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Abstract. Weak local residual (WLR) detects the smoothness of numerical solu-

tions to conservation laws. In this paper we consider balance laws with a source

term, the shallow water equations (SWE). WLR is used as the refinement indica-

tor in an adaptive finite volume method for solving SWE. This is the first study

in implementing WLR into an adaptive finite volume method used to solve the

SWE, where the adaptivity is with respect to its mesh or computational grids. We

limit our presentation to one-dimensional domain. Numerical simulations show the

effectiveness of WLR as the refinement indicator in the adaptive method.
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Abstrak. ”Residu lokal lemah” (RLL) dapat mendeteksi kehalusan solusi numerik

dari hukum kekekalan. Pada makalah ini kami membahas hukum kesetimbangan

dengan sebuah suku masukan, yakni persamaan air dangkal (PAD). Hal ini meru-

pakan yang pertama dalam implementasi RLL untuk sebuah metode volume hingga

yang adaptif untuk penyelesaian PAD, di mana adaptivitas dikaitkan dengan mesh

atau grid komputasi. Bahasan dibatasi hanya untuk domain satu dimensi. Simu-

lasi numerik memperlihatkan keefektifan RLL sebagai indikator penghalusan dalam

metode adaptif.

Kata kunci: Metode volume hingga, residu lokal lemah, indikator penghalusan,
penghalusan mesh adaptif, persamaan air dangkal.
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1. Introduction

Weak local residuals as smoothness indicators for conservation laws were pro-
posed by Karni, Kurganov, and Petrova [4, 5]. In their work the weak local residual
(WLR) was called the weak local truncation error. In the present paper we fol-
low the term “weak local residual” used by Kurganov et al. [1, 6], as this is more
appropriate by definition.

Even though the corresponding theory is so far available only for scalar con-
servation laws, WLR as a smoothness indicator was also valid for systems of conser-
vation laws [4, 5] and even for systems of balance laws [7]. The order of accuracy
of WLR in a rough region is lower than the order of accuracy in a smooth re-
gion [2, 4, 5]. Therefore WLR is able to detect the smoothness of solutions.

The ability of detecting the smoothness of solutions makes the WLR a good
candidate as the indicator in an adaptive numerical method to solve balance laws.
So far, WLR has been implemented in adaptive numerical methods for gas dynam-
ics [2, 4, 5, 6]. WLR has also been implemented in an adaptive numerical method
for the shallow water equations (SWE) [1], but the adaptivity was with respect to
artificial viscosity.

In this paper we implement WLR as the refinement indicator in an adaptive
finite volume method used to solve the SWE. This work is the first study in im-
plementing WLR into the adaptive finite volume method used to solve the SWE,
where the adaptivity is with respect to its mesh or computational grids. We con-
sider one-dimensional problems of water flows. We follow the frame work presented
by Constantin and Kurganov [2] to compute the WLR, as it gives a simple and
cheap computation of WLR. Note that an approach different from WLR is avail-
able for solving SWE adaptively, such as using the Winslow’s monitor function [3]
instead of WLR. However, in this paper we shall limit our presentation to WLR to
solve the SWE adaptively.

This paper is organised as follows. Section 2 recalls WLR formulations for
conservation laws. The WLR as the refinement indicator is implemented in an
adaptive method in Section 3. Finally Section 4 draws some concluding remarks.

2. Weak Local Residuals of Conservation Laws

This section recalls the formulation of WLR based on the work of Constantin
and Kurganov [2]. We use the following conventions for our notations: x is a one-
dimesional space variable, t is the time variable, q is a conserved quantity, f is a
flux function, and q0 is an arbitrary function defined for an initial condition.

Consider the scalar conservation laws

qt + f(q)x = 0 (1)
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on −∞ < x < ∞, with the initial condition q(x, t) = q0(x) at t = 0. The weak
form of this initial value problem is
∫ ∞

0

∫ ∞

−∞

[q(x, t)Tt(x, t) + f(q(x, t))Tx(x, t)] dx dt +

∫ ∞

−∞

q0(x)T (x, 0) dx = 0, (2)

where T (x, t) is an arbitrary test function.

