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Abstract. A paper by Mischaikow and Nanda [14] uses filtered acyclic matchings

to form a Morse filtration for a filtered complex. The Morse filtration is smaller

in size, yet has persistent homology equivalent to that of the original. We give an

extension of acyclic matchings to the case of zigzag complexes and prove that the

Morse zigzag complex similarly obtained has zigzag homology isomorphic to that

of the original. We present an algorithm to compute a Morse zigzag complex for a

given zigzag complex and some numerical examples. Since the Morse zigzag complex

is smaller in size, calculations of its zigzag homology tend to complete faster than

those for the original zigzag complex.

Key words and Phrases: Applied topology, Homology, Zigzag persistence, Acyclic
matching.

Abstrak. Sebuah makalah oleh Mischaikow and Nanda [14] menggunakan match-

ing asiklik tersaring dalam membentuk sebuah filtrasi Morse untuk sebuah kompleks

tersaring. Filtrasi Morse sangat kecil dalam ukuran, namun mempunyai homologi

yang persisten equivalen dengan aslinya. Kami memberikan perluasan dari match-

ings asiklik untuk kasus kompleksis yang bersifat zigzag dan membuktikan bahwa

kompleks zigzag Morse yang diperoleh mempunyai homologi zigzag yang isomorfik

dengan aslinya. Kami sajikan sebuah algoritma untuk menghitung kompleks zigzag

Morse untuk sebuah kompleks zigzag dan beberapa contoh numerik. Karena kom-

pleks Morse zigzag sangat kecil, maka perhitungan homologi zigzagnya cenderung

selesai lebih cepat daripada untuk kompleks zigzag aslinya.

Kata kunci: Topologi terapan, homologi, persistensi zigzag, matching asiklik.
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1. Introduction

In this paper, we bring together two recent developments in the study of the
persistence of topological features of data. One, zigzag persistence [3], is motivated
by the need to apply the powerful ideas of persistent homology to more general
relationships between data, which we describe below. The other, motivated by the
practical need to compute these topological information, is the development and
usage of efficient algorithmic techniques [13] and reductions. We focus on reduc-
tions [14, 15] that reduce the size of the input even before homology computations
are performed.

In recent years, persistent homology [2, 8] is becoming a popular tool to under-
stand data through the lens of algebraic topology. Several applications in different
fields are being done; for example in image processing [4], in sensor networks [7],
neurobiology [5], and cosmology [17], among others.

A typical workflow is the following. On the input data, which is usually a
point cloud (a set of points in some Rn), we construct a space. For the purposes of
computation, we want a finite and discrete representation of this space, preferably
something combinatorial. One choice is the use of complexes, which are sets of
cells together with some incidence data that, intuitively, connects cells to their
boundaries. A particular example of a complex is a simplicial complex [16]. There
are many available methods to construct simplicial complexes from point clouds,
such as Vietoris-Rips complexes and Cěch complexes [16], alpha shapes [9], and
witness complexes [1, 6], among others. These complexes can be seen as attempts
to answer the question, “What is the shape of a point cloud?”

On the complex constructed on the data, one can compute the generators
of its homology groups, a classical computation from algebraic topology [12, 16].
These provide some geometric information about the complex, and can be inter-
preted as loops, voids, and higher-dimensional analogues. Theory poses no objec-
tion to such interpretations, but for practical applications, the resulting informa-
tion is not robust under noise. Moreover, since all of the simplicial complexes cited
above are dependent on some parameter, another problem is choosing an “optimal”
parameter value.

Persistent homology addresses these limitations by considering a nested se-
quence of complexes called a filtered complex and computing what topological
features, the aforementioned loops and voids, persist throughout the sequence. A
commonly used method to obtain such a nesting is to vary the parameter used in
the construction of the complex. In many of the construction methods, this results
in a nested sequence of complexes. Doing so, we also avoid the need to choose
an optimal parameter value. The result of persistent homology computations [18]
can be drawn as a barcode, a multiset of intervals that represents the lifespans of
the detected features. The features with long persistence (long intervals) can be
interpreted as significant, since, one can argue, they survive under a wide range of
parameter values in the construction of the filtered complex.
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In some applications, however, filtered complexes may not capture the sort
of persistence we are trying to study. Carlsson and de Silva’s paper [3] gives some
examples of cases where a filtered complex may not be an appropriate model. They
extend persistent homology to zigzag complexes

X = X1 X2 . . . XN ,
p1 p2 pN−1

where each pi, allowed to vary independently, can point in either direction: X i →֒
X i+1 or X i ←֓ X i+1. By allowing the arrows to go in either direction, we can study
more general relationships in data than just those expressed by nested sequences
of complexes. By reinterpreting Gabriel’s theorem [11] from quiver theory in the
context of applied topology, Carlsson and de Silva show that a zigzag module over
a field F has decomposition that can be represented by a barcode. As a specific
case, taking the zigzag homology modules with coefficients in F of a zigzag complex
produces zigzag modules over F.

Because they are non-nested, zigzag complexes are in general larger than
filtered complexes of similar length with each individual complex of similar size.
This suggests that reducing the size of the input is even more critical in this setting.

We follow Mischaikow and Nanda’s [14] strategy of forming an acyclic match-
ing, a pairing of cells such that all the pairs can be removed from the complex to
yield a new complex, with appropriately modified incidence function, called a Morse
complex. It is known that the Morse complex has homology groups isomorphic to
those of the original complex. In paper [14], they extend these ideas to filtered
complexes.

The main contribution of this paper is to extend their work to zigzag com-
plexes, of which a filtered complex is a specific case. We define zigzag acyclic
matchings for zigzag complexes, from which we obtain a Morse zigzag complex
with zigzag homology modules isomorphic to those of the original. In this manner,
one can use the computation of the Morse zigzag complex as a preprocessing step,
in order to reduce the size of the input that goes into the homology computations.

2. Background

2.1. Complexes and homology. Fix a principal ideal domain R. The type of
input we consider is called a complex over R, a pair (X,κ) of a graded set and
an incidence function. The graded set X = ⊔q∈Z≥0

Xq is a disjoint union ⊔ over
the nonnegative integers Z≥0. We call the elements of X as cells, and to each cell
ξ ∈ X we associate its dimension by

dim ξ = q ⇐⇒ ξ ∈ Xq.

In this work, we consider only finite complexes |X | <∞.

A function κ : X ×X → R is called an incidence function on X if

(1) For ξ, ξ′ ∈ X , κ(ξ, ξ′) 6= 0 implies dim ξ = dim ξ′ + 1.
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(2) For ξ, ξ′′ ∈ X ,
∑

ξ′∈X

κ(ξ, ξ′)κ(ξ′, ξ′′) = 0.

Let us define a face partial order 2 on a complex by setting ξ′ < ξ if and
only if κ(ξ, ξ′) 6= 0 and defining 2 as the transitive closure of <. If ξ′ 2 ξ, we say
that ξ′ is a face of ξ. A subcomplex of a complex (X,κ) is a subset X ′ ⊂ X with
an incidence function defined by restriction such that all faces of its cells are also
in the subcomplex. That is,

{ξ ∈ X |ξ 2 η} ⊂ X ′ for all η ∈ X ′.

This implies that if η ∈ X ′, then κ(η, ξ) = 0 for any ξ ∈ X \X ′. It is easy to show
that a subcomplex (X ′, κ|X′×X′) of a complex (X,κ) is also a complex.

