3.1. The determinant of the antiadjacency matrix of graphs G1 and G2

are zero. Thus, zero is one of its eigenvalues.

Referring to the construction, we do the computation using MATLAB to
determine the eigenvalues of the antiadjacency matrix. The output of the program
can be seen in Table 3 and Table 4 for matrix of graphs G1 and G2 respectively. We
use the result to determine the pattern of the eigenvalues then prove it theoretically.
Based on the results in Table 3, we create Theorem 3.4 that shows the eigenvalues
of the antiadjacency matrix of graph G1. However, firstly we need to introduce
Lemma 3.2 that will be used for proving the theorem.
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Table 3. Eigenvalues of The Antiadjacency Matrix of G1

k n λ1 λ2 λ3

1 2 0 1 7
2 4 0 1 15
6 64 0 1 255
9 512 0 1 2047
...

...
...

...
...

k 2k 0 1 4n− 1
Algebraic multiplicity 4n− 2 1 1

Lemma 3.2. Let A = [aij ] be a matrix of order n× n defined as

aij =

{ 0, i = 1 and j = 2, 3, ..., n
0, j = 1 and i = 2, 3, ..., n
λ− 1, i = j = 1, 3, 4, ..., n
−1, otherwise

then det(A) =
{ −λn−1 + λn−2, n is an odd number

λn−1 − λn−2, n is an even number.

Proof. Based on the definition in Lemma 3.2, matrix A can be written as

A =



λ− 1 0 0 0 · · · 0
0 −1 −1 −1 · · · −1
0 −1 λ− 1 −1 · · · −1
0 −1 −1 λ− 1 · · · −1
...

...
...

. . .
...

0 −1 −1 −1 · · · λ− 1


By doing elementary row operations R23(−1), R34(−1), . . . , R(n−1)n(−1), respec-
tively on the matrix A, we get matrix B

B =



λ− 1 0 0 0 · · · 0
0 0 −λ 0 · · · 0
0 0 λ −λ · · · 0
0 0 0 λ · · · 0
...

...
...

. . .
...

0 −1 −1 −1 · · · λ− 1


.

Since the operation is adding a multiple of one row to another row, then such
operations do not change its determinant. Thus we have det(B) = det(A). The
next operation, we only exchange among the rows of matrix B, i.e., row operations
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Rn2, Rn3, . . . , Rn(n−1), respectively, then we get matrix C

C =



λ− 1 0 0 0 · · · 0
0 −1 −1 −1 · · · λ− 1
0 0 −λ 0 · · · 0
0 0 λ −λ · · · 0
...

...
...

. . .
...

0 0 0 0 · · · −λ


and such operations bring up two possibilities for its determinant, i.e.,

det(C) =
{ −det(B), n is an odd number

det(B), n is an even number.

i.: For n is an odd number
By doing elementary row operations R43(1), R54(1), . . . , Rn(n−1)(1), respec-
tively on matrix C, we get upper triangular matrix D

D =



λ− 1 0 0 0 · · · 0
0 −1 −1 −1 · · · λ− 1
0 0 −λ 0 · · · 0
0 0 0 −λ · · · 0
...

...
...

. . .
...

0 0 0 0 · · · −λ


and such operations do not change its determinant, thus we have det(D) =
det(C). Since the matrix Dn×n is an upper triangular matrix, then det(D)
is the product of its diagonal elements, i,e.,

det(D) = (λ− 1)(−1)(−λ)n−2 = λn−1 − λn−2.

Since det(D) = det(C) = −det(B) = −det(A), then det(A) = −λn−1 +
λn−2.

ii.: For n is an even number
By doing similar way as (i), we get

det(D) = (λ− 1)(−1)(−λ)n−2 = λn−1 − λn−2.

since det(D) = det(C) = det(B) = det(A), then det(A) = λn−1 − λn−2.

□

In addition to the above lemma, we define a new matrix by doing a row
operation R23 on matrix A at Lemma 3.2 to get following corollary.
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Corollary 3.3. Let E be a matrix of order n× n defined as

E =



λ− 1 0 0 0 · · · 0
0 −1 λ− 1 −1 · · · −1
0 −1 −1 −1 · · · −1
0 −1 −1 λ− 1 · · · −1
...

