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Abstract. Vertices located on cycles without exits have a role in constructing

ideals in the Leavitt path algebras over a commutative unital ring. One key reason

is that the set of such vertices is hereditary. In addition, an ideal of the commutative

unital ring can be combined with these vertices to form an ideal in the Leavitt path

algebra. This article focuses on creating a (basic) ideal in the Leavitt path algebras,

which is generated by vertices on cycles without exits.

Key words and Phrases: vertices on cycles without exits, basic ideal, Leavitt path

algebras.

1. INTRODUCTION

In addition to geometric, combinatoric, and algorithmic approaches, graphs
can be viewed algebraically, commonly called graph algebra. In graph algebra, a
graph consisting of vertices (or points) and edges is a directed graph, abbreviated
as a digraph or a quiver. The direction of edges in a quiver or digraph (called a
graph) forms two mappings that define the source and the target of the edges. A
graph or quiver is defined by Assem et al. [1] as a 4-tupel Q =

(
Q0, Q1, s, t

)
with

Q0 is a set of vertices, Q1 is a set of edges, and s, t : Q1 → Q0 are two functions
that define the source and target of the edges, respectively.

A sequence of n edges e1e2 · · · en where the target of the i-th edge equals to
the source of the (i+ 1)-th for each i = 1, 2, · · · , n − 1, is called a path of length
n. The algebraic study of quivers leads to the development of an associative al-
gebra known as path algebra and Leavitt path algebra. An in-depth discussion of
path algebra on quiver Q over the field K denoted KQ was conducted by Assem
et al. [1]. The semiprimeness of path algebras over the field has been studied by
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Molina [2] and Pino et al. [3]. Additionally, they explored the Leavitt path alge-
bra, whose definition is based on the path algebra with Cuntz-Krieger conditions.
Meanwhile, Wardati et al. [4] investigated the properties of prime path algebra
over the commutative unital ring.

The development of Leavitt path algebras started in 2005, but it is still being
studied today. Key findings in the study of Leavitt path algebras include the
necessary and sufficient conditions for a graph (quiver) such that the Leavitt path
algebra over a field is simple [5], finite-dimensional [6], either artinian or noetherian
[7], a prime algebra [8].

Tomforde [9] has studied the Leavitt path algebra over the commutative unital
ring, with significant findings, including the definition of basic ideal and simple
algebra. These findings are the basic for discovering the necessary and sufficient
conditions of the primeness of the Leavitt path algebra over an integral domain
[10]. In her dissertation, Wardati et al. [11] identified the necessary and sufficient
conditions from the graph that make the basic ideal in the Leavitt path algebra over
the commutative unital ring a prime basic ideal. Consequently, the necessary and
sufficient conditions were also established for this algebra to be basically prime. In
addition, any Leavitt path algebra over the commutative unital ring is a basically
semiprime algebra. This property is similar to the findings of Pino et al. [3],
which state that every Leavitt path algebra over a field is a semiprime algebra
and further determines the socle of the Leavitt path algebra. However, a Leavitt
path algebra over a commutative unital ring is not always semiprime unless the
ring itself is semiprime. It means that the Leavitt path algebra is semiprime if and
only if its algebra over the commutative unital ring is a semiprime [12]. Further
research by Wardati [13] found the socle of this semiprime Leavitt path algebra,
which is influenced by the ideal of its semiprime ring. This finding differs from
the socle of Leavitt path algebra over the field [14] because each field has no non-
trivial ideal. A notable similarity, however, is that the determination of this socle is
always related to minimal left ideals of the Leavitt path algebra. These minimal left
ideals are constructed by a specific vertex in its quiver, referred to as line points,
which correspond to primitive idempotents. Moreover, the set of all line points is
hereditary.

The topic of ideals and basic ideals of Leavitt path algebra continuous to
develop and attract interest. Songul and Muge Kanuni [15] provided the necessary
and sufficient conditions to assure the existence of maximal ideals in Leavitt path
algebra over a field, namely the existence of a maximal saturated hereditary subset
of Q0. The Leavitt path algebra over a commutative unital ring on a finite acyclic
graph (not containing cycle) is a direct sum of minimal basic ideals generated by a
sink or sink point [12]. This result was strengthened by Kanwar et al., [16].

The role of sink, line points, and hereditary subsets in forming (basic) ideals
in the Leavitt path algebra has been described. Notable findings of Kanwar et al.,
[16] revealed that if the graph satisfies the condition (L), where every cycle in the
quiver contains an exit, then the Leavitt path algebra over commutative unital ring
has no non-zero nilpotent basic ideal. The contraposition of this statement is that
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if there is a non-zero nilpotent basic ideal of the Leavitt path algebra, then the
quiver does not satisfy condition (L), meaning there exists a cycle in the quiver
without an exit. These results lead to investigating the role of the vertices in cycles
without exits on constructing (basic) ideals in the Leavitt path algebra over the
commutative unital ring. The investigation is based on the conjecture that every
vertex on a cycle without an exit is a primitive idempotent element, and the set of
all vertices in cycles without exits is hereditary. It is also necessary to investigate
the role of ideals of the commutative unital ring in the formation of ideals of the
Leavitt path algebra constructed by the combination of an ideal of this ring with a
vertex on a cycle without an exit.

