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Abstract. This study discusses the representation matrices of the coprime graph
of the generalized quaternion group. The representation matrices are adjacency
matrix, anti adjacency matrix, Laplacian matrix, and signless Laplacian matrix.
Furthermore, the eigenvalues of each representation matrix are determined. As a
result, we obtained the construction of the four representation matrices and their
eigenvalues. The matrix determinant is zero based on the matrix form, so the
matrices have zero eigenvalues except for the signless Laplacian matrix. As for the
non-zero eigenvalues, the values depend on the type of representation matrices, the
order of the graph, and its algebraic multiplicity.
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1. INTRODUCTION

A finite group can be represented as a graph. Some research on representation
graphs of finite groups have been done, for instance, undirected power graphs of
semigroups by Chakrabarty et al. [I], conjugate graphs of finite groups by Erfanian
et al. [2], commuting graph of the dihedral group by Ali et al. [3], non-commuting
graph of dihedral group by Khasraw et al. [4], twin g-noncommuting graph of a
finite group by Zahidah et al. [5], and coprime graph of the generalized quater-
nion group by Zahidah et al. [6]. Meanwhile, a graph can be represented as a
matrix. Research on graphs representation matrices that have been published are
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the adjacency matrix of circulant graphs on cyclic groups by So [7], adjacency and
antiadjacency matrix of cyclic directed wheel graphs by Widiastuti et al. [8]. More
specifically, some research studied on eigenvalues of representation matrices such
as directed prism circle graph by Stin et al. [9], directed dumbbell circle graph by
Budiyanto et al. [I0] and Cayley graphs of group Z,, by Daniel et al. [T1].

Based on these research developments, we want to continue the study from
Zahidah et al. [6]. We determine the construction of representation matrices of
obtained graphs on Zahidah et al. [6]. Here, we study four representation matrices,
i.e., adjacency matrix, antiadjacency matrix, Laplacian matrix, and signless Lapla-
cian matrix. Furthermore, we determine the eigenvalues of each representation
matrix. Notations and terminologies related to groups can be found in Dummit
and Fraleigh [12] [13], for graphs can be found in Chartrand et al. and Ma et al.
[14, [15], meanwhile for matrices can be found in Anton et al. and Bapat [16] [17].
We remind definitions of the generalized quaternion group @4, and the coprime
graph of a group as follows.

Definition 1.1. A generalized quaternion group (Qua,) is a finite group of order 4n,
generated by two elements a and b with the properties a®™ = b* = e and ab = ba ™!,
where e is the identity element of Q4y,.

Definition 1.2. The coprime graph of a finite group G is a graph with the vertices
as elements of G and two vertices are adjacent if and only if its order as group
elements is relatively prime.

The following theorem is a result from Zahidah et al. [6] gives structure of
coprime graph of Q4.

Theorem 1.3. The coprime graph of the generalized quaternion group Qu, are

i. a star graph if n is a power of 2, and
1. a tripartite graph if n is an odd prime.

According to the above objective and previous results, we divide our discus-
sion into four sections based on the type of representation matrices. Each section
includes two studies based on the type of graphs used. For simplicity, we denote
graph in Theorem [1.3| (i) as G; and G5 for Theorem [1.3| (ii).

2. ADJACENCY MATRIX OF COPRIME GRAPH OF Qg4,

In this section, firstly, we determine the construction of the adjacency matrix
of Gy and G2. As we know, the elements of the adjacency matrix are binary
numbers, one if two vertices are adjacent and zero if they are not. Referring to the
definition of adjacency matrix and Theorem we create the construction of the
matrix as shown in the following theorems.
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Theorem 2.1. Let G be the coprime graph of generalized quaternion group with
the vertex set V(G1) = {e,a,a?,...,a* "1 b,ab,a®b,...,a®"~tb}. Then the adja-
cency matriz of graph Gy is

AGy) = { [b_[ajhxl ]
3l (4n—1)x1
where [a;] and [b;] are row vectors of order 1 x 4n and

avf{o, j=1 .bv7{1, j=1
77U 1, otherwise 7 L 0, otherwise.

Proof. According to Theorem graph (31 is a star graph
San—1 = Kian—1 = Ky ||y

where Vi = {e} and Va = {a,d?,...,a®" "1 b,ab,a?b,...,a*"1b}. Therefore, ver-
tex e (identity element) is adjacent to every vertex in V,. Thus, the adjacency
matrix of G is

0 1 1 .. 1 1 1 1 .. 1j
0

[ERN
o o
oo
=N=)
==}
oo
o o
(=}

_|/1 0 0 0 00 0 .. 0
AGy) = 1 00 0 000 .. 0
1 00 0 00 0 .. 0

1 00 0 000 .. 0

1 0 0 0 00O 0-

O

Theorem 2.2. Let G2 be the coprime graph of generalized quaternion group with
the verter set V(Ga) = {a,...,a®**1 a" b,ab,...,a® 1b,a?,...,a%* e : 1 < k <
n—1,2k+1#n}. Then the adjacency matriz of graph G is