...
...

. . .
...

0 −1 −1 −1 · · · λ− 1


then det(E) =

{
λn−1 − λn−2, n is an odd number
−λn−1 + λn−2, n is an even number.

Theorem 3.4. Let B be the antiadjacency matrix of graph G1. Then the eigenval-
ues of B are 0, 1, and 4n − 1 where the algebraic multiplicity with respect to each
eigenvalue are 4n− 2, 1, and 1, respectively.

Proof. Suppose B is the antiadjacency matrix of graph G1. Referring to the cons-
truction, matrix B can be written as

B =


0 a2 a3 · · · a4n
a2 1 1 · · · 1
a3 1 1 · · · 1
...

...
...

. . .
...

a4n 1 1 · · · 1


where a2, a3, . . . , a4n = 0, hence the polynomial characteristic of B is

|λI −B| = λ4n − (4n)λ4n−1 + (4n− 1)λ4n−2. (7)

We will prove Equation 7 by mathematical induction through the second row
expansion. For n = 2, we have

|λI −B| =



λ− 1 0 0 0 0 0 0 0
0 λ− 1 −1 −1 −1 −1 −1 −1
0 −1 λ− 1 −1 −1 −1 −1 −1
0 −1 −1 λ− 1 −1 −1 −1 −1
0 −1 −1 −1 λ− 1 −1 −1 −1
0 −1 −1 −1 −1 λ− 1 −1 −1
0 −1 −1 −1 −1 −1 λ− 1 −1
0 −1 −1 −1 −1 −1 −1 λ− 1


By the second row expansion and referring Lemma 3.2 and Corollary 3.3, we have

|λI −B| = 0 + (λ− 1)(λ7 − 7λ6 + 6λ5) + (−λ6 + λ5) + (−λ6 + λ5)+
(−λ6 + λ5) + (−λ6 + λ5) + (−λ6 + λ5) + (−λ6 + λ5)

= λ8 − 8λ7 + 7λ6.
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Suppose for n = p we have

(λI −B) =



λ− 1 a2 a3 a4 · · · a4p
a2 λ− 1 −1 −1 · · · −1
a3 −1 λ− 1 −1 · · · −1
a4 −1 −1 λ− 1 · · · −1
...

...
...

...
. . .

...
a4p −1 −1 −1 · · · λ− 1


where a2, a3, . . . , a4p = 0 and

|λI −B| = λ4p − (4p)λ4p−1 + (4p− 1)λ4p−2. (8)

Now, observe for n = p+ 1, then we have

(λI −B) =



λ− 1 a2 a3 a4 · · · a4(p+1)

a2 λ− 1 −1 −1 · · · −1
a3 −1 λ− 1 −1 · · · −1
a4 −1 −1 λ− 1 · · · −1
...

...
...

...
. . .

...
a4(p+1) −1 −1 −1 · · · λ− 1


where a2, a3, . . . , a4(p+1) = 0. Since the order of matrix (λI−B) is (4p+4)×(4p+4),
then we use similar way as Theorem 2.4 to determine |λI −B|.

i.: Suppose X is a matrix of order (4p+ 1)× (4p+ 1) defined as

X =



λ− 1 a2 a3 a4 · · · a4p+1

a2 λ− 1 −1 −1 · · · −1
a3 −1 λ− 1 −1 · · · −1
a4 −1 −1 λ− 1 · · · −1
...

...
...

...
. . .

...
a4p+1 −1 −1 −1 · · · λ− 1


where a2, a3, . . . , a4p+1 = 0. By the second row expansion and referring
Lemma 3.2, Corollary 3.3, and Equation 8 we have

det(X) = 0 + (λ− 1)(λ4p − (4p)λ4p−1 + (4p− 1)λ4p−2) + (−λ4p−1 + λ4p−2

+(−λ4p−1 + λ4p−2) + ...+ (−λ4p−1 + λ4p−2)
= λ4p+1 − (4p+ 1)λ4p + (4p)λ4p−1.