Given a complex (X,κ), we construct what we call the chain complex of
(X,κ), denoted by (C∗(X), ∂∗), with

(C∗(X), ∂∗): . . . Cq Cq−1 . . . C0 0,
∂q+1 ∂q ∂q−1 ∂1 ∂0=0

where for all q ≥ 0, Cq = R(Xq) is the free module over R generated by Xq and
∂q : R(Xq)→ R(Xq−1) is defined by linear extension to R(Xq) of

∂q(ξ) =
∑

ν∈X

κ(ξ, ν)ν

acting on ξ ∈ Xq. Elements of Cq = R(Xq) are called q-chains of the complex
(X,κ). The homomorphism ∂q is called the qth boundary operator of C∗(X).

For example, consider the complex (X,κ) over R = Z, defined by setting

X0 = {v0, v1, v2},
X1 = {e0, e1, e2},
X2 = {σ},
Xi = ∅ for i > 2,

and

κ(ei, vi) = −1, for i = 0, 1, 2;
κ(ei, vj) = 1, for j ≡ (i+ 1)mod3;
κ(σ, ei) = 1, for i = 0, 1, 2;
κ(ξ, ξ′) = 0, for any other pair ξ, ξ′ ∈ X not listed above.

This complex can be geometrically realized as a triangle, as in Figure 1. In this
example, the incidence function κ contains information about how the different
cells of X are pasted together. Let us compute the effect of the boundary operator
on σ. We have

∂2σ =
∑

ν∈X

κ(σ, ν)ν = 1e0 + 1e1 + 1e2

equal to the formal sum of the edges on the geometric boundary of the triangle.
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e1e2

σ

v0 v1

v2

Figure 1. A complex that is geometrically a triangle.

From the chain complex (C∗(X), ∂∗) and for q ≥ 0, we define the qth homology
module of X with coefficients in R by taking the quotient

Hq(X) =
ker ∂q
im ∂q+1

.

One can check that ∂q∂q+1 = 0, which guarantees that im ∂q+1 ⊂ ker ∂q.

A chain map φ between chain complexes (C∗(X), ∂∗) and (C∗(Y ), ∂̂∗) is a
sequence of homomorphisms

φ = {φq : Cq(X)→ Cq(Y )}

such that {φq} commutes with the boundary operators, as in the following:

Cq(X) Cq−1(X)

Cq(Y ) Cq−1(Y ).

∂q

φq φq−1

∂̂q

The following fact relating subcomplexes and their corresponding chain com-
plexes will be useful later when we discuss zigzag chain complexes. Let (X,κ) be a
complex and (X ′, κ′) a subcomplex. If (C∗(X), ∂∗) and (C∗(X

′), ∂′∗) are the chain
complexes of (X,κ) and (X ′, κ′), respectively, then there is a chain map

ι : (C∗(X
′), ∂′∗)→ (C∗(X), ∂∗)

induced by the inclusion X ′ →֒ X . To be specific, we define ι = {ιq} by setting the
homomorphism

ιq : Cq(X
′) = R(X ′

q) −→ Cq(X) = R(Xq)

as the inclusion of R(X ′
q) in R(Xq) for each q ≥ 0.

In general, there is a category of chain complexes with objects

(C∗, ∂∗): . . . Cq Cq−1 . . . C0 0,
∂q+1 ∂q ∂q−1 ∂1 ∂0=0

where Cq are modules over R and the boundary maps

∂q : Cq → Cq−1
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for q ≥ 0 are homomorphisms that satisfy the property ∂q∂q+1 = 0. The morphisms
in this category, called chain maps, are homomorphisms that commute with bound-
ary operators.

We define the qth homology module of a chain complex (C∗, ∂∗) by

Hq(C∗) =
ker ∂q
im ∂q+1

.

A chain map φ : (C∗, ∂∗) → (D∗, ∂̂∗) induces a homomorphism in the homology
level by

φ# : Hq(C∗) → Hq(D∗)

z + im ∂q+1 7→ φq(z) + im ∂̂q+1,

with the property that for φ : (C∗, ∂∗)→ (D∗, ∂̂∗) and ψ : (D∗, ∂̂∗)→ (E∗, ∂
′
∗),

(ψφ)# = ψ#φ#.

In the language of category theory, this defines a functor Hq from the category of
chain complexes with coefficients in R to the category of modules over R that takes
(C∗, ∂∗) to Hq(C∗) and

φ : (C∗, ∂∗)→ (D∗, ∂̂∗)

to

φ# : Hq(C∗)→ Hq(D∗).

A chain homotopy between two chain maps φ, ψ : (C∗, ∂∗) → (D∗, ∂̂∗) is a
sequence of homomorphisms

θ = {θq : Cq → Dq+1}

satisfying

θq−1∂q + ∂̂q+1θq = φq − ψq

for every q ≥ 0. If there is a chain homotopy between φ and ψ, we say that φ and
ψ are chain homotopic.

Two chain maps φ : (C∗, ∂∗)→ (D∗, ∂̂∗) and ψ : (D∗, ∂̂∗)→ (C∗, ∂∗) are said
to be chain equivalences if φψ is chain homotopic to the identity on D∗, and ψφ to
the identity on C∗. If these two conditions are satisfied, then it is known that

Hq(C∗) ∼= Hq(D∗)

for all q ≥ 0. We refer the reader, for example, to the book by Munkres [16] for
proofs of these statements.

In the particular case of the chain complex of a complex, we denote the qth
homology module of (C∗(X), ∂∗) by Hq(C∗(X)) = Hq(X). This notation agrees
with our initial definition of the homology modules of a complex.
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2.2. Acyclic matchings and the Morse complex. We recall some definitions
from the paper [14].

Definition 2.1. A partial matching of a complex (X,κ) consists of a partition of
X into three sets A, K, and Q along with a bijection w : Q → K such that for each
Q ∈ Q, the incidence κ(w(Q), Q) is a unit in R. We denote this partial matching
by (A, w : Q → K).

Given a partial matching of (X,κ), we set a relation ≪ on Q by extending
transitively the relation ✁ defined by

Q′
✁Q ⇐⇒ Q′ < w(Q).

A partial matching (A, w : Q → K) is called an acyclic matching if ≪ is a partial
order.

A gradient path p is a nonempty sequence of cells

p = (Q1, w(Q1), . . . , Qn, w(Qn)) (1)

with Qk ∈ Q and Qk 6= Qk+1 ✁Qk. The index of p is defined as

ν(p) =

∏k=n−1
k=1 κ(w(Qk), Qk+1)∏k=n
k=1 −κ(w(Qk), Qk)

.

For A,A′ ∈ A, a gradient path (1) is called a connection from A to A′ if its first
cell Q1 satisfies Q1 < A and its last cell w(Qn) satisfies A′ < w(Qn). We denote

this connection by A
p
❀ A′ and define its multiplicity by

m(p) = κ(A,Q1) · ν(p) · κ(w(Qn), A
′).

For A,A′ ∈ A, define

κ̃(A,A′) = κ(A,A′) +
∑

A
p
❀A′

m(p). (2)

The following theorem is from [14], but follows originally from Forman’s work [10]
on discrete Morse theory.

Theorem 2.2. Let (X,κ) be a complex over R and (A, w : Q → K) be a fixed
acyclic matching of X. With grading Aq = A ∩ Xq, (A, κ̃) is also a complex over
R. Furthermore,

Hq(X) ∼= Hq(A)

for all q ≥ 0.

We call (A, κ̃) the Morse complex of (X,κ) generated by the acyclic matching
(A, w : Q → K). Cells of A are called critical cells.