[aj](n—l)xl

A(Gs) = | Pilennxa
Cj (n—1)x1
[di)11
where [a;],[bj], [c;] and [d;] are row vectors of order 1 x 4n and
a__{1, j=dn __{1, j=3n+1,3n+2, ... 4n
7700, otherwise 7 L 0, otherwise '

c-—{ 0, 7=12,...,n—1,3n+1,3n+2,...,4n — 1 'd-—{ 0, j=4n
77U 1,  otherwise. T 1, otherwise.
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Proof. According to Theorem graph G5 is a 3-partite graph with partition set
Vi={a® ab:0<m<n-1,0<i<2n—-1},Vo={a*":1<m<n-1}
and V3 = {e}, thus |Vo| = n — 1 and |V5] = 1. Then we divide partition V;
into two subpartitions, i.e., Sy = {a*"T! : 0 < m < n—1,2m+1 # n} and
Sy = {a",a’b : 0 <i < 2n — 1}, thus [S;| =n — 1 and |S2| = 2n + 1. Therefore,
every vertex in S is only adjacent to every vertice in V3, while for every vertex in
So is adjacent to every vertice in V3 and V5. For other adjacencies, every vertex
in V5 is adjacent to every vertex in V3 and S5, and lastly, every vertex in V3 is
adjacent to every vertex in V5 and V. Hence, the adjacency matrix of Gy is

0 000 0 .. 00 0 1
0O .. 00 0O 0 0 0 1
0O .. 00 0O 0 1 11
0O .. 00 0O 0 1 11
0O .. 00 0O 0 1 11
A(Gy) = : FEE R FE :
0 0 00 0 .. 01 11
0 01 1 1 1 0 0 1
0 01 1 1 1 0 0 1
1 1 11 1 1 1 1 0

O

Based on Theorem [2.] and Theorem [2.2] it can be seen that the adjacency
matrix of both graphs G; and G2 have some rows with the same entries. Hence,
the vectors are not linearly independent and we get the following corollary.

Corollary 2.3. Determinant of the adjacency matrix of graphs G1 and Gy are
zero. Thus, zero is one of its eigenvalues.

In the following discussion, we determine the eigenvalues of the adjacency
matrix using MATLAB that refer to construction in Theorem [2.I] and Theorem
The program’s output can be seen in Table [1] and Table [2] for the matrix of
graphs G1 and G, respectively. We use the result to determine the pattern of the
eigenvalues and then prove it theoretically.

Based on the results in Table[I] we get the eigenvalues of the adjacency matrix
as follows.

Theorem 2.4. Let A be the adjacency matriz of graph Gy. Then the eigenvalues of
A are 0 and £+/4n — 1 where the algebraic multiplicity concerning each eigenvalue
are 4n — 1 and 1, respectively.



TABLE 1. Eigenvalues of The Adjacency Matrix of G

k n )\1 /\2 )\3

1 2 0 —2.6458 = —/7 2.6458 = \/7
2 4 0 —3.8730 = —V/15 3.8730 = V15
6 64 0 —15.9687 = —/255 | 15.9687 = /255
9 512 0

45.2438 = —/2047 | 45.2438 = /2047

k ok 0 —VA4An =1 VaAn =1

Algebraic multiplicity 4dn — 2 1 1

Proof. Let A be the adjacency matrix of graph G;. According to Theorem
matrix A can be written as

0 a9 as Q4n
aa 0 0 0
A=1| a 0 0 0
ay,, 0 0O -+ 0
where ao, as, ..., a4n, = 1, hence the polynomial characteristic of A is
N — A = A2 (A% —dn +1). (1)

We will prove Equation [1| by mathematical induction through the second row
expansion. For n = 2, it is easy to get |\ — A| = A\6(\? — 7). Suppose for n = p
we have

A —Qay —as --- —Q4p
—as A 0o .- 0
IN[— A| = —asg 0 A cee 0
—agy 0 0 .- A
where as,as,...,a4, =1 and
N[ — A| = MP72(\% —4p + 1). (2)
Now, observe for n = p + 1, then we have
A —ay —as —A4(pt1)
—as A 0 0
AT — Al = —as 0 A 0
—agpr1) O 0o .- A
where az, a3, ..., a4p4+1) = 1. We can see that the order of matrix (Al — A) above

is (4p +4) x (4p + 4). Thus, to determine its determinant, firstly we need to
determine the determinant of three matrices with the same construction of order
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(Ap+1)x (4p+1),(dp+2) x (4p+2), and (4p+ 3) x (4p+ 3) which are explained
as follows.

i.: Suppose X is a matrix of order (4p + 1) x (4p + 1) defined as

A —az —azg o —Qapql
—as A 0o - 0
X = —as 0 A te 0
—agpr1 O 0o - A
where ag,as,...,a4p+1 = 1. By the second row expansion and based on

Equation 2] we get
det(X) = (=1)(=1)(=a2)M**"P + AN 2 (N2 —dp + 1)) = A1 (A% —4p).  (3)

ii.: Suppose Y is a matrix of order (4p+2) x (4p +2). Using similar way and
Equation [3] then we get

det(Y) = (=1)(=1)(—a2) A" £ XAPTI(N\2 —4p)) = AP(N2 —4p—1).  (4)

iii.: Suppose Z is a matrix of order (4p + 3) x (4p + 3). Using similar way
and Equation [4 then we get

det(Z) = (~1)(~1)(=a) AP+ XA (? = dp = 1) = AP~ 4p - 2). (5)

Therefore, to determine the determinant of matrix |\ —A| of order (4p+4) x (4p+4),
we use similar way and Equation [5| Therefore

A=A = (=1)(=1) (b)) AP 2NN (N2 —dp—2)) = MPFD=2 (N2 (p+1)+1). (6)
It means that we proved Equation [I} hence we get the eigenvalues of A are the
roots of A*""2(\2 —4n +1) = 0 ie., A = 0 or A = £y/4n — 1. Furthermore, the
algebraic multiplicity corresponding to the eigenvalue A = 0, A\ = —/4n — 1, and
A=+4n —1 are 4n — 2,1, and 1, respectively. (I
Corollary 2.5. The adjacency matriz of graph Gy has two non-zero eigenvalues.
Corollary 2.6. The energy of graph Gy is E(G1) = Z?Zl |Ai| = 2¢/4n — 1.