(9)
ii.: Suppose Y is a matrix of order (4p+2)× (4p+2). Using similar way and

Equation 9, then we have

det(Y ) = 0 + (λ− 1)(λ4p+1 − (4p+ 1)λ4p + (4p)λ4p−1) + (−λ4p + λ4p−1

+(−λ4p + λ4p−1) + ...+ (−λ4p + λ4p−1)
= λ4p+2 − (4p+ 2)λ4p+1 + (4p+ 1)λ4p.

(10)
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iii.: Suppose Z is a matrix of order (4p + 3) × (4p + 3). Using similar way
and Equation 10, then we have

det(Z) = 0 + (λ− 1)(λ4p+2 − (4p+ 2)λ4p+1 + (4p+ 1)λ4p) + (−λ4p+1 + λ4p

+(−λ4p+1 + λ4p) + ...+ (−λ4p+1 + λ4p)
= λ4p+3 − (4p+ 3)λ4p+2 + (4p+ 2)λ4p+1.

(11)

Therefore, to determine the determinant of matrix (λI − B) of order (4p +
4)× (4p+ 4), we use similar way and Equation 11. Therefore

|λI −B| = 0 + (λ− 1)(λ4p+3 − (4p+ 3)λ4p+2 + (4p+ 2)λ4p+1)+
(−λ4p+2 + λ4p+1) + (−λ4p+2 + λ4p+1) + ...+ (−λ4p+2 + λ4p+1)

= λ4(p+1) − (4(p+ 1))λ4p+3 + (4p+ 3)λ4p+2.
(12)

It means that we proved Equation 7, hence we get the eigenvalues ofB are λ4n−2(λ2−
(4nλ)+(4n−1)) = 0 i.e., λ = 0 or λ = 1 or λ = 4n−1. Furthermore, the algebraic
multiplicity corresponding to the eigenvalue λ = 0, λ = 1, and λ = 4n − 1 are
4n− 2, 1, and 1, respectively. □

Corollary 3.5. The antiadjacency matrix of graph G1 has two non-zero eigenva-
lues.

Corollary 3.6. The energy of graph G1 is E(G1) =
∑4n

i=1 |λi| = 4n.

Hereafter, we discuss the eigenvalues of the antiadjacency matrix of graph
G2. The output of the program in MATLAB can be seen in the following table.

Table 4. Eigenvalues of The Adjacency Matrix of G2

n λ1 λ2 λ3 λ4 λ5

3 -1.0504 1 2.9195 9.1309 0
5 -2.0301 1 5.6291 15.4010 0
7 -3 1 8.2918 21.7082 0
61 -29.0012 1 79.1868 192.8144 0
...

...
...

...
...

...
523 -251.3 1 684.9 1657.4 0

Algebraic multiplicity 1 1 1 1 4n− 4

As we can see at Table 4, we have similar result as the previous section.
There is no pattern of nonzero eigenvalues of the antiadjacency matrix of graph
G2. Therefore, in this case we only discuss on the number of zero and non-zero
eigenvalues.

Theorem 3.7. Let B be the antiadjacency matrix of graph G2. Then B has four
non-zero eigenvalues with each algebraic multiplicity is one and zero eigenvalues
with algebraic multiplicity is 4n− 4.
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Proof. Using similar way to the proof of Theorem 3.4, it is easy to get that the
rank(B) is four. Furthermore, since the antiadjacency matrix is also a symmetry
matrix, then matrix B has four non-zero eigenvalues with each algebraic multiplicity
is one. Consequently, the algebraic multiplicity of zero eigenvalues of B is 4n−4. □

4. LAPLACIAN MATRIX OF COPRIME GRAPH OF Q4n

In this section, we determine the construction of Laplacian matrix of graphs
G1 and G2 and its eigenvalues. Laplacian matrix is constructed from degree matrix
and adjacency matrix. Referring the definition of Laplacian matrix and Theorem
1.3, we create the construction of the matrix as shown on the following theorems.