Let us see this theorem in action. Suppose we have a complex (X,κ) repre-
sented by Figure 2, with an acyclic matching such that

Q = {v3, v4, e0, e1, e2}
K = {e3, e4, t0, t1, t2}
A = X \ Q \ K
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e0
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e2

t2

e1

t1a
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v
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v4

v3

e4
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Figure 2. A complex with a matching

a

b

v

e

Figure 3. After removing matched cells

and
w(v3) = e3
w(v4) = e4
w(e0) = t0
w(e1) = t1
w(e2) = t2.

After removing all the matched cells, as in Figure 3, we get the incidence κ̃(A,A′)
of each pair A,A′ ∈ A by adding to κ(A,A′) the multiplicities of all connections
from A to A′.

In particular, there is only one connection p = (e0, t0, e1, t1, e2, t2) from a to
b. The change in incidence κ(a, b) can be visualized by dragging the removed right
edge of a to the edge b along the connection p. In fact, that right edge of a is also
dragged along other connections as indicated by the arrows. Note that in general
though, there may be more than one connection from A to A′.

We have

H1(X) ∼= R1 ∼= H1(A),

representing one hole in both X and A, as seen in Figure 4.
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a b

v

e

Figure 4. After modifying the incidence function

The main technique of the proof, which we do not repeat here, is the sequen-
tial removal of pairs of cells. We define

XQ = X \ {Q,w(Q)}

and

κQ(η, ξ) = κ(η, ξ)−
κ(η,Q)κ(w(Q), ξ)

κ(w(Q), Q)
, (3)

for some Q ∈ Q and w(Q) ∈ K. It can be shown that κQ is an incidence function
on XQ and that (XQ, κQ) is also a complex.

According to some total ordering � in Q, we remove pairs {Qj, w(Qj)}nj=1

sequentially and obtain a sequence of complexes X , XQ1
, XQ1Q2

, and so on until

XQ1...Qn
= X \ (Q∪ K) = A.

This total ordering � is different from the partial order ≪.

Now, we have an incidence function κ̃ for A as written in equation (2) and
κQ1Q2...Qn

obtained by inductively applying equation (3). The paper [14] shows
that

κ̃ = κ̃Q. (4)

Thus
κ̃ = κ̃Q1

= κ̃Q1Q2
= . . . = ˜κQ1Q2...Qn

= κQ1Q2...Qn

by applying equation (4) inductively. Hence the inductive strategy of using the
complexes (XQ1...Qj

, κQ1...Qj
) does indeed converge to (A, κ̃).

It can be shown that there are chain equivalences

ψQj
: C∗(XQ1...Qj−1

)→ C∗(XQ1...Qj
)

and
φQj

: C∗(XQ1...Qj
)→ C∗(XQ1...Qj−1

).

Overall, we have the chain equivalences ψ : C∗(X) → C∗(A) and φ : C∗(A) →
C∗(X) given by

ψ =

1∏

i=n

ψQi
= ψQn

. . . ψQ1
and φ =

n∏

i=1

φQi
= φQ1

. . . φQn
.
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It is known that a composition of chain equivalences is also a chain equivalence.

One main result of the paper [14] is to extend Theorem 2.2 to the case of
filtered complexes with filtered acyclic matchings. In this work, we give a general-
ization of this theorem to zigzag complexes with zigzag acyclic matchings.

2.3. Zigzag structures. A type of length N is an (N − 1) sequence of symbols f
and b, for forwards and backwards. A zigzag complex X of type τ is a sequence of
complexes together with inclusions, written as

X : (X1, κ1) (X2, κ2) . . . (XN , κN),s1 s2 sN−1

where, for i = 1, . . . , N − 1, si is the subcomplex inclusion X i →֒ X i+1 if the ith
symbol of τ is f or the subcomplex inclusion X i ←֓ X i+1 otherwise. A filtered
complex is a zigzag complex with type τ consisting entirely of f ’s.

An example of a zigzag complex of type τ = fbf is

X : (X1, κ1) (X2, κ2) (X3, κ3) (X4, κ4).

Here, (X1, κ1) and (X3, κ3) are subcomplexes of (X2, κ2) and (X3, κ3) is a sub-
complex of (X4, κ4). Rather than counting the number of symbols in τ , the length
of this τ is 4, counting the number of complexes in this zigzag complex.

A zigzag chain complex of type τ is a sequence of chain complexes

C : (C1
∗ , ∂

1
∗) (C2

∗ , ∂
2
∗) . . . (CN∗ , ∂

N
∗ )

p1 p2 pN−1

such that each pi is a chain map with direction indicated by the ith symbol of τ ,
as above.

In general, these form the objects of the category ZCτ of zigzag chain com-
plexes with type τ . A morphism φ : C→ D in ZCτ , called a zigzag chain map, is a
sequence of chain maps

φ = (φi : Ci∗ → Di
∗)

that respects the zigzag structure: for all i and depending on whether τi is f or b,
one of following commutative diagrams commutes:

Ci∗ Ci+1
∗

Di
∗ Di+1

∗

pi

φi φi+1

p̂i

or

Ci∗ Ci+1
∗

Di
∗ Di+1

∗ .

pi

φi φi+1

p̂i

Let φ, ψ : C→ D be zigzag chain maps. A zigzag chain homotopy between φ
and ψ is a sequence

θ = {θi : Ci∗ → Di
∗+1}

N
i=1

of chain homotopies θi between φi and ψi for all i. If there is such a zigzag chain
homotopy, we say that φ and ψ are zigzag chain homotopic.
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If φ : C→ D and ψ : D→ C are zigzag chain maps such that φψ and ψφ are
zigzag chain homotopic to the identities of D and C, respectively, we say φ and ψ
are zigzag chain equivalences and that C and D are zigzag chain equivalent.

A zigzag module M of type τ is a sequence of R modules, M i, written as

M : M1 M2 . . . MN ,
p1 p2 pN−1

where each module homomorphism pi has direction indicated by the ith symbol
of τ . These form the objects of the category of type τ zigzag modules over R,
denoted by ZMτ . A morphism f : M1 → M2 in ZMτ is a sequence of module
homomorphisms

f = {f i :M i
1 →M i

2}
N
i=1

that respects the zigzag structure.

Two zigzag modules M1 and M2 are said to be equivalent if there are mor-
phisms f : M1 → M2 and g : M2 → M1 such that fg is the identity on M2 and
gf is the identity on M1. In this case, we write

M1
∼= M2.

For C ∈ ZCτ , we can construct a zigzag module

Hq(C) : Hq(C
1
∗ ) Hq(C

2
∗ ) . . . Hq(C

N
∗ )

p1# p2# p
N−1

#

by applying the homology functor Hq to every Ci∗ and pi. We call this the qth
zigzag homology module of the zigzag chain complex C.

Moreover, a zigzag chain map φ : C→ D induces a homomorphism

φ# : Hq(C)→ Hq(D)

defined by (φ#)
i = φi# for every i. These fit into the commutative diagrams

Hq(C
i
∗) Hq(C

i+1
∗ )

Hq(D
i
∗) Hq(D

i+1
∗ )

pi#

φi
# φ

i+1

#

p̂i#

for every i, where the direction of the arrows pi# and p̂i# depends on the ith symbol
of τ .

Thus the homology functor extends to a functor ZCτ → ZMτ from zigzag
chain complexes to zigzag modules. Functoriality is a consequence of the functori-
ality of the homology functor on each slice.

The next lemma follows almost immediately from the definitions.

Lemma 2.3. Given C and D zigzag chain equivalent, we have

Hq(C) ∼= Hq(D)

for every q ≥ 0.
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Proof. The existence of zigzag chain equivalences φ = {φi} and ψ = {ψi} between
C and D implies that for every slice i, Ci∗ and Di

∗ are chain equivalent, with chain
equivalences φi and ψi. Thus we have isomorphisms of modules in each slice:

φi# = (ψi#)
−1

: Hq(C
i
∗)
∼= Hq(D

i).