2. SOME PROPERTIES OF BASIC IDEALS IN LEAVITT PATH
ALGEBRA OVER A COMMUTATIVE UNITAL RING

The characterization of a (basic) ideal in Leavitt path algebra over the com-
mutative unital ring is determined by the quiver structure and the ideal of the
ring. Every vertex on the quiver is an idempotent element in Leavitt path algebra.
The quiver structure determines whether the vertices are primitive and whether
a hereditary subset of vertices is saturated. In general, the primary reference on
terminology in quivers and some previous results on Leavitt path algebra is the
new book published by Abrams et al. [17], and some notions of special elements
refer to Assem et al. [1].

2.1. Quiver and Leavitt Path Algebras over a Commutative Unital Ring.

A Quiver is another term for a directed graph, which is a 4-tupel Q =(
Q0, Q1, s, t

)
which consists of two disjoint sets Q0, Q1 and two mappings s, t :

Q1 → Q0. The elements in Q0, Q1 are called vertices and (real) edges, respectively,
and for every edge that is e ∈ Q1, then the source and the target (end) of e is
s (e) , t (e) ∈ Q0. A Quiver Q is said to be finite if Q0 is finite and Q is row-finite,
i.e., s−1 (u) a finite subset of Q1 for every vertex u. A vertex u ∈ Q0 is called a
sink if it does not emit any edge, i.e., u ̸= s (e) for every e ∈ Q1.

The sequence of edges in a quiver is called a path. Path µ = e1e1 · · · ek with
ei ∈ Q1 and t (ei) = s (ei+1) for i = 1, 2, · · · , k− 1 have the length of path denoted
by |µ| = k ≥ 1. The source and target of path µ denoted by s (µ), t (µ), respectively,
with s (µ) = s (e1), t (µ) = t (ek). A path with the same source and target is called
a closed path. A closed path µ is called a cycle if no edge is repeated, meaning
s (µ) = t (µ) and for every i ̸= j, s (ei) ̸= s (ej). A cycle with length one is called a
loop. Every vertex in Q0 is a path of length zero. The set of all paths in the quiver
Q is denoted by Path(Q).

Expansion of the quiver Q is denoted and defined as a new quiver Q̂ =(
Q0, Q1 ∪

(
Q1
)∗
, sQ̂, tQ̂

)
, where

(
Q1
)∗

=
{
e∗ : e ∈ Q1

}
is the set of all ghost edges,



4

and the mapping sQ̂, tQ̂ is defined as:

sQ̂|Q1
= s, tQ̂|Q1

= t, s (e∗) = t (e) , t (e∗) = s (e) .

This extension is used to define Leavitt path algebra, which is based on path alge-
bra. A path algebra over a commutative unital ring R, on a quiver Q, denoted RQ
is an R-free algebra constructed by Path (Q) and satisfies:

(V ) uv = δu,vu for every u, v ∈ Q0.
(E1) s (e) e = et (e) = e for every e ∈ Q1.

The Leavitt path algebra denoted by LR (Q) is a path algebra on the extended

quiver Q̂ that satisfies the Cuntz-Krieger conditions:

(E2) e ∗ s (e) = t (e) e∗ = e∗ for every e ∈ Q1.
(CK1) e∗e′ = δe,e′t (e) for every e, e′ ∈ Q1.
(CK2) v =

∑
{e∈Q1|s(e)=v} ee

∗ for every vertex v that emits edges.

Based on axiom (V ), every vertex is idempotent because u2 = u for any

u ∈ Q0. In addition, ee∗ is also an idempotent element since (CK1) holds (ee∗)
2
=

e (e∗e) e∗ = et (e) e∗ = ee∗. Two idempotent elements x1, x2 are called orthogonal
if x1x2 = 0, and an idempotent element x is said to be primitive if x cannot
be expressed as x1 + x2 for a non-zero orthogonal element x1, x2. Based on this
definition and axiom (CK2), the vertex v that emits more than one edge is not
primitive idempotent element. Meanwhile, every sink is a primitive idempotent
element.

Based on (CK1) and (CK2), the generator elements of LR (Q) are of the form
monomial αβ∗ with α, β ∈ Path (Q), t(α) = t(β), and the assumption that for every
vertex u ∈ Q0, u∗ = u = t (u) = s (u). Given two monomials αβ∗, γδ∗ ∈ LR (Q)
then their product is defined as follows:

(αβ∗) (γδ∗) =


αγ′δ∗

αδ∗

αβ′∗δ∗

0

if γ = βγ′

if β = γ
if β = γβ′

if not one of the above conditions

(1)

Leavitt path algebra contains all real paths, ghost paths, and vertices, which are
considered zero-length paths. Every monomial in LR (Q) is of the form:

(a) ku with k ∈ R, u ∈ Q0 or

(b) kei1 · · · eiσe∗j1 · · · e
∗
jτ

with k ∈ R, σ, τ ≥ 0, σ + τ > 0, eis ∈ Q1, e∗jt ∈
(
Q1
)∗

for 0 ≤ s ≤ σ, 0 ≤ t ≤ τ .