Theorem 4.1. Let G1 be the coprime graph of generalized quaternion group with
the vertex set V (G1) = {e, a, a2, . . . , a2n−1, b, ab, a2b, . . . , a2n−1b}. Then the Lapla-
cian matrix of graph G1 is defined as L(G1) = D − A, where A is the adjacency
matrix of G1 and

D = [dij ], dij =

{
4n− 1, i = j = 1
1, i = j = 2, 3, ..., 4n
0, otherwise

is the degree matrix of G1.

Proof. Since we have discussed matrix A in Theorem 2.1, it is sufficient to show the
construction of degree matrix D to prove the theorem. Specifically, since degree
matrix is a diagonal matrix, we only show the element of diagonal of the matrix.
According to proof of Theorem 2.1, we get degree of vertex e is 4n−1 implies d11 =
4n−1 and the degree of any vertex in V2 is 1 implies dii = 1 for i = 2, 3, . . . , 4n. □

The general construction of the Laplacian matrix of graph G1 can be written
as

Theorem 4.2. Let G2 be the coprime graph of generalized quaternion group with
the vertex set V (G2) = {a, . . . , a2k+1, an, b, ab, . . . , a2n−1b, a2, ..., a2k, e : 1 ≤ k ≤
n− 1, 2k + 1 ̸= n}. Then the Laplacian matrix of graph G2 is defined as L(G2) =
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D −A, where A is the adjacency matrix of G2 and

D = [dij ], dij =

{ 1, i = j = 1, 2, ..., n− 1
n, i = j = n, n+ 1, ..., 3n
2(n+ 1), i = j = 3n+ 1, 3n+ 2, ..., 4n− 1
4n− 1, i = j = 4n
0, otherwise

is the degree matrix of G2.

Proof. Similar to Theorem 4.1, we only show the element of diagonal of the degree
matrix D. According to proof of Theorem 2.2, we get the degree of any vertex in
S1 is 1 implies dii = 1 for i = 1, 2, . . . , n−1. For other vertex partitions, the degree
of any vertex in S2 is n implies dii = n for i = n, n+ 1, . . . , 3n. The degree of any
vertex in V2 is 2(n+1) implies dii = 2(n+1) for i = 3n+1, 3n+2, . . . , 4n− 1. For
the last partition, the degree of vertex e is 4n− 1 implies d(4n)(4n) = 4n− 1. □

The general construction of the Laplacian matrix of graph G2 can be written
as

According to the construction in Theorem 4.1 and Theorem 4.2, we can see
that the sum of all the entries of each row/column is zero. Hence, the row vectors
are not linearly independent and we get the following corollary.

Corollary 4.3. The determinant of the Laplacian matrix of graphs G1 and G2 are
zero. Thus, zero is one of its eigenvalues.

The next discussion, we determine the eigenvalues of the Laplacian matrix
using MATLAB that refer to construction in Theorem 4.1 and Theorem 4.2. The
output of the program can be seen in Table 5 and Table 6 for the matrix of graphsG1

and G2 respectively. We use the result to determine the pattern of the eigenvalues
then prove it theoretically.
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Table 5. Eigenvalues of the Laplacian Matrix of G1

k n λ1 λ2 λ3

1 2 1 0 8
2 4 1 0 16
6 64 1 0 256
9 512 1 0 2048
...

...
...

...
...

k 2k 1 0 4n
Algebraic multiplicity 4n− 2 1 1

Based on the results in Table 5, we create theorem that shows the eigenvalues
of the Laplacian matrix of graph G1 as follows.

Theorem 4.4. Let L be the Laplacian matrix of graph G1. Then the eigenvalues
of L are 1, 0 and 4n where the algebraic multiplicity with respect to each eigenvalue
are 4n− 2, 1 and 1 respectively.

Proof. Suppose L is the Laplacian matrix of graph G1, then based on Theorem 4.1,
we have matrix

(λI − L) =



λ− 4n+ 1 a2 a3 a4 · · · a4n
a2 λ− 1 0 0 · · · 0
a3 0 λ− 1 0 · · · 0
a4 0 0 λ− 1 · · · 0
...

...
...

...
. . .