Now, we discuss the eigenvalues of the adjacency matrix of graph G5. The
output of the program in MATLAB can be seen in Table

TABLE 2. Eigenvalues of The Adjacency Matrix of G

n /\1 /\2 )\3 )\4 /\5

3 -4.0458 -2 0.6401 5.4057 0

5 -6.8012 | -2.7429 | 1.1199 | 8.4241 0

7 -9.6144 -3.2517 | 1.5277 | 11.3434 0

61 -85.9733 | -8.6996 | 6.7321 | 87.9408 0

523 -739.3407 | -23.8346 | 21.8384 | 741.3369 0
Algebraic multiplicity 1 1 1 1 dn —4
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As we can see at the Table [2] there is no pattern of nonzero eigenvalues of
the adjacency matrix of graph G,. Therefore, in this case we only discuss on the
number of zero and non-zero eigenvalues.

Theorem 2.7. Let A be the adjacency matrix of graph Go. Then A has four non-
zero eigenvalues with each algebraic multiplicity is one and zero eigenvalues with
algebraic multiplicity is 4n — 4.

Proof. Suppose A is the adjacency matrix of graph Gs, then based on Theorem
we have four vectors, which are

[a;]=1[0 0---0 0---0 0 1]
[bi]=[00---00---11 1]
[¢j]=[00--11---00 1]
d]=[11--11---11 0]

We will show that the vectors are linearly independent. Observe that
al[aj] + Olg[bj} + Oég[Cj] + Oé4[dj] =0= [O 0---00---00 0]
Thus, we get a; = as = a3 = a4 = 0, that implies the set of vectors

{la;], [bs], [es] [ds]}

is linearly independent. Since the vectors are linearly independent, then the rank(A)
is four. Furthermore, since the adjacency matrix is a symmetry matrix, then ma-
trix A has four non-zero eigenvalues with each algebraic multiplicity is one. Con-
sequently, the algebraic multiplicity of zero eigenvalues of A is 4n — 4. O

3. ANTTIADJACENCY MATRIX OF COPRIME GRAPH OF Qu,

In this section, we determine the construction of antiadjacency matrix of
graphs G and G and its eigenvalues. Antiadjacency matrix is constructed from
adjacency matrix by exchanging the elements of matrix, i.e., the elements 1 into 0
and vice versa. Thus, we also have the following corollary.

Corollary 3.1. The determinant of the antiadjacency matriz of graphs G1 and G4
are zero. Thus, zero is one of its eigenvalues.

Referring to the construction, we do the computation using MATLAB to
determine the eigenvalues of the antiadjacency matrix. The output of the program
can be seen in Table [3|and Table[d for matrix of graphs G and G5 respectively. We
use the result to determine the pattern of the eigenvalues then prove it theoretically.
Based on the results in Table |3 we create Theorem that shows the eigenvalues
of the antiadjacency matrix of graph G;. However, firstly we need to introduce
Lemma that will be used for proving the theorem.



TABLE 3. Eigenvalues of The Antiadjacency Matrix of G

k n )\1 /\2 )\3

1 2 0 1 7

2 4 0 1 15

6 64 0 1 255

9 512 0 1 | 2047

k 2k 0 1 [4n—1
Algebraic multiplicity dn—2| 1 1

Lemma 3.2. Let A = [a;;] be a matriz of order n x n defined as

0, i=1andj=2,3,..,n

- _ )0, j=1landi=2,3,...n
YTy A=1, i=j=1,3,4,...n

-1, otherwise
AL L A"=2 0 is an odd number
then det(A) = { ATl \n=2 n is an even number.

Proof. Based on the definition in Lemma [3.2] matrix A can be written as

A1 0 0 0--- 0

0 -1 -1 -1 ~1

0 -1 Xx—1 -1 ~1

A= 0 -1 -1 x—1 1
0 -1 -1 -1 A—1 |

By doing elementary row operations Rp3(—1), R34(—1),..., R(n—1)n(—1), respec-
tively on the matrix A, we get matrix B

A—1 0 0 0 0

0 0 -\ 0 0

0 0 A =) 0

B = 0 0 0 A 0
0 -1 -1 -1 A1 |

Since the operation is adding a multiple of one row to another row, then such
operations do not change its determinant. Thus we have det(B) = det(A). The
next operation, we only exchange among the rows of matrix B, i.e., row operations



an, Rn?n R

s Ry(n—1), respectively, then we get matrix C

TA—1 0 0 0--- 0 ]

0 -1 -1 -1 A1

0 0 -\ 0 0

C= 0 0 A =\ 0
0 0 0 0 -\

and such operations bring up two possibilities for its determinant, i.e.,

n is an odd number
n is an even number.