Now we recall the strategy of Karni and Kurganov [4] in defining the WLR.
First we consider uniform grids. Uniform grids are taken as (xj := j∆x , tn := n∆t)
and let qnj be approximate values of q(xj , t

n) computed by a conservative method.

We denote by q∆(x, t) the corresponding piecewise constant approximation,

q∆(x, t) := qnj if (x, t) ∈
[

xj−1/2, xj+1/2

]

×
[

tn−1/2, tn+1/2
]

(3)

where xj±1/2 := xj ±∆x/2 and tn±1/2 := tn ±∆t/2 . We construct a test function
T n
j (x, t) := Bj(x)B

n(t) , where Bj(x) and Bn(t) are centered at x = xj+1/2 and

t = tn−1/2 with support of size 2∆x and 2∆t . That is,

Bj+1/2(x) =







x−xj−1/2

∆x if xj−1/2 ≤ x ≤ xj+1/2 ,
xj+3/2−x

∆x if xj+1/2 ≤ x ≤ xj+3/2 ,
0 otherwise ,

(4)

and

Bn−1/2(t) =











t−tn−3/2

∆t if tn−3/2 ≤ t ≤ tn−1/2 ,
tn+1/2−t

∆t if tn−1/2 ≤ t ≤ tn+1/2 ,
0 otherwise .

(5)

This results in a cheap computation of the WLR

E
n−1/2
j+1/2 = −

∫ tn+1/2

tn−3/2

∫ xj+3/2

xj−1/2

[

q∆(x, t)
(

T
n−1/2
j+1/2

)

t
+ f(q∆(x, t))

(

T
n−1/2
j+1/2

)

x

]

dx dt,

(6)
which can be expressed after a straightforward calculation as

E
n−1/2
j+1/2 =

∆x

2

[

qnj − qn−1
j + qnj+1 − qn−1

j+1

]

+
∆t

2

[

f
(

qn−1
j+1

)

− f
(

qn−1
j

)

+ f
(

qnj+1

)

− f
(

qnj
)]

. (7)

This taking linear B-splines in constructing the test function adapts from the work
of Constantin and Kurganov [2] on conservation laws.

3. Weak Local Residual in An Adaptive Method

In this section we implement the WLR as the refinement indicator in an
adaptive finite volume method used to solve the one-dimensional SWE. We present
some numerical results of the implementation. The WLR, also known as local
truncation errors, as smoothness indicators for conservation laws were proposed by
Kurganov et al. [5]. A conservation law is homogeneous, so its source term is zero.



14 S. Mungkasi and S.G. Roberts

In this article we extend the implementation of WLR as the refinement indi-
cator for balance laws with a nonzero source term. In particular we consider the
one-dimensional shallow water equations. These equations are

ht + (hu)x = 0 , (8)

(hu)t +
(

hu2 + 1
2gh

2
)

x
= −ghzx. (9)

Here, x represents the coordinate in one-dimensional space, t represents the time
variable, u = u(x, t) denotes the water velocity, h = h(x, t) denotes the water
height, z = z(x) is the bed topography, and g is the acceleration due to gravity.
We define stage w(x, t) as w = h+ z.

Note that the WLR presented in Section 2 is defined for conservation laws.
Therefore the best way to compute the WLR of the SWE is considering the mass
equation (8) with the quantity q = h and flux f(q) = hu. The WLR based on the
mass equation for the SWE is then

E
n−1/2
i+1/2 = (1/2)

{

∆x
[

hn
i − hn−1

i + hn
i+1 − hn−1

i+1

]

+∆t
[

hn−1
i+1 u

n−1
i+1 − hn−1

i un−1
i + hn

i+1u
n
i+1 − hn

i u
n
i

]}

. (10)

We do not consider the WLR based on the momentum equation (9). That is
because the computation would require well-balanced technique, as the source term
is nonzero for the momentum equation (9). The well-balanced technique for the
computation of WLR is beyond the scope of this paper.