Furthermore, φ# = {φi#} and ψ# = {ψi#} respect the zigzag structure, because
commutativity in the zigzag chain complex level implies commutativity in the zigzag
homology level. Thus Hq(C) ∼= Hq(D). �

We only consider objects of ZCτ generated by zigzag complexes. Let X be a
zigzag complex with

X : (X1, κ1) (X2, κ2) . . . (XN , κN),

and let C(X) be defined by

C(X) : (C∗(X
1), ∂1∗) (C∗(X

2), ∂2∗) . . . (C∗(X
N ), ∂N∗ ),ι1 ι2 ιN−1

where for every i, (C∗(X)i, ∂i∗) is the chain complex of (X i, κi) and each ιi is
induced by the corresponding subcomplex inclusion in the zigzag complex level.
As we have noted above, each ιi is a chain map and thus C(X) is a zigzag chain
complex. In this setting, we denote the zigzag homology module Hq(C(X)) simply
by Hq(X).

3. Main results

3.1. Zigzag acyclic matching. We define a zigzag acyclic matching for a zigzag
complex X as an acyclic matching (Ai, wi : Qi → Ki) for every slice X i such that
these matchings are consistent across inclusions. By consistency, we mean

Ai ⊂ Ai+1

Qi ⊂ Qi+1

Ki ⊂ Ki+1

wi ≡ wi+1
∣∣
Qi

or

Ai ⊃ Ai+1

Qi ⊃ Qi+1

Ki ⊃ Ki+1

wi
∣∣
Qi+1 ≡ wi+1

for the caseX i →֒ X i+1 or the caseX i ←֓ X i+1, respectively. We have the following
equivalent formulation.

Lemma 3.1. Let X be a zigzag complex and let (Ai, wi : Qi → Ki)Ni=1 be an acyclic
matching for every X i. These acyclic matchings form a zigzag acyclic matching
for X if and only if

Ai = Ai+1 ∩X i

Qi = Qi+1 ∩X i

Ki = Ki+1 ∩X i

wi ≡ wi+1
∣∣
Qi

or

Ai ∩X i+1 = Ai+1

Qi ∩X i+1 = Qi+1

Ki ∩X i+1 = Ki+1

wi
∣∣
Qi+1 ≡ wi+1
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for the case X i →֒ X i+1 or the case X i ←֓ X i+1, respectively.

Proof. We only prove this for the case X i ←֓ X i+1. We show that Ai ⊃ Ai+1,
Qi ⊃ Qi+1, and Ki ⊃ Ki+1 implies Ai ∩X i+1 = Ai+1. Here,

Ai ∩X i+1 ⊃ Ai+1 ∩X i+1 = Ai+1

is clear. For x ∈ Ai ∩ X i+1, suppose x /∈ Ai+1. Then, x ∈ Qi+1 or Ki+1. This
implies x ∈ Qi or Ki, a contradiction, since x is already in Ai and the sets Ai, Qi,
Ki partition X i. Showing that Qi ∩X i+1 = Qi+1 and Ki ∩ X i+1 = Ki+1 follows
similarly. The proof of the converse is easy. �

3.2. Morse zigzag complex. Given a zigzag acyclic matching on a zigzag com-
plex, we form the Morse zigzag complex

A : (A1, κ̃1) (A2, κ̃2) . . . (AN , κ̃N ),

which is a zigzag complex in its own right by the following lemma.

Lemma 3.2. Let X be a zigzag complex with a zigzag acyclic matching (Ai, wi :
Q → K)Ni=1. Then, A as defined above is a zigzag complex.

Proof. By Theorem 2.2, each (Ai, κ̃i) is a complex. We prove that when X i ←֓
X i+1, Ai+1 is a subcomplex of Ai. The proof for the opposite direction is similar.

By definition, we have Ai ⊃ Ai+1. Let A ∈ Ai+1 ⊂ Ai and A′ ∈ Ai. We first
show that any connection

p = (Q1, w
i(Q1), . . . , Qn, w

i(Qn))

from A to A′ stays in X i+1. Since Q1 < A and A ∈ Ai+1 ⊂ X i+1, Q1 is also in
X i+1 by the subcomplex property of X i+1.

Because wi restricted to Qi+1 is the same as wi+1, we have

wi(Q1) = wi+1(Q1) ∈ X
i+1.

The definition of a gradient path implies that Q2 < wi(Q1). Hence Q2 is also an
element of X i+1. By repeating this argument for all the cells of the connection, we
conclude that p ⊂ X i+1 and that A′ ∈ Ai+1.

For every slice i, the incidence function of the Morse complex Ai is

κ̃i(A,A′) = κi(A,A′) +
∑

A
p
❀A′

m(p),

where the sum is taken over all connections p in X i from A to A′. One of the
requirements for Ai+1 to be a subcomplex of Ai is the compatibility of the incidence
functions, namely,

κ̃i
∣∣
Ai+1×Ai+1 = κ̃i+1.
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Taking the difference, we have

(
κ̃i
∣∣
Ai+1×Ai+1 − κ̃

i+1
)
(A,A′) =

∑

A
p
❀

p⊂Xi
A′

m(p)−
∑

A
p
 

p⊂Xi+1
A′

m(p).

Since A ∈ Ai+1 and by the arguments above, all connections starting from A stay in
X i+1. Hence, all the paths over which we take the first summation are the same as
the paths in the second, leading to a difference of 0. This proves the compatibility
of incidence functions.

The second requirement is

{ξ ∈ Ai|ξ 2 η} ⊂ Ai+1 for all η ∈ Ai+1.

It suffices to show that for every η ∈ Ai+1, ξ ∈ Ai with ξ < η implies ξ ∈ Ai+1.
Here, < is not necessarily the one inherited by Ai from X i, but is generated by the
incidence function of Ai:

ξ < η ⇐⇒ κ̃i(η, ξ) 6= 0.

Let η ∈ Ai+1 and ξ ∈ Ai with κ̃i(η, ξ) 6= 0. By the definition of κ̃i, either κi(η, ξ) 6=

0 or there is a connection η
p
❀ ξ. The first implies ξ < η as elements of X i. Since

η ∈ Ai+1 ⊂ X i+1, we infer that ξ ∈ X i+1 by the subcomplex property of X i+1. On
the other hand, if there is a connection p in X i from η ∈ Ai+1, then p is contained
in X i+1 by the above arguments, implying ξ ∈ X i+1.

In either case, ξ ∈ X i+1 ∩Ai. By Lemma 3.1, we conclude that ξ ∈ Ai+1. �

Since A is a zigzag complex, its qth zigzag homology module Hq(A) =
Hq(C(A)) is defined. By Theorem 2.2, for every slice i,

Hq(X
i) ∼= Hq(A

i).

However, this is not enough to show the equivalence of zigzag homology modules,
Hq(X) ∼= Hq(A). We find chain equivalences ψi and φi for every slice such that
ψ = {ψi} and φ = {φi} respect the zigzag structure.