[ —det(B),
det(C) = { det(B),
i.: For n is an odd number

By doing elementary row operations R43(1), R54(1),..., Ryn—1)(1), respec-
tively on matrix C, we get upper triangular matrix D

A—1 0 0 0--- 0
0 -1 -1 -1 A—1

0 0 -\ 0 0

D= 0 0 0 -\ 0
0 0 0 0 -\

and such operations do not change its determinant, thus we have det(D) =
det(C). Since the matrix D, «, is an upper triangular matrix, then det(D)
is the product of its diagonal elements, i,e.,

det(D) = (A= 1)(=1)(=\)""2 = A7t - \n—2,

Since det(D) = det(C) =
An2,

ii.: For n is an even number
By doing similar way as (i), we get

—det(B) = —det(A), then det(A4) = —A"~1 +

det(D) = (A= 1)(=1)(=\)""2 = A7t — \n—2,
since det(D) = det(C) = det(B) = det(A), then det(A) = A"~1 — \n~2,

O

In addition to the above lemma, we define a new matrix by doing a row
operation Ry3 on matrix A at Lemma [3.2] to get following corollary.
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Corollary 3.3. Let E be a matrix of order n X n defined as

A—=1 0 0 0--- 0
0 -1 A—=1 -1 - -1
0 -1 -1 -1 - -1
B = 0 -1 -1 Ax—-1 -~ -1
0 -1 -1 -1 o A—1 |
APl 2 n is an odd number

then det(FE) = { —A""L 4 A2 n s an even number.

Theorem 3.4. Let B be the antiadjacency matriz of graph Gy. Then the eigenval-
ues of B are 0,1, and 4n — 1 where the algebraic multiplicity with respect to each
eigenvalue are 4n — 2,1, and 1, respectively.

Proof. Suppose B is the antiadjacency matrix of graph G;. Referring to the cons-
truction, matrix B can be written as

0 an as tee QAqn
aa 1 1 .- 1
B=| a 1 1 1
asy, 1 1 - 1
where aso, as, ..., a4, = 0, hence the polynomial characteristic of B is
I — B = X*" — (4n)A*" 1 4 (4n — DA 2, (7)

We will prove Equation [7] by mathematical induction through the second row
expansion. For n = 2, we have

[Xx—1 0 0 0 0 0 0 0
0 A—1 -1 -1 -1 -1 -1 -1
0 -1 A-1 -1 -1 -1 -1 -1
0 -1 -1 A-1 -1 -1 -1 -1
AT - B| = 0 -1 -1 -1 x—-1 -1 -1 -1
0 —1 —1 -1 -1 x-1 -1 -1
0 -1 -1 -1 -1 -1 Ax—-1 -1
|0 -1 -1 -1 -1 -1 -1 A-1 |

By the second row expansion and referring Lemma [3.2] and Corollary we have
M —=Bl= 04+ A=1)AT=7X +6X%) + (=X + X°) + (=A° + A%)+

(=AS A X3) + (=A6 + X%) + (A8 + X)) + (=X + \9)
A8 — 8AT + TS,
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Suppose for n = p we have

A—1 as as Qa4 Qy4p
az A—1 -1 -1 - =1
as -1 -1 -1 - -1
M-B)=1| 4 -1 -1 Xx=1 - -1
| a4p -1 -1 -1 - A-1 ]
where ag,as,...,as, =0 and
N — B| = A7 — (dp)A\*P~1 4 (4p — 1)\ 72, (8)
Now, observe for n = p + 1, then we have
A—1 as as ag e Gape1) |
s A—-1 -1 -1 - -1
as -1 A-1 -1 - -1
(M - B) = aq -1 -1 A-1 - -1
L a4(p+1) -1 —1 -1 A—1

where az, as, . .., a4p41) = 0. Since the order of matrix (A —B) is (4p+4) x (4p+4),
then we use similar way as Theorem [2.4| to determine |\ — B].

i.: Suppose X is a matrix of order (4p 4+ 1) x (4p + 1) defined as

A—1 an as Qg e A4p+1
as A—1 -1 -1 .- -1
as -1 Xx-1 -1 .- -1
X=1 a -1 -1 A=1 - -1
| a4pr1 1 -1 -1 - A-1 |
where ag,as,...,asp+1 = 0. By the second row expansion and referring

Lemma, Corollary and Equation [§] we have

det(X) = 0+ (A—=1)(A?P — (4p)ATP~1 + (dp — 1)AP=2) + (= A\IP=1 4 \ip—2
+(_)\4p—1 + )\4p—2) + ..+ (_)\4}7—1 + )\4p—2)
APHL — (4p + 1N 4 (4p) APt
(9)
ii.: Suppose Y is a matrix of order (4p+2) x (4p+ 2). Using similar way and
Equation [9] then we have

det(Y)= 0+ (A= 1)(APTL — (dp + D)AP + (d4p)A¥P~1) + (=A% + AP~ 1
H(=AP AP b (= 2T
NPFZ — (4p + 2)NPTL 4 (4p + 1)NP.
(10)
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iii.: Suppose Z is a matrix of order (4p + 3) x (4p + 3). Using similar way
and Equation [0} then we have

det(Z) = 0+ (A= 1)(A*PF2 — (4dp + 2)AWPTL 4 (4p + 1)APP) + (=P HL 4 \IP
F (=ML L NIP) 4 (NPT )
= NPES— (4p + 3)AF 4 (dp + 2)NP L
(11)

Therefore, to determine the determinant of matrix (Al — B) of order (4p +
4) x (4p + 4), we use similar way and Equation Therefore

XL —B|= 0+ (A=1)(A\*PF3 — (4p + 3)APF2 + (dp + 2)A\WPH1)+
(7A4p+2 + )\4p+1) + (7A4p+2 + )\4p+1) 4+ (7)\4p+2 4 /\4p+1)
MNEHD) — (4(p + 1))APH3 4 (4p + 3)NPH2,
(12)

It means that we proved Equation hence we get the eigenvalues of B are A*"~2(\2—
(4nA)4+(4n—1)) =0ie, A=0o0r A =1 or A = 4n — 1. Furthermore, the algebraic
multiplicity corresponding to the eigenvalue A = 0,A = 1, and A = 4n — 1 are
4n — 2,1, and 1, respectively. O

Corollary 3.5. The antiadjacency matrix of graph Gy has two non-zero eigenva-
lues.