...
a4n 0 0 0 · · · λ− 1


where a2, a3, . . . , a4n = 1. We determine the determinant through the first row
expansion to obtain triangular matrix. Hence, we have

|λI − L| = (λ− 4n+ 1)(λ− 1)4n−1 − (λ− 1)4n−2 − (λ− 1)4n−2 − ...− (λ− 1)4n−2

= (λ− 1)4n−2λ(λ− 4n).

Consequently, the eigenvalues of L are (λ−1)4n−2λ(λ−4n) = 0, i.e., λ = 1 or λ = 0
or λ = 4n. Furthermore, the algebraic multiplicity corresponding to the eigenvalue
λ = 1, λ = 0, and λ = 4n are 4n− 2, 1, and 1 respectively. □

Corollary 4.5. Laplacian matrix of graph G1 has two non-zero eigenvalues.

Now, we discuss the eigenvalues of the Laplacian matrix of graph G2. The
output of the program in MATLAB can be seen in the following table. Based on
the results in Table 6, we create Theorem 4.7 that shows the eigenvalues of the
Laplacian matrix of graph G2. However, firstly we need to introduce Lemma 4.6
that will be used for proving the theorem.
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Table 6. Eigenvalues of the Laplacian Matrix of G2

n λ1 λ2 λ3 λ4 λ5 λ6

3 1 3 0 10 12 8
5 1 5 0 16 20 12
7 1 7 0 22 28 16
61 1 61 0 183 244 124
223 1 223 0 670 892 448
...

...
...

...
...

...
...

n 1 n 0 3n+ 1 4n 2(n+ 1)
Algebraic multiplicity n− 1 2n 1 1 1 n− 2

Lemma 4.6. Let n be an odd prime number and define matrix A = [aij ] of order
n× n as

aij =


λ2−(3n+2)λ+(2n2−1)

λ−n , i = j = 1, 2, ..., 4n− 1
λ3−5nλ2+(4n2+n−1)λ−(3n2−2n−1)

λ2−(n+1)λ+n , i = j = 4n
λ−(3n+1)

λ−n , i = 1, 2, ..., 4n− 1 and j = 4n
−(2n+2)

λ−n , otherwise

then det(A) = λ(λ−(3n+1))(λ−4n)(λ−(2n+2))n−2

λ−n .

Proof. According to the definition, matrix A can be written as

A =


y −(2n+2)

λ−n · · · λ−(3n+1)
λ−n

−(2n+2)
λ−n y · · · λ−(3n+1)

λ−n
...

...
. . .

...
λ−(3n+1)

λ−n
λ−(3n+1)

λ−n · · · x


where x = λ3−5nλ2+(4n2+n−1)λ−(3n2−2n−1)

λ2−(n+1)λ+n and y = λ2−(3n+2)λ+(2n2−1)
λ−n .

We are going to determine the determinant of matrix A by conducting ele-
mentary row operations such that we get an upper triangular matrix. Applying
elementary row operations R12, R23, . . . , R(n−1)n, respectively on matrix A, we get
matrix

B =



−(2n+2)
λ−n y · · · −(2n+2)

λ−n
λ−(3n+1)

λ−n
−(2n+2)

λ−n
−(2n+2)

λ−n · · · −(2n+2)
λ−n

λ−(3n+1)
λ−n

...
...

. . .
...

...
λ−(3n+1)

λ−n
λ−(3n+1)

λ−n · · · λ−(3n+1)
λ−n x

y −(2n+2)
λ−n · · · −(2n+2)

λ−n
λ−(3n+1)

λ−n

 .

Since the number of operation is n−1 for n is an odd number, then we have det(B) =
det(A). The next operation for matrix B, we conduct operations R(i+1)i(−1),
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R(i+2)i(−1), . . . , R(n−2)i(−1), respectively for i = 1, 2, . . . , n−3, then we get matrix

C =


− 2n+1

λ−n y · · · − 2n+1
λ−n

λ−(3n+1)
λ−n

0 −λ+ (2n+ 2) · · · 0 0
...

...
. . .

...
...