We explicitly write out the chain equivalences ψi and φi as used in [14]. Let
(Qj , w

i(Qj))
n
j=1 be any fixed ordering of pairs Qj ∈ Qi, wi(Qj) ∈ Ki of removed

cells, where the pair (Q1, w
i(Q1)) is removed first, and so on. We have the chain

equivalences

C∗(X
i) C∗(X

i
Q1

) . . . C∗(X
i
Q1Q2...Qn

) = C∗(Ai)
ψi

Q1
ψi

Q2
ψi

Qn

with

ψiQj
: C∗(X

i
Q1...Qj−1

)→ C∗(X
i
Q1...Qj

)
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defined by linear extension of

ψiQj
(η) =





0, if η = wi(Qj),

−
∑

ξ∈Xi
Q1...Qj

κi(wi(Qj), ξ)

κi(wi(Qj), Qj)
ξ, if η = Qj ,

η, otherwise

(5)

for η ∈ X i
Q1...Qj−1

. We define

ψi = ψiQn
. . . ψiQ1

: C∗(X
i)→ C∗(A

i). (6)

In the reverse direction, we have the chain equivalences

C∗(Ai) = C∗(X
i
Q1Q2...Qn

) . . . C∗(X
i
Q1

) C∗(X
i)

φi
Qn

φi
Q2

φi
Q1

with

φiQj
: C∗(X

i
Q1...Qj

)→ C∗(X
i
Q1...Qj−1

)

defined by linear extension of

φiQj
(η) = η −

κi(η,Qj)

κi(wi(Qj), Qj)
wi(Qj) (7)

for η ∈ X i
Q1...Qj

. We define

φi = φiQ1
. . . φiQn

: C∗(A
i)→ C∗(X

i).

3.3. Consistent ordering for each Qi. To ensure that the resulting sequences
of chain equivalences φ = {φi} and ψ = {ψi} respect the zigzag structure, we fix
an order in each Qi such that these orders are compatible across Qi ⊂ Qi+1 or
Qi ⊃ Qi+1. In other words, if Qi ⊃ Qi+1 and Q appears before Q′ in Qi+1, then
Q appears before Q′ in Qi, and a similar statement when Qi ⊂ Qi+1.

One possibility is taking the union ∪iQ
i, fixing an order in this set, and

letting each Qi inherit from that order. However, this is not a good choice, as we
see in the following. Let

X1 ←֓ X2 →֒ X3

be a zigzag complex represented by Figure 5, with zigzag acyclic matching

Q1 = {v} Q2 = ∅ Q3 = {v}
K1 = {b} , K2 = ∅ , K3 = {c}
w1(v) = b w3(v) = c

. (8)

By our definition of zigzag acyclic matchings, there is no problem in having v
matched to different elements in the slices X1 and X3. We only require neighboring
slices to have compatible matchings. Since they are matched to different cells,
we should consider v ∈ X1 and v ∈ X3 to be different. With this zigzag acyclic
matching, it is clear that the corresponding chain equivalences will also be different;
φ1v 6= φ3v and ψ1

v 6= ψ3
v .
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a

b
c

v

←֓

a

→֒

a

b
c

v

Figure 5. Cell v can be matched to different cells

Instead of taking the union of all the Qi’s, we define

Q̂ = ⊔iQ
i/ ∼,

where the disjoint union is written as

⊔iQ
i = {(Q, i)|Q ∈ Qi}

and the equivalence ∼ is the transitive closure of ≈ defined by (Q, i) ≈ (Q′, j) if and

only if Q = Q′ and |i− j| ≤ 1. We denote elements of Q̂ by [(Q, i)], the equivalence
class of (Q, i) under ∼.

We fix some total order � on Q̂. This induces a total order in Qi for every i
by the following: for any pair Q, Q′ of cells of Qi, we define Q � Q′ inQi if and only
if [(Q, i)] � [(Q′, i)]. Note that transitivity and totality follows from transitivity

and totality of � in Q̂. To show antisymmetry, suppose that Q � Q′ and Q′ � Q.
Then, [(Q, i)] � [(Q′, i)] and [(Q′, i)] � [(Q, i)], implying that [(Q, i)] = [(Q′, i)] by

antisymmetry of � in Q̂. Thus, Q = Q′.

Lemma 3.3. Let X be a zigzag complex with a zigzag acyclic matching

(Ai, wi : Qi → Ki)Ni=1

and let ∼ be the equivalence relation defined on

⊔iQ
i = {(Q, i)|Q ∈ Qi}

as above. Moreover, suppose that Q̂ has a total order �. Then, we have the
following properties.

(1) (Q, i) ∼ (Q, i+ 1) for all Q ∈ Qi ∩Qi+1.
(2) If (Q, i) ∼ (Q′, j), then wi(Q) = wj(Q′).
(3) The orders in each Qi induced by � are compatible across the inclusions.

Proof. The first property follows from the definition. If (Q, i) ∼ (Q′, j), then
Q = Q′ and since ∼ is the transitive extension of ≈, it suffices to prove the second
property for (Q, i) ≈ (Q, j). Without loss of generality, j = i+ 1 and

Q ∈ X i →֒ Xj = X i+1.

This implies

wj(Q) = wi+1(Q) = wi(Q)

by the definition of a zigzag acyclic matching.
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Finally, suppose that Q,Q′ ∈ Qi ⊂ Qi+1 and Q � Q′ in Qi. Then, [(Q, i)] �
[(Q′, i)]. Since (Q, i) ∼ (Q, i+1) and (Q′, i) ∼ (Q′, i+1), this implies [(Q, i+1)] �
[(Q′, i+ 1)] and Q � Q′ in Qi+1. The proof for when Qi ⊃ Qi+1 is similar. �

Here is a recap of what we have so far. Our goal is to create zigzag chain
equivalences ψ = {ψi} and φ = {φi} in order to show the equivalence of zigzag
homology modules. Since for every i, both ψi and φi are defined iteratively through
the removal of pairs of cells Qj ∈ Q

i, wi(Qj) ∈ K
i, we need to order the cells of

each Qi. Moreover, these orders have to be compatible across each Qi ⊂ Qi+1 or
Qi ⊃ Qi+1. The set Q̂ allows us to talk of the set of all cells of {Qi}Ni=1 and order
all cells at the same time.

We are now ready to prove our main theorem.

Theorem 3.4. Given a zigzag complex X and a zigzag acyclic matching on X, let
A be the resulting Morse zigzag complex. Then, C(X) and C(A) are zigzag chain
equivalent and thus Hq(X) ∼= Hq(A) for q ≥ 0.

Proof. By the above discussion, we fix orders in each Qi that are compatible
across inclusions. For every slice i, we have chain equivalences ψi and φi defined
by compositions of ψiQ and φiQ for Q ∈ Qi, as in equations (5) and (7). To show

that ψ = {ψi} and φ = {φi} define zigzag chain equivalences, we only need to show
commutativity with the inclusions in the zigzag chain complex level. We do this for
the case where X i ←֓ X i+1. An analogous proof can be given for the case where
X i →֒ X i+1.

Let Qi = {Q1, Q2, . . . , Qn}, ordered so that

Q1 � Q2 � . . . � Qn,

where the pair {Q1, w
i(Q1)} is the first to be removed from X i, {Q2, w

i(Q2)} the
second, and so on. Since we have a zigzag acyclic matching, Qi+1 is the set

{Ql1 , Ql2 , . . . , Qlm}

for some 1 ≤ l1 < l2 < . . . < lm ≤ n. By consistency of the orders, we have

Ql1 � Ql2 � . . . � Qlm .

Recall that

X i
Q1...Qj

= X i \ {Q1, w(Q1), . . . , Qj , w(Qj)}.

Here, we suppress distinguishing wi and wi+1 since they are equal on Qi+1. It
should be clear from context when we mean wi.