Corollary 3.6. The energy of graph Gy is E(G1) = 2?21 |Ai| = 4n.

Hereafter, we discuss the eigenvalues of the antiadjacency matrix of graph
G5. The output of the program in MATLAB can be seen in the following table.

TABLE 4. Eigenvalues of The Adjacency Matrix of Gs

n )\1 )\2 )\3 )\4 )\5

3 -1.0504 | 1 | 2.9195 | 9.1309 0

5 -2.0301 | 1 | 5.6291 | 15.4010 0

7 -3 1 ] 8.2918 | 21.7082 0

61 -29.0012 | 1 | 79.1868 | 192.8144 0

523 -251.3 1 684.9 1657.4 0
Algebraic multiplicity 1 1 1 1 dn —4

As we can see at Table [l we have similar result as the previous section.
There is no pattern of nonzero eigenvalues of the antiadjacency matrix of graph
G5. Therefore, in this case we only discuss on the number of zero and non-zero
eigenvalues.

Theorem 3.7. Let B be the antiadjacency matriz of graph Gs. Then B has four
non-zero eigenvalues with each algebraic multiplicity is one and zero eigenvalues
with algebraic multiplicity is 4n — 4.
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Proof. Using similar way to the proof of Theorem [3.4] it is easy to get that the
rank(B) is four. Furthermore, since the antiadjacency matrix is also a symmetry
matrix, then matrix B has four non-zero eigenvalues with each algebraic multiplicity
is one. Consequently, the algebraic multiplicity of zero eigenvalues of B is 4n—4. O

4. LAPLACIAN MATRIX OF COPRIME GRAPH OF Qu,

In this section, we determine the construction of Laplacian matrix of graphs
G and G and its eigenvalues. Laplacian matrix is constructed from degree matrix
and adjacency matrix. Referring the definition of Laplacian matrix and Theorem
[1.3] we create the construction of the matrix as shown on the following theorems.

Theorem 4.1. Let G be the coprime graph of generalized quaternion group with
the vertex set V(G1) = {e,a,a?,...,a*" 71 b,ab,a®b,...,a*"~1b}. Then the Lapla-
cian matriz of graph Gy is defined as L(G1) = D — A, where A is the adjacency
matriz of G1 and

D = [d;], dij:{ 1, i=7=2,3,..4n
0, otherwise

is the degree matriz of G.

Proof. Since we have discussed matrix A in Theorem [2.1} it is sufficient to show the
construction of degree matrix D to prove the theorem. Specifically, since degree
matrix is a diagonal matrix, we only show the element of diagonal of the matrix.
According to proof of Theorem we get degree of vertex e is 4n— 1 implies dy; =
4n—1 and the degree of any vertex in V5 is 1 implies d;; = 1 fori=2,3,...,4n. O

The general construction of the Laplacian matrix of graph G can be written

as
4n—-1 -1 -1 .. =1 -1 -1 =1 .. =1
-1 1 0 0 0 0 0 .. 0
-1 0 1 0 0 0 0 .. 0
| -1 0 0 1 0 0 0 0
LGy = -1 0 0 0 1 0 0 0
-1 0 0 0 0 1 o 0
-1 0 0 0 0 0 1 0
L —1 o 0 .. 0 0 0 0 . 1.

Theorem 4.2. Let G2 be the coprime graph of generalized quaternion group with
the vertex set V(Gg) = {a,...,a®*T1 a™ b,ab,...,a> " b,a?,...,a%* e : 1 < k <
n—1,2k+1+# n}. Then the Laplacian matriz of graph G is defined as L(G3) =
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D — A, where A is the adjacency matriz of Go and

1, 1=7=1,2,...,n—1
n, t=j=n,n+1..3n
in —1, 1=7=4n

0, otherwise

is the degree matriz of Gs.

Proof. Similar to Theorem [4.1] we only show the element of diagonal of the degree
matrix D. According to proof of Theorem we get the degree of any vertex in
S1is 1 implies d;; = 1 for i = 1,2,...,n— 1. For other vertex partitions, the degree
of any vertex in Sy is n implies d;; = n for i =n,n+1,...,3n. The degree of any
vertex in V5 is 2(n+ 1) implies d;; = 2(n+1) for i =3n+1,3n+2,...,4n— 1. For
the last partition, the degree of vertex e is 4n — 1 implies d4p)4n) = 4n — 1. O

The general construction of the Laplacian matrix of graph G2 can be written

as
r1 .. 0 0 0 0 .. 0 0 0 -1 7
0 1 0 0 0 0 0 0 -1
0 0 n 0 O 0 -1 -1 -1
0 0 0 n O 0 -1 -1 -1
G S
o . 0 O 0 0 . n -1 -1 -1
0 .. 0 -1 -1 -1 .. -1 2(n+1) .. 0 -1
o . 0 -1 -1 -1 .. -1 0 w 2(n+1) -1
-1 .. -1 -1 -1 -1 .. -1 -1 -1 4n — 14

According to the construction in Theorem [£.1] and Theorem we can see
that the sum of all the entries of each row/column is zero. Hence, the row vectors
are not linearly independent and we get the following corollary.