λ−(3n+1)
λ−n

λ−(3n+1)
λ−n · · · λ−(3n+1)

λ−n x

y − 2n+1
λ−n · · · − 2n+1

λ−n
λ−(3n+1)

λ−n

 .

Since the operation is adding a multiple of one row to another row, then such
operations do not change its determinant. Thus, we have det(C) = det(B). The

next operation for matrix C, we conduct operations R(n−1)i(
λ−(3n+1)

2n+1 ) for i =
1, 2, . . . , n− 2, then we get matrix

D =



− 2n+1
λ−n y · · · − 2n+1

λ−n
λ−(3n+1)

λ−n

0 −λ+ (2n+ 2) · · · 0 0
...

...
. . .

...
...

0 0 · · · z
...

y − 2n+1
λ−n · · · − 2n+1

λ−n
λ−(3n+1)

λ−n


and such operation do not change its determinant, thus we have det(D) = det(C).

The last row operations areRni

(
λ2−(3n+2)λ+(2n2+2n+(−2n−1)i)

2n+1

)
for i = 1, 2, . . . , n−

2 along with Rn(n−1)(−λ+ 1) on matrix D such that we get matrix

E =


− 2n+1

λ−n y · · · − 2n+1
λ−n

λ−(3n+1)
λ−n

0 −λ+ (2n+ 2) · · · 0 0
...

...
. . .

...
...

0 0 · · · z
...

0 0 · · · 0 −λ2 + 4nλ


such operation do not change its determinant as well, thus we have det(E) =
det(D). Since matrix E is an upper triangular matrix, then we have

det(A) = det(E) = (− 2n+1
λ−n )(λ+ (2n+ 2))n−3( (λ−(3n+1))(λ−(2n+2))

2n+1 )(−λ2 + 4n)

=
λ(λ− (3n+ 1))(λ− 4n)(λ− (2n+ 2))n−2

λ− n
.

□

Theorem 4.7. Let L be the Laplacian matrix of graph G2. Then the eigenvalues
of L are 1, n, 0, 3n+1, 4n, and 2(n+1) where the algebraic multiplicity with respect
to each eigenvalue are n− 1, 2n, 1, 1, 1, and n− 2, respectively.
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Proof. Suppose L is the Laplacian matrix of graph G2. According to Theorem 4.2,
the matrix (λI − L) can be written as partition matrix as follows

(λI − L) =

 E(n−1)×(n−1) 0(n−1)×(2n+1) At
(n−1)×n

0(2n+1)×(n−1) D(2n+1)×(2n+1) Bt
(2n+1)×n

An×(n−1) Bn×(2n+1) Cn×n


where E = [eij ] and D = [dij ] are diagonal matrices with eii = λ−1 and dij = λ−n
respectively, B = [bij ] is a matrix of ones, i.e., bij = 1 for all i and j. Meanwhile,
for A = [aij ] and C = [cij ] = [cji] are matrices defined as

aij =
{ 1, i = n, j = 1, 2, ..., n− 1

0, otherwise
and cij =

{ 2(n+ 1), i = j = 1, 2, ..., n− 1
4n− 1, i = j = n
1, i = n, j = 1, 2, ..., n− 1
0, otherwise.

We are going to determine the determinant of matrix (λI − L) by conducting
elementary row operations such that we get an upper triangular matrix. The
first purpose of row operations is to change matrices A and B into zeroes ma-
trices. Applying elementary row operations R(4n)i(

1
λ−1 ), i = 1, 2, ..., n − 1, then

Rij(
1

λ−1 ), i = 3n + 1, 3n + 2, ..., 4n and j = n, n + 1, ..., 3n, respectively on matrix

(λI − L), we get matrix M as follows

M4n×4n =

 E(n−1)×(n−1) 0(n−1)×(2n+1) At
(n−1)×n

0(2n+1)×(n−1) D(2n+1)×(2n+1) Bt
(2n+1)×n

0n×(n−1) 0n×(2n+1) Fn×n


where

F =


λ2−(3n+2)λ+(2n2−1)

λ−n
−(2n+2)

λ−n · · · λ−(3n+1)
λ−n

−(2n+2)
λ−n

λ2−(3n+2)λ+(2n2−1)
λ−n · · · λ−(3n+1)

λ−n
...