In general, the Leavitt path algebra over the commutative unital ring R on the
quiver Q is written as:

LR (Q) = SpanR

{
n∑

i=1

kiαiβ
∗
i |ki ∈ R,αi, βi ∈ Path (Q)

}
.

The hereditary subset of vertices plays a crucial role in forming the (basic)
ideal of the Leavitt path algebra over the commutative unital ring. A hereditary



5

subset is defined by a preorder relation “≤” on Q0. For any two vertices v, w, we
define that v ≤ w if and only if v = w or there is a path µ ∈ Path (Q) satisfies
s (µ) = v and t (µ) = w. A subset H ⊆ Q0 is said to be hereditary if for every
v, w ∈ Q0 with v ≤ w, v ∈ H implies w ∈ H. In addition to the hereditary
property, the preorder relation is used to define the tree of a vertex. The tree of
a vertex v is denoted as T (v) =

{
w ∈ E0 : v ≤ w

}
, which represents the set of all

vertices that are preceded by v.

The subset H ⊆ Q0 is called saturated if, for each vertex v with s−1 (v) ̸= ∅,
if t
(
s−1 (v)

)
= {t (e) |s (e) = v} ⊆ H then v ∈ H. The closure of H, denoted

H̄ is the smallest saturated hereditary set that contains H. If H is hereditary,
then closure H̄ is usually called the saturation of H. It is easy to show that the
intersection and union of hereditary subsets are also hereditary; the intersection
of saturated subsets is also saturated, but the union is not necessarily saturated.
Another property is that the set of all vertices that are in the ideal of LR (Q) forms
a saturated hereditary subset, as stated in the following lemma. This lemma refers
to [9], with a slightly different proof.

Lemma 2.1. [9] Given an ideal ℑ ⊆ LR (Q) and X =
{
u ∈ Q0 : u ∈ ℑ

}
= Q0 ∩ ℑ. Then X is hereditarily saturated.

Proof. Take any vertices u, v ∈ Q0 with u ≤ v and u ∈ X. Then u ∈ ℑ and there is
µ ∈ Path (Q) such that s (µ) = u ∈ ℑ and v = t (µ) = µ∗µ = µ∗s (µ)µ = µ∗uµ ∈ ℑ.
Thus, v ∈ X and consequently X is hereditary. Next, take an arbitrary vertex v
with s−1 (v) ̸= ∅ and t

(
s−1 (v)

)
⊆ X. Then for every edge e ∈ s−1 (v) , t (e) ∈ X

and t (e) ∈ ℑ, so ee∗ = et (e) e∗ ∈ ℑ. According to (CK2), v =
∑

s(e)=v ee
∗ ∈ ℑ so

v ∈ X. Thus, X is saturated. □

The path µ is called a closed path with base vertex v, if v = s (µ) = t (µ).
Suppose c is a cycle with base v, then it is defined that c0 = v and c−n = (c∗)

n
for

every natural number n. The edge e is called an exit for the path µ = e1e2 · · · ek
if s (e) = s (ei) and e ̸= ei for some i ∈ {1, 2, · · · , k}. The set of all vertices on
the quiver Q that lies on a cycle without exit is denoted Pc (Q). For any two
vertices u, v with u ≤ v and u in Pc (Q) , then v also in Pc (Q). Consequently,
Pc (Q) is a hereditary subset, so the vertices in Pc (Q) play an important role in
the construction of the (basic) ideal of the Leavitt path algebra.

2.2. On Ideal Generated by Combination of an Ideal and a Hereditary
Subset.

There is a special ideal in Leavitt path algebra over commutative unital ring
called the basic ideal. While every ideal is a basic ideal in Leavitt path algebra
over a field, it is not over the commutative unital ring. A basic ideal is defined as
follows:
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Definition 2.2. [9] Given a Leavitt path algebra, LR (Q) over a commutative unital
ring R on the quiver Q. An ideal ℑ ∈ LR (Q) is called a basic ideal if, for every
non-zero element k ∈ R and every vertex v, kv ∈ ℑ implies v ∈ ℑ.

According to Proposition 7.7 in [9], which has been thoroughly proven, satu-
rated hereditary subsets have a significant role in forming basic ideals in Leavitt
path algebra over commutative unital rings. The property is restated in the propo-
sition below without proof.

Proposition 2.3. [9] Given an arbitrary commutative unital ring R, quiver Q and
a hereditary subset H on Q0, then the set

(H) = SpanR

{∑n

i=1
kiαiβi

∗|ki ∈ R