Since Qi+1 is a subset of Qi, it is possible that not all of the removed cells
{Q1, w(Q1), . . . , Qj, w(Qj)} are in X i+1. By interpreting the subscript as set com-
plement, we abuse notation and write

X i+1
Q1...Qj

= X i+1 \ {Ql1 , w(Ql1), . . . , Qlh , w(Qlh)} = X i+1
Ql1

...Qlh

,

where lh is the largest of the l1, l2, . . . , lm not greater than j. Since the orders on
Qi for i from 1 to N are all fixed, this notation does not cause any ambiguity.
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With this notation, we claim that

X i+1
Q1...Qj−1

\ {Qj , w(Qj)} = X i+1
Q1...Qj

.

Expanding X i+1
Q1...Qj−1

\ {Qj, w(Qj)}, we have

(
X i+1 \ {Ql1 , w(Ql1), . . . , Qlh , w(Qlh)}

)
\ {Qj, w(Qj)}, (9)

where lh is the largest of the l1, l2, . . . , lm not greater than j − 1.

If Qj ∈ Qi+1, the set (9) is

X i+1 \ {Ql1 , w(Ql1), . . . , Qlh , w(Qlh), Qj , w(Qj)} = X i+1
Q1...Qj

,

since the largest of the l1, . . . , lm not greater than j is j itself. If instead Qj /∈ Qi+1,
then Qj, w(Qj) /∈ X i+1, implying that (9) is equal to

X i+1 \ {Ql1 , w(Ql1), . . . , Qlh , w(Qlh)}.

Moreover, j /∈ {l1, l2, . . . , lm} and the largest of the l1, l2, . . . , lm not greater than j
is still lh. Thus, in either case, the set (9) is equal to X i+1

Q1...Qj
.

The commutativity of

C∗(X
i) C∗(Ai)

C∗(X
i+1) C∗(A

i+1)

ψi

ψi+1

ι

is equivalent to

ψi
∣∣
C(Xi+1)

= ιψi+1,

where ι is the chain map induced by the inclusion Ai ←֓ Ai+1.

Now, for every Qj ∈ Qi, let us compute

ψiQj

∣∣∣
C∗(X

i+1

Q1...Qj−1
)
.

We split the computation into the cases whereQj ∈ Qi\Qi+1 and whereQj ∈ Qi+1.

For Qj ∈ Qi \Qi+1, if η ∈ C∗(X
i+1
Q1...Qj−1

), η cannot be Qj nor w(Qj) so that

ψQj
(η) = η by definition. Thus,

ψiQj

∣∣∣
C∗(X

i+1

Q1...Qj−1
)

is the inclusion

C∗(X
i+1
Q1...Qj−1

) = C∗(X
i+1
Q1...Qj

) →֒ C∗(X
i
Q1...Qj

)
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if Qj ∈ Qi \ Qi+1. Hence, we have a commutative diagram

C∗(X
i
Q1...Qj−1

) C∗(X
i
Q1...Qj

)

C∗(X
i+1
Q1...Qj−1

) C∗(X
i+1
Q1...Qj

)

C∗(X
i+1
Ql1

...Qlh

) C∗(X
i+1
Ql1

...Qlh

)

ψi
Qj

ι

(10)

where lh is the largest of the l1, l2, . . . , lm not greater than j − 1. The various
equalities in the bottom are due to the fact that Qj /∈ Qi+1.

On the other hand, suppose that Qj ∈ Qi+1. We claim that we have a
commutative diagram

C∗(X
i
Q1...Qj−1

) C∗(X
i
Q1...Qj

)

C∗(X
i+1
Q1...Qj−1

) C∗(X
i+1
Q1...Qj

)

C∗(X
i+1
Ql1

...Qlh

) C∗(X
i+1
Ql1

...Qlh
Qj

).

ψi
Qj

ψ
i+1

Qj

ι

ψ
i+1

Qj

(11)

Recall that

ψiQj
: C∗(X

i
Q1...Qj−1

)→ C∗(X
i
Q1...Qj

)

is defined by linear extension of

ψiQj
(η) =





0, if η = wi(Qj),

−
∑

ξ∈Xi
Q1...Qj

κi(wi(Qj), ξ)

κi(wi(Qj), Qj)
ξ, if η = Qj ,

η, otherwise

for η ∈ X i
Q1...Qj−1

. Since we have a zigzag acyclic matching,

wi(Qj) = wi+1(Qj) ∈ X
i+1,

and when ξ ∈ X i
Q1...Qj

\X i+1
Q1...Qj

, we have

κi(wi(Qj), ξ) = κi(wi+1(Qj), ξ) = 0

by the subcomplex property. We can take the summation over

ξ ∈ X i+1
Q1...Qj

= X i+1
Ql1

...Qlh
Qj
.
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Thus for η ∈ X i+1
Q1...Qj−1

,

ψiQj
(η) =





0, if η = wi+1(Qj),

−
∑

ξ∈X
i+1
Ql1

...Qlh
Qj

κi+1(wi+1(Qj), ξ)

κi+1(wi+1(Qj), Qj)
ξ, if η = Qj ,

η, otherwise.

This is the same as in the definition for ψi+1
Qj

: C∗(X
i+1
Ql1

...Qlh

)→ C∗(X
i+1
Ql1

...Qlh
Qj

).

Hence,

ψiQj

∣∣∣
C(Xi+1

Q1...Qj−1
)
= ιψi+1

Qj
.

Finally, we take Qj ∈ Qi for j = 1, . . . , n and inductively attach, from left to
right, a diagram of the form (10) if Qj ∈ Qi \ Qi+1 or a diagram of the form (11)
if Qj ∈ Qi+1. The resulting diagram is

C∗(X
i) . . . C∗(X

i
Q1...Qn

) = C∗(Ai)

C∗(X
i+1) . . . C∗(X

i+1
Q1...Qn

) = C∗(Ai+1)

C∗(X
i+1) . . . C∗(X

i+1
Ql1

...Qlm
) = C∗(Ai+1).

ψi
Q1

ψi
Qn

ι

(12)

The top row of the resulting diagram (12) then contains the composition (6) for
ψi. In the bottom row, whenever we encounter a Qj ∈ Qi+1, a ψi+1

Qj
term appears.

Thus, the bottom row contains the composition ψi+1 = ψi+1
Qlm

. . . ψi+1
Ql1

in the correct

order by consistency of orders in Qi and Qi+1. By commutativity of diagram (12),
we have commutativity of

C∗(X
i) C∗(Ai)

C∗(X
i+1) C∗(A

i+1)

ψi

ψi+1

ι

as required.

Showing commutativity for

C∗(X
i) C∗(Ai)

C∗(X
i+1) C∗(Ai+1)

φi

ι

φi+1

proceeds in exactly the same manner. �
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4. Algorithm and numerical example

In this section, we present an algorithm to produce a zigzag acyclic matching,
and thus a Morse zigzag complex, for a zigzag complex

X : (X1, κ1) (X2, κ2) . . . (XN , κN).

4.1. Input type. We say that x is an element of X, denoted by x ∈ X, if x is in at
least one of the X i. To each x ∈ X, we associate its birth type b(x) = (b1, . . . , bN),
where

bi =

{
1, if x ∈ X i,
0, if x /∈ X i.

An element of a filtered complex can only have a birth type of the form

(0, . . . , 0, 1, . . . , 1),

where the 1’s start at the ith position, corresponding to its birth time i.

We modify the algorithm in the paper [14] for filtered complexes to process
zigzag complexes. The algorithm accepts as input a type τ of length N , a collection
of cells C = {x} together with dimension information dimx, birth types b(x), and
functions κ(x, ·) : C → R for every cell x such that X defined below is a zigzag
complex. We have

X : (X1, κ1) (X2, κ2) . . . (XN , κN),

where the direction of the ith arrow is determined by τi,

X i = ⊔q≥0X
i
q, X

i
q = {x ∈ C| dimx = q, b(x)i = 1},

and
κi : X i ×X i → R

(x, y) 7→ κ(x, y)

for every i.