Corollary 4.3. The determinant of the Laplacian matriz of graphs G1 and Go are
zero. Thus, zero is one of its eigenvalues.

The next discussion, we determine the eigenvalues of the Laplacian matrix
using MATLAB that refer to construction in Theorem [I.I] and Theorem [£.2] The
output of the program can be seen in Table[5land Table[6]for the matrix of graphs Gy
and G5 respectively. We use the result to determine the pattern of the eigenvalues
then prove it theoretically.
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TABLE 5. Eigenvalues of the Laplacian Matrix of G

k n )\1 /\2 )\3
1 2 1 0 8
2 4 1 0| 16
6 64 1 0 | 256
9 512 1 0 | 2048
k 2k 1 0| 4n
Algebraic multiplicity dn—-2| 1 1

Based on the results in Table[5| we create theorem that shows the eigenvalues
of the Laplacian matrix of graph G; as follows.

Theorem 4.4. Let L be the Laplacian matriz of graph G1. Then the eigenvalues
of L are 1,0 and 4n where the algebraic multiplicity with respect to each eigenvalue
are 4n — 2,1 and 1 respectively.

Proof. Suppose L is the Laplacian matrix of graph Gy, then based on Theorem [4.1]
we have matrix

[ A—dn+1 as as aq Q4m
as A—1 0 0 e 0
as 0 A—1 0 e 0
(A —1L)= ay 0 0 A—1 --- 0
L Qan 0 0 0 e A=1
where as,as,...,a4, = 1. We determine the determinant through the first row
expansion to obtain triangular matrix. Hence, we have
M —L =A—dn+DA-D* T (A-D"2 - (A-1D"2 - —(N-1)4"2

=(A—1)*"2X(A —4n).

Consequently, the eigenvalues of L are (A—1)*""2\(A—4n) = 0,ie, A =1or A =0
or A = 4n. Furthermore, the algebraic multiplicity corresponding to the eigenvalue
A=1,A=0, and A = 4n are 4n — 2,1, and 1 respectively. [l

Corollary 4.5. Laplacian matriz of graph Gy has two non-zero eigenvalues.

Now, we discuss the eigenvalues of the Laplacian matrix of graph Gs5. The
output of the program in MATLAB can be seen in the following table. Based on
the results in Table [6] we create Theorem that shows the eigenvalues of the
Laplacian matrix of graph Gs. However, firstly we need to introduce Lemma [4.6
that will be used for proving the theorem.
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TABLE 6. Eigenvalues of the Laplacian Matrix of Ga

A1 A2 | A A4 As A6

n 3

3 1 310 10 12 8

5 1 ) 0 16 20 12

7 1 7 0 22 28 16
61 1 61 | O 183 244 124
223 1 2231 0 670 | 892 448

n 1 n |0 |3n+1|4n [2(n+1)

Algebraic multiplicity | n—1| 2n | 1 1 1 n—2

Lemma 4.6. Let n be an odd prime number and define matriz A = [a;;] of order
nxn as

A2—(3n+2)A+(2n2—1) i=7=1,2,...,4n—1

A—n ’
A2 —5nA24(4n’+n—1)A—(3n’—2n—1)

A5 = A2—(n+1)A+n ) { :] =4n
Wv 1=1,2,...,4n —1 and j = 4n
n
%’ otherwise

then det(A) = AA=ErHIAZANO=CrE)

Proof. According to the definition, matrix A can be written as

—(2n+2) A—(3n+1)
Y A—n e A—n
~(2n+2) A-(an41)

A= ATn Y e )\Tn

A—(3n+1) A—(3n+1)
A—n A—n

x
A5+ (4n?4n—1)A—(3n%—2n—1) 22— (Bn42)A+(2n2-1)
where z = pp n )y e and y = v .
We are going to determine the determinant of matrix A by conducting ele-
mentary row operations such that we get an upper triangular matrix. Applying

elementary row operations Rig, Ro3, . .., R(n_1)n, respectively on matrix A, we get
matrix
—(2n+2) —(2n+2) A—(3n+1)
A—n Y e A—n A—n
—(2n+2) —(2n+2) . —(2n+2) A—(3n+1)
A—n A—n A—n A—n
B=| A '
A—Bn+1l) A=(3n+1) A—(3n+1)
A—n A—n e A—n r
—(2n+2) —(2n42)  A—(8n+1)
Y A—n e A—n A—n

Since the number of operation is n—1 for n is an odd number, then we have det(B) =
det(A). The next operation for matrix B, we conduct operations R(;1);(—1),



R(i+2)i(_1)7 -

2n+1
T x—n Y
0 A+ (2n+2)
c=| :
A—(3n+1) A—(3n+1)
A—n A—n
y e
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s Rin—2)i(—1), respectively for i = 1,2,...,n—3, then we get matrix

_ 2n+1 A—(3n+41)
A—n A—n
0 0
)\—;3n+1) x
-n
_ 2n+1 A—(3n+1)
A—n A—n

Since the operation is adding a multiple of one row to another row, then such
operations do not change its determinant. Thus, we have det(C) = det(B). The

next operation for matrix C, we conduct operations R(n,l)i(%ﬂ'l)) for i =
1,2,...,n — 2, then we get matrix
[ 2n+41 _2n41  A—(3n+1) 7]
A—n Y A—n A—n
0 -2+ (2n+2) 0 0
D= :
0 ... Z .
_ 2n+1 L. _2nd1 A=(3n+1)
L ) A—n A—n A—n

and such operation do not change its determinant, thus we have det(D) = det(C).