Formulation (10) is defined at each vertex and for uniform grids. To define the
CK indicator at the centroid of each cell, we choose one of two available indicators
at its cell vertices having the largest magnitude and divide it by the local cell width.
That is, the CK indicator at the centroid of the ith cell is

E
h,n−1/2
i =

1

∆xi
×







E
h,n−1/2
i−1/2 if

∣

∣

∣
E

h,n−1/2
i−1/2

∣

∣

∣
≥

∣

∣

∣
E

h,n−1/2
i+1/2

∣

∣

∣
,

E
h,n−1/2
i+1/2 otherwise .

(11)

We denote by CK (Constantin-Kurganov) indicator the WLR (11) [8]. Formulation
(11) can be used to compute the WLR at centroids of non-uniform cells, hence,
adaptive grids. When the numerical method has a formal order r , the order of
∣

∣

∣
E

h,n−1/2
i

∣

∣

∣
is O(1) near discontinuities and O

(

∆min{3,r+1}
)

in smooth regions [2].

The order difference between discontinuous and smooth regions makes
∣

∣

∣
E

h,n−1/2
i

∣

∣

∣

able to detect the smoothness of the numerical solution.

As a test case, we recall the problem with topography considered by Felcman
and Kadrnka [3]. In this test, all quantities are measured in Systeme International
(SI) units and we omit the writing of the units. We consider a channel of length
25 with topography

z(x) =

{

0.2− 0.05 (x− 10)
2

if 8 ≤ x ≤ 12 ,
0 otherwise ,

(12)
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Figure 1. Initial setting for the adaptive method: water is at rest
at t = 0.

and an initial condition

u(x, 0) = 0 , w(x, 0) = 0.66 (13)

together with the Dirichlet boundary conditions

h(25, t) = 0.66 , hu(0, t) = hu(25, t) = 1.53 . (14)

The numerical settings are as follows. First order finite volume scheme [9] is
used. The spatial domain is discretised into 100 cells initially. The tolerance of the
CK indicator is

CKtol = 0.05max |CK| , (15)

where CK is defined as in (11). Cells with |CK| > CKtol are refined binary, that
is, a “parent” cell is refined into two “children” cells with equal width. Cells with
|CK| ≤ 0.1CKtol are coarsened. Two neighbouring cells are coarsened as long as
they are at the same level and have the same parent. The maximum level of binary
refinement is 10 and the width of the coarsest cell allowed is 0.25 .

Our results of the test case are as follows. The initial condition is a river at
rest with a parabolic bump at the bottom, as shown in Figure 1. For time t > 0
there is a constant inflow from the left-end and constant outflow at the right-end
of the domain. The inflow results in shock waves coming into the domain. The
numerical results for time t > 0 are represented by Figures 2(a), 2(b) and 3(a),
which show the adaptive results at time t = 0.67, 1.67 and 2.67 respectively. Shock
waves are rough, so our adaptive method takes action by refining the grids around
the shocks. Therefore, we get accurate results. Note that if the standard uniform
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Figure 2. Results produced by the adaptive method for time:
(a) t = 0.67 and (b) t = 1.67 . The flow is unsteady and moving
to the right.
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Figure 3. Result comparison for time t = 2.67 between: (a)
adaptive method involving 154 cells and (b) standard method in-
volving 308 cells. The shock over the bump is unsteady and moving
to the right.
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grid were used, the shocks could not be sharply resolved. For comparison, this result
at time t = 2.67 of the standard method is shown in Figure 3(b). We separate these
figures from t = 0 until t = 2.67 in order that we can clearly see the evolution of
the flow together with its mesh adaptivity and its residuals.

The adaptive strategy presented in this paper can be used to solve the one-
dimensional SWE in general. The example on unsteady flow over a bump that we
have discussed is a representative of one-dimensional shallow water flows.

4. Concluding Remarks

We have implemented weak local residuals as the refinement indicator in an
adaptive finite volume method used to solve the shallow water equations in one
dimension. The adaptivity is based on the magnitude of the residuals at each
time step. Numerical results show that the coarsening and refinement can be done
successfully using these weak local residuals. Possible future work is extending this
technique to solve the shallow water equations in higher dimensions.
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