...
. . .

...
λ−(3n+1)

λ−n
λ−(3n+1)

λ−n · · · λ3−5nλ2+(4n2+n−1)λ−(3n2−2n−1)
λ2−(n+1)λ+n

 .

Since the operation is adding a multiple of one row to another row, then such
operations do not change its determinant. Thus, we have det(λI − L) = det(M).
Since matrix M is an upper triangular matrix, matrices E and D are diagonal
matrices, and referring to Lemma 4.6, we have

det(M) = det(E) det(D) det(F )

= (λ− 1)n−1(λ− n)2n+1λ(λ− (3n+ 1))(λ− 4n)(λ− (2n+ 2))n−2

λ− n
= (λ− 1)n−1(λ− n)2nλ(λ− (3n+ 1))(λ− 4n)(λ− (2n+ 2))n−2.

Consequently, the eigenvalues of L are (λ − 1)n−1(λ − n)2nλ(λ − (3n + 1))(λ −
4n)(λ− (2n+ 2))n−2 = 0, i.e., λ = 1 or λ = n or λ = 0 or λ = 3n+ 1 or λ = 4n or
λ = 2n+2. Furthermore, the algebraic multiplicity corresponding to the eigenvalue
λ = 1, λ = n, λ = 0, λ = 3n + 1, λ = 4n, and λ = 2n + 2 are n − 1, 2n, 1, 1, 1, and
n− 2, respectively. □



19

Corollary 4.8. The Laplacian matrix of graph G2 has five non-zero eigenvalues.

5. SIGNLESS LAPLACIAN MATRIX OF COPRIME GRAPH OF Q4n

In this section, we determine construction of signless Laplacian matrix of
graphs G1 and G2 and its eigenvalues. Signless Laplacian matrix is constructed
from Laplacian matrix by replacing the elements −1 to 1. In another word, if the
Laplacian matrix is defined as D−A, then the signless Laplacian matrix is defined
as D + A. Since the construction only replacing all elements −1 to 1, we directly
change the program in MATLAB from Laplacian matrix construction to determine
the eigenvalues of signless Laplacian matrix. The output of the program can be
seen in Table 7 and Table 8 for the matrix of graphs G1 and G2 respectively. We use
the result to determine the pattern of the eigenvalues then prove it theoretically.
Based on the results in Table 7, we create Theorem 5.1 that shows the eigenvalues
of the signless Laplacian matrix of graph G1.

Table 7. Eigenvalues of the Signless Laplacian Matrix of G1

k n λ1 λ2 λ3

1 2 1 0 8
2 4 1 0 16
6 64 1 0 256
9 512 1 0 2048
...

...
...

...
...

k 2k 1 0 4n
Algebraic multiplicity 4n− 2 1 1

Theorem 5.1. Let S be the signless Laplacian matrix of graph G1. Then the
eigenvalues of S are 1, 0, and 4n where the algebraic multiplicity with respect to
each eigenvalue are 4n− 2, 1, and 1, respectively.

Proof. Suppose S is the signless Laplacian matrix of graph G1, then we have the
following matrix

(λI − S) =



λ− 4n+ 1 b2 b3 b4 · · · ab4n
b2 λ− 1 0 0 · · · 0
b3 0 λ− 1 0 · · · 0
b4 0 0 λ− 1 · · · 0
...

...
...

...
. . .

...
b4n 0 0 0 · · · λ− 1


where a2, a3, . . . , a4n = −1. Using similar way to the proof of Theorem 4.4, we get
|λI − S| = (λ − 1)4n−2λ(λ − 4n). Consequently, the eigenvalues of S are λ = 1 or
λ = 0 or λ = 4n with the algebraic multiplicity corresponding to the eigenvalue
λ = 1, λ = 0, and λ = 4n are 4n− 2, 1, and 1, respectively. □
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Corollary 5.2. The signless Laplacian matrix of graph G1 has two non-zero eigen-
values.