Given an arbitrary (finite) zigzag complex X, let us write it according to the
input format above. We consider the set of all cells of X, which is similar to the set
of all cells of {Qi} in the previous section. Let

⊔Ni=1X
i = {(x, i)|x ∈ X i}

be the disjoint union of the X i’s and let

X̂ = ⊔Ni=1X
i/ ∼,

where the equivalence relation ∼ is the transitive closure of ≈ defined by (x, i) ≈

(x′, j) if and only if x = x′ and |i− j| ≤ 1. We denote elements of X̂ by [(x, i)], the
equivalence class of (x, i). We have the following properties.

Lemma 4.1. Let X be a zigzag complex and ∼ be the equivalence relation on ⊔Ni=1X
i

defined above.

(1) (x, i) ∼ (x, i+ 1) for all x ∈ X i ∩X i+1.
(2) If (x, i) ∼ (x′, j) and (y, i) ∼ (y′, j), then κi(x, y) = κj(x′, y′).
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Proof. The first statement follows from definition. Without loss of generality, it
is enough to prove the second statement for (x, i) ≈ (x′, j), (y, i) ≈ (y′, j), j = i+1,
and X i →֒ Xj. Then,

x = x′, y = y′ ∈ X i ⊂ Xj = X i+1

implies that

κj(x′, y′) = κj(x, y) = κi+1(x, y) = κi(x, y),

by the property of zigzag complexes. �

For every i, we rename each cell x ∈ X i as [(x, i)] and suitably modify the
incidence function by defining

κi([(x, i)], [(y, i)]) = κi(x, y).

It is clear that after this renaming, we have the same zigzag complex. Hereafter, we
do not specify the equivalence class [(x, i)] but just write x for cells in X. Without
loss of generality, the renaming allows us to impose the extra condition that if
x, y ∈ X i ∩ Xj, then κi(x, y) = κj(x, y). By this property, for every x, y ∈ X, we
can unambiguously define κ(x, y) by

κ(x, y) =

{
κi(x, y), if x, y ∈ X i for some i,
0, otherwise.

By the considerations above, given an arbitrary zigzag complex X, the col-

lection of all of its cells is C = X̂ and for each x ∈ C, κ(x, ·) is unambiguously
defined.

4.2. Algorithm. We describe some of the variables used in the algorithm. LetD =
max{dimx|x ∈ C} be the largest dimension of the input cells. At initialization,
P = C is the set of all cells of the zigzag complex, but as we run the algorithm,
cells will be removed from P . We define

P b = {x ∈ C|b(x) = b}

for b in some indexing set B of birth types, so that P = ∪b∈BP
b.

Following the paper [15], we define an elementary coreduction pair as a pair
of cells (ξ, η) such that κ(ξ, η) is a unit in R and η is the unique cell in the boundary
of ξ. What we mean here by boundary is

∂P ξ =
∑

ν∈P

κ(ξ, ν)ν,

the boundary relative to the cells remaining in P . As we perform the algorithm,
elementary coreduction pairs (ξ, η) such that ξ and η have equal birth type b are
identified and removed from P b (and thus P ) by the subroutine RemovePair.

Initialize PA = ∅, into which we place critical cells. Similar to P , we partition
PA into P b

A
for b ∈ B. The subroutine MakeCritical removes a cell A′ from P b and

places it into P b
A
. This sets into motion the rest of the algorithm. As we remove

cells, new elementary coreduction pairs are potentially created. We keep track of
candidates by queuing the removed cells’ coboundary cells in Que. The coboundary



Zigzag Morse Reductions 69

Require: ∂PK = uQ, u a unit, and K,Q ∈ P b

function RemovePair(K, Q, Que, d)
Remove: K from P b

Enqueue: cbP (Q) in Que
if dimQ = d then

g(Q)← − g(K)
u

UpdateGradientChain(Q)
end if

Remove: Q from P b

end function

of a cell ξ is cbP (ξ) = {η ∈ P |κ(η, ξ) 6= 0}. Overall, there are two subroutines that
remove cells: MakeCritical, which sets a cell as being part of the Morse zigzag
complex, and RemovePair, which deletes pairs of cells (ξ, η).

Require: d: {x ∈ P | dimx = d} 6= ∅
function MakeCritical(d)

Choose: A′ ∈ P of dimension d
b← b(A′)
Add: A′ to P b

A

UpdateGradientChain(A′)
Remove: A′ from P b

∂AA′ ← g(A′)
return A′

end function

For every cell ζ, we associate a variable g(ζ), relative to the current state of
P , containing a chain called the gradient chain. If a cell ζ = A′ is finally decided
as critical, g(A′) gives its value to ∂AA′, the boundary of A′ in the Morse zigzag
complex. On the other hand, if a cell ζ = Q is removed as part of some pair
(K,Q) by RemovePair, we update each g of the coboundary cells of Q through
UpdateGradientChain. In intermediate steps, g records the effects of removals of
paired cells.

function UpdateGradientChain(ξ)
for ζ ∈ cbP (ξ) do

if ξ ∈ PA then

g(ζ)← g(ζ) + κ(ζ, ξ)ξ
else

g(ζ)← g(ζ) + κ(ζ, ξ)g(ξ)
end if

end for

end function
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The output of the algorithm consists of PA and the boundaries ∂AA ofA ∈ PA.
For every i, we define

Ai = {x|x ∈ PA and b(x)i = 1}

and incidence functions

κ̃i(A,A′) = 〈∂AA,A′〉 =

{
r, ∂AA has term rA′ for some r ∈ R,
0, otherwise,

for A,A′ ∈ Ai.

For every (ξ, η) sent to RemovePair, we have b(ξ) = b = b(η). This defines
wi(η) = ξ for all i such that bi = 1, and we set

Qi = {η|(ξ, η) removed by RemovePair, b(η)i = 1}

and
Ki = {ξ|(ξ, η) removed by RemovePair, b(ξ)i = 1}.

Then,

A : (A1, κ̃1) (A2, κ̃2) . . . (AN , κ̃N)

is the Morse zigzag complex of our input X generated by the zigzag acyclic matching
above.

function MorseReduce(P )
for d ∈ {0, 1, . . . , D} do

while {x ∈ P | dimx = d} 6= ∅ do
A′ ←MakeCritical(d)
Que ← new Queue
Enqueue: cbP (A

′) in Que
while Que 6= ∅ do

Dequeue: ξ from Que
if ∂P ξ = 0 then

Enqueue: cbP (ξ) in Que
else if ∂P (ξ) = u · η for some η ∈ P b(ξ) and unit u then

RemovePair(ξ, η, Que, dimA′)
end if

end while

end while

end for

return PA

end function

Proof. Given a finite input, that the algorithm MorseReduce terminates is obvi-
ous. For every pass through the inner while loop, we turn one cell into a critical
cell and possibly remove some pairs of cells. There can be no infinite loop involving
the queue since apart from the first, we only add the coboundaries of cells already
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in the queue. By the time the algorithm terminates, each cell will have either been
made critical or removed by RemovePair. Thus for every i, Ai,Qi,Ki partitions
X i.

When a pair (ξ, η) is sent to RemovePair, η is the last remaining cell in the
boundary of ξ. Since Q ✁ η is equivalent to Q < w(η) = ξ, this means that any
other Q ✁ η apart from η itself has already been removed. In other words, the
algorithm removes Q’s in order of strictly increasing ✁, and ≪ is a partial order.
Thus we obtain a zigzag acyclic matching (Ai, wi : Qi → Ki)Ni=1.