2_ 2 —2n—1)i .
A (3n+2))\+(22;l+~1%2n+( 2n 1)2)) fori=1,2,... n—

The last row operations are R,;

2 along with R, (,—1)(—A + 1) on matrix D such that we get matrix

_ 2n+1 . _2n+1 A—(38n+1)
A—n Y A—n A—n
0 —A+@2n+2) - 0 0
0 0 “ee z :
0 0 e 0 —A+4n)

such operation do not change its determinant as well, thus we have det(E) =
det(D). Since matrix F is an upper triangular matrix, then we have

det(A) = det(E) = (—2EL)(X 4 (2n + 2))—3(L=CrtDA-Gnt2) ) ()2 4 4n)
_AMA=Br+ D)(A—4n)(A = (2n + 2))n—2
A—n )

O

Theorem 4.7. Let L be the Laplacian matriz of graph Gs. Then the eigenvalues
of L are 1,n,0,3n+1,4n, and 2(n+ 1) where the algebraic multiplicity with respect
to each eigenvalue aren —1,2n,1,1,1, and n — 2, respectively.
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Proof. Suppose L is the Laplacian matrix of graph G5. According to Theorem
the matrix (A — L) can be written as partition matrix as follows

Em-1x(n-1)  Om-1)x@nt1)  Aln_1)xn
()\I - L) = 0(2n+1)><(n—1) D(2n+l)><(2n+l) B€2n+1)><n
Anx(nfl) an(2n+1) Cnxn
where E' = [e;;] and D = [d;;] are diagonal matrices with e;; = A—1and d;; = A—n
respectively, B = [b;;] is a matrix of ones, i.e., b;; = 1 for all 7 and j. Meanwhile,
for A = [a;;] and C = [¢;j] = [¢j;] are matrices defined as
2(n+1), i=j=1,2,...,n—-1
1, 1=n,757=12,...n—1 in —1, 1=j=n
b = { 0, otherwise and ¢;; = { 1, i=n, j=1,2,..,n—1
0, otherwise.
We are going to determine the determinant of matrix (A — L) by conducting
elementary row operations such that we get an upper triangular matrix. The
first purpose of row operations is to change matrices A and B into zeroes ma-
trices. Applying elementary row operations R(4n)i(ﬁ)7i =1,2,....,n — 1, then
Rij(ﬁ)m' =3n+1,3n+2,...,4n and j = n,n + 1, ..., 3n, respectively on matrix
(M — L), we get matrix M as follows

Ep-1yx(n-1)  Om-1x@n+1) Al 1yxn

Mynxan = | O@nii)x(n-1) D@Entri)x@nt) B€2n+1)><n
Onx(n—l) On><(2n+1) Frxn
where
A —(BnE2)A+(2n3-1) —(2n+2) o A—(3n+1)
A—n A—n A—n
—(2n+2) A —(Bn+2)A+(2n°-1) A—(3n+1)
A—n A—n A—n
F = . . .
/\—(3.n+1) )\—(3.n+1) ,\3—5n,\2+(4n2+n;1),\—(3n2—2n-1)
A—n A—n e X2 —(n+1)A n

Since the operation is adding a multiple of one row to another row, then such
operations do not change its determinant. Thus, we have det(A\] — L) = det(M).
Since matrix M is an upper triangular matrix, matrices £ and D are diagonal
matrices, and referring to Lemma [4.6] we have

det(M) = det(E)det(D)det(F)
— ()\_l)nfl(/\_n)QnJrl 5
—n

=A=1D" 1A =n)2"A(A — Bn+1))(\ —4n)(A — (2n + 2))" 2
Consequently, the eigenvalues of L are (A — 1)"~Y(A — n)?"A(A — (3n + 1))(\ —
)N —(2n+2)"2=0,iie, A\=1lorA=norA=0o0r A=3n+1or A =4n or
A = 2n+2. Furthermore, the algebraic multiplicity corresponding to the eigenvalue
A=1A=nA=0A=3n+1,A=4n,and A =2n+2 aren —1,2n,1,1,1, and
n — 2, respectively. 0

A = (3n+ 1))\ — 4n)(A — (2n + 2))"~2
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Corollary 4.8. The Laplacian matriz of graph G2 has five non-zero eigenvalues.

5. SIGNLESS LAPLACIAN MATRIX OF COPRIME GRAPH OF Qu,

In this section, we determine construction of signless Laplacian matrix of
graphs G1 and G2 and its eigenvalues. Signless Laplacian matrix is constructed
from Laplacian matrix by replacing the elements —1 to 1. In another word, if the
Laplacian matrix is defined as D — A, then the signless Laplacian matrix is defined
as D + A. Since the construction only replacing all elements —1 to 1, we directly
change the program in MATLAB from Laplacian matrix construction to determine
the eigenvalues of signless Laplacian matrix. The output of the program can be
seen in Table[7]and Table[§|for the matrix of graphs G and G5 respectively. We use
the result to determine the pattern of the eigenvalues then prove it theoretically.
Based on the results in Table[7] we create Theorem [5.1] that shows the eigenvalues
of the signless Laplacian matrix of graph Gj.

TABLE 7. Eigenvalues of the Signless Laplacian Matrix of Gy

k n )\1 )\2 )\3
1 2 1 0 8
2 4 1 0 16
6 64 1 0 | 256
9 512 1 0 | 2048
k 2k 1 0| 4n
Algebraic multiplicity dn—-21 1 1

Theorem 5.1. Let S be the signless Laplacian matriz of graph Gy. Then the
eigenvalues of S are 1,0, and 4n where the algebraic multiplicity with respect to
each eigenvalue are 4n — 2,1, and 1, respectively.

Proof. Suppose S is the signless Laplacian matrix of graph G1, then we have the

following matrix

i A—4dn+1 bg b3 b4 ab4n
by A—1 0 0 0
bs 0 A—1 0 0
(Al - 8) = by 0 0 A—1 0
| ban 0 0 0 A—1 |

where as, ag, ..

., aan, = —1. Using similar way to the proof of Theorem [£.4] we get
N — S| = (A —1)*""2)\(X\ — 4n). Consequently, the eigenvalues of S are A = 1 or
A = 0 or A = 4n with the algebraic multiplicity corresponding to the eigenvalue
A=1,A=0, and A = 4n are 4n — 2,1, and 1, respectively.
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Corollary 5.2. The signless Laplacian matriz of graph G1 has two non-zero eigen-

values.

Now, the last discussion, we are going to determine the eigenvalues of the
signless Laplacian matrix of graph Gs. The output of the program in MATLAB

can be seen in the following table.

TABLE 8. Eigenvalues of The Signless Laplacian Matrix of Go

n )\1 /\2 )\3 )\4 )\5 )\6

3 1 3 8 0.5140 | 8.2023 | 13.2838

5 1 5 12 0.5883 | 13.9204 | 21.4913

7 1 7 16 0.6147 | 19.7851 | 29.6002
61 1 61 124 0.6617 | 181.4004 | 245.9379
223 1 223 448 0.6653 | 667.3523 | 893.9823
n 1 n | 2(n+1) a b ¢

Algebraic multiplicity | n —1 | 2n 1 1 1 n—2

where a, b, c are non-integer eigenvalues of the matrix. Based on the results in Table
we create Theorem [5.3]that shows the eigenvalues of the signless Laplacian matrix

of graph Gs.

Theorem 5.3. Let S be the Laplacian matriz of graph Gs. Then the eigenvalues
of S are 1,n,2(n+1),a,b, and ¢ where a, b, c are non-integer and the algebraic mul-
tiplicity with respect to each eigenvalue are n—1,2n,n—2,1,1, and 1, respectively.

Proof. Let S be the signless Laplacian matrix of graph G5. According to definition,
we have matrix (Al — S) can be written as partition matrix as follows

Em-1xn-1)  Om-1x@n+1)  Aln_1)xn
()\I - S) = 0(2n+1)><(n—1) D(2n+1)><(2n+1) B€2n+1)><n
Anx(nfl) Bn><(2n+1) Crxn
where E' = [e;;] and D = [d;;] are diagonal matrices with e;; = A—1 and d;; = A—n,
respectively, B = [b;;] is a matrix of ones, i.e., b;; = —1 for all ¢ and j. Meanwhile,
for A = [a;;] and C = [¢;;] = [¢j;] are matrices defined as
2n+1), i=j=1,2..,n—1
-1, 1=n,j=12,...n—1 In—1, i=7=n
@ij = { 0, otherwise and cij = { -1, i=n,j=12..,n—-1
0, otherwise.

To determine the determinant of (Al — S), we use similar way to the proof of
Theorem untill we get an upper triangular matrix M as follows

M4n><4n =

En—1)x(n-1)

Onx(nfl)

O(n—1)x(2n+1)
O@n+i)x(n-1) DEn+)x@n+1)  Blaniiyxn

On><(2n+1)

A

t
(n—1)xn

F’ILXTI
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where
A —(Bn+2)A+(2n° 1) _ 2n+1 o _ Atntl
A—n ) A—n R A—n
_ 2n+1 AT =(@Bnt+2)A+(@2n"-1) _ Atn+l
A—n A—n A—n
F = )
_ An41 _ Afn+l o A —nA’+(n’+n—1)A—(3n®—2n—1)
A—n A—n A2—(n+1)A+n

Next, to determine the determinant of matrix F, we use similar way to the proof
of Lemma [£.6 and we get
det(M) = det(E)det(D)det(F)
= (A=1)" L (A—n)2ntl
A=2(n+1)" 22X = (Tn+ 1DA2 +4n(3n + D)A —4(2n + 1)(n — 1))

n
A=D1 LA =n)?".(A=2(n+1))"2
(N = (Tn+ DA +4n(B3n+ 1)A —4(2n + 1)(n — 1)).
Consequently, the eigenvalues of S are 1,n,2(n + 1),a,b, and ¢ where a,b,c are

non-integer and the algebraic multiplicity with respect to each eigenvalue are n —
1,2n,n—2,1,1, and 1, respectively. U

Corollary 5.4. Signless Laplacian matrix of graph G2 has siz non-zero eigenvalues
and has no zero eigenvalue.
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