Now, the last discussion, we are going to determine the eigenvalues of the
signless Laplacian matrix of graph G2. The output of the program in MATLAB
can be seen in the following table.

Table 8. Eigenvalues of The Signless Laplacian Matrix of G2

n λ1 λ2 λ3 λ4 λ5 λ6

3 1 3 8 0.5140 8.2023 13.2838
5 1 5 12 0.5883 13.9204 21.4913
7 1 7 16 0.6147 19.7851 29.6002
61 1 61 124 0.6617 181.4004 245.9379
223 1 223 448 0.6653 667.3523 893.9823
...

...
...

...
...

...
...

n 1 n 2(n+ 1) a b c
Algebraic multiplicity n− 1 2n 1 1 1 n− 2

where a, b, c are non-integer eigenvalues of the matrix. Based on the results in Table
8, we create Theorem 5.3 that shows the eigenvalues of the signless Laplacian matrix
of graph G2.

Theorem 5.3. Let S be the Laplacian matrix of graph G2. Then the eigenvalues
of S are 1, n, 2(n+1), a, b, and c where a, b, c are non-integer and the algebraic mul-
tiplicity with respect to each eigenvalue are n− 1, 2n, n− 2, 1, 1, and 1, respectively.

Proof. Let S be the signless Laplacian matrix of graph G2. According to definition,
we have matrix (λI − S) can be written as partition matrix as follows

(λI − S) =

 E(n−1)×(n−1) 0(n−1)×(2n+1) At
(n−1)×n

0(2n+1)×(n−1) D(2n+1)×(2n+1) Bt
(2n+1)×n

An×(n−1) Bn×(2n+1) Cn×n


where E = [eij ] andD = [dij ] are diagonal matrices with eii = λ−1 and dij = λ−n,
respectively, B = [bij ] is a matrix of ones, i.e., bij = −1 for all i and j. Meanwhile,
for A = [aij ] and C = [cij ] = [cji] are matrices defined as

aij =
{ −1, i = n, j = 1, 2, ..., n− 1

0, otherwise
and cij =

{ 2(n+ 1), i = j = 1, 2, ..., n− 1
4n− 1, i = j = n
−1, i = n, j = 1, 2, ..., n− 1
0, otherwise.

To determine the determinant of (λI − S), we use similar way to the proof of
Theorem 4.7 untill we get an upper triangular matrix M as follows

M4n×4n =

 E(n−1)×(n−1) 0(n−1)×(2n+1) At
(n−1)×n

0(2n+1)×(n−1) D(2n+1)×(2n+1) Bt
(2n+1)×n

0n×(n−1) 0n×(2n+1) Fn×n


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where

F =


λ2−(3n+2)λ+(2n2−1)

λ−n − 2n+1
λ−n · · · −λ+n+1

λ−n

− 2n+1
λ−n

λ2−(3n+2)λ+(2n2−1)
λ−n · · · −λ+n+1

λ−n
...

...
. . .

...

−λ+n+1
λ−n −λ+n+1

λ−n · · · λ3−5nλ2+(4n2+n−1)λ−(3n2−2n−1)
λ2−(n+1)λ+n

 .

Next, to determine the determinant of matrix F , we use similar way to the proof
of Lemma 4.6 and we get

det(M) = det(E) det(D) det(F )
= (λ− 1)n−1.(λ− n)2n+1.

(λ− 2(n+ 1))n−2(λ3 − (7n+ 1)λ2 + 4n(3n+ 1)λ− 4(2n+ 1)(n− 1))

λ− n
= (λ− 1)n−1.(λ− n)2n.(λ− 2(n+ 1))n−2.

(λ3 − (7n+ 1)λ2 + 4n(3n+ 1)λ− 4(2n+ 1)(n− 1)).

Consequently, the eigenvalues of S are 1, n, 2(n + 1), a, b, and c where a, b, c are
non-integer and the algebraic multiplicity with respect to each eigenvalue are n −
1, 2n, n− 2, 1, 1, and 1, respectively. □

Corollary 5.4. Signless Laplacian matrix of graph G2 has six non-zero eigenvalues
and has no zero eigenvalue.
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