We need to show that g(A) carries the correct information for the incidence
function in the Morse zigzag complex. That is,

〈g(A), A′〉 = 〈∂AA,A′〉 = κ̃i(A,A′)

for every A,A′ in Ai. First, note that if ζ ∈ X i, then all the cells in the chain g(ζ)
are also in X i. Then, from the proof of Proposition 5.2 in [14], we have

〈g(ζ), A′〉 = κi(ζ, A′) +
∑

Q∈Qi

κi(ζ,Q)

−κi(wi(Q), Q)
〈g(wi(Q)), A′〉

for any ζ ∈ X i, A′ ∈ Ai.

Eventually, when a cell A is removed by MakeCritical, we get

〈g(A), A′〉 = κi(A,A′) +
∑

Q∈Qi

κi(A,Q)

−κi(wi(Q), Q)
〈g(wi(Q)), A′〉,

into which we can recursively apply the previous formula to obtain κ̃i(A,A′) in the
right hand side. For this recursive argument to be valid, by the time we decide to
make A critical, we need all Q ∈ Qi with dimQ = dimA− 1 to have already been
processed by RemovePair. That is, we cannot decide to make some A critical and
then later create more connections originating from A by removing some new pair
Q ∈ Qi, K ∈ Ki. The outermost loop guarantees that all those lower-dimensional
cells Q have already been processed before we make A critical. �

4.3. Numerical example. Suppose that R = F is a field. In such a case, what
we call as the qth zigzag homology module of a zigzag complex with type τ is a
τ -module, in the terminology of [3]. They show that a τ -module can be written
as the direct sum of intervals and define its zigzag persistence, analogous to the
persistence of filtered complexes. We implement both the algorithm for computing
zigzag persistence as presented in the paper [3] and the Morse reduction algorithm
above, with R = Z2.

To test how Morse reduction can decrease computation times, we randomly
generate zigzag complexes by the procedure CreateZigzagComplex. Given a number
N of complexes, we randomly choose a type τ of length N . We then fix a set of
candidate vertices V ; we write cells x ∈ C as subsets of V . Note that since we are
choosing the cells x randomly, the set of vertices of the output zigzag complex may
be smaller than V . The parameter D controls the maximum dimension of the cells
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x. We also set a parameter M that controls the number of cells. Once the number
of cells created exceeds M , we stop the algorithm.

function CreateZigzagComplex

C = ∅
while |C| < M do

Randomly choose: q such that 0 ≤ q ≤ D
Randomly choose: x = {v0, . . . , vq} ⊂ V , and b compatible with τ
CreateCell(x, b)

end while

return C
end function

A birth type b = (b1, . . . , bN), bi ∈ {0, 1} is said to be compatible with τ if
the following two conditions hold:

(1) If τi = f , then bi = 1 implies bi+1 = 1.
(2) If τi = b, then bi+1 = 1 implies bi = 1.

In the subroutine CreateCell, we have the operation (b(x)i∨bi) that computes
the logical-or of b(x)i and bi taken as Boolean values. By this operation, we are
increasing the number of indices i with b(x)i = 1; in other words, indices i with
x ∈ X i. Moreover, every time we go into the subroutine CreateCell, we recursively
do the same for faces of x, updating birth types for each of those faces as well.

function CreateCell(x, b)
if x ∈ C then

for i = 1, . . . , N do

b(x)i ← (b(x)i ∨ bi)
end for

else

b(x)← b
C ← C ∪ {x}

end if

if dimx > 0 then

for ∅ 6= y ( x, dim y = dimx− 1 do

CreateCell(y, b(x))
end for

end if

end function

For each i = 1, . . . , N we set X i = {x ∈ C|b(x)i = 1} and grade each X i by

X i
q = {x|x ∈ X

i, |x| = q + 1}.
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In other words, we are setting dimx = q if and only if |x| = q + 1. For every pair
of cells x, y with b(x)i = 1 = b(y)i, we define κi : X i ×X i → Z2 by

κi(x, y) =

{
1, if y ⊂ x and dimx = dim y + 1,
0, otherwise.

It is easy to show that each (X i, κi) is a complex. The first property for κi

to be an incidence function follows from definition. The second follows from the
fact that if we have nonzero terms in the sum

∑

y∈Xi

κi(x, y)κi(y, z)

for fixed x, z ∈ X i, then x ) y ) z with dim x = dim y + 1, dim y = dim z + 1.
Consequently, x has two more vertices than z, say x = z ∪ {v0, v1}, and the sum
above reduces to

κi(x, y0)κ
i(y0, z) + κi(x, y1)κ

i(y1, z) = 1 + 1 = 0,

where y0 = z ∪{v0} and y1 = z ∪{v1}. By construction, y0, y1 ∈ X i. Note that we
are working over the field R = Z2.

Since the component-wise logical-or of two birth types compatible with τ is
still compatible with τ , each x in the output C has birth type b(x) compatible with
τ . By this fact, for every i = 1, . . . , N − 1 if τi = f , we have X i ⊂ X i+1, and if
τi = b, then X i ⊃ X i+1.

We show that if τi = f , then (X i, κi) is a subcomplex of (X i+1, κi+1). The
proof for the case where τi = b is similar. That κi+1|Xi×Xi = κi follows from the
definition of κi. Now, we show that for all η ∈ X i with dim η > 0,

{ξ ∈ X i+1|ξ 2 η} ⊂ X i.

As before, it suffices to consider ξ < η. In this construction, this implies ξ ⊂
η and dim ξ = dim η − 1. Since η ∈ X i, at some point in the algorithm, the
subroutine CreateCell(η, b) was called with bi = 1. Before returning from that call,

the subroutine runs CreateCell(ξ, b′) with b′i either equal to bi or equal to b̂i ∨ bi
for some other birth type b̂. In either case, b′i = 1 and thus ξ ∈ X i.

Thus, from the algorithm CreateZigzagComplex, we obtain the zigzag com-
plex

X : (X1, κ1) (X2, κ2) . . . (XN , κN).

For our experiments, we set N = 8 complexes in each zigzag complex with
maximum dimension D = 3, V = {1, . . . , 45}, and M = 2000 cells, and create
10 random zigzag complexes by the above procedure. For each zigzag complex so
generated, two computations are performed:

(1) Do persistence computations (zigzag persistence of its qth zigzag homology
module) using algorithm from [3].

(2) Do MorseReduce, then do persistence computations (same implementation
as above) on the obtained Morse zigzag complex.
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Run ZZ (s) MR+ZZ (s)
1 11.29 0.8748
2 9.178 0.8587
3 10.96 0.9214
4 8.157 0.5714
5 12.86 0.7579

Run ZZ (s) MR+ZZ (s)
6 9.237 0.7818
7 9.283 0.7793
8 11.05 1.206
9 9.468 0.7201
10 6.525 0.3684

Table 1. Comparison of run times

For simplicity we compute only the zigzag persistence of the 1st zigzag ho-
mology module of each zigzag complex. Our goal is to showcase the effect of Morse
reductions, and the only difference between computations (1) and (2) is the use of
these reductions. We implement the algorithms in the C++ language and compile
using the GNU C++ compiler with optimization level O3. Computations were
performed on an Intel Core i7 2.7Ghz machine.

In Table 1, we record the time taken for computation (1) in column ZZ, and
for computation (2) in MR+ZZ. The zigzag homology module of each zigzag com-
plex is isomorphic to the zigzag homology of its Morse zigzag complex by our main
theorem. Thus, computations (1) and (2) yield the same zigzag persistence. Nev-
ertheless, we observe that performing the Morse reductions first before computing
zigzag persistence takes less time in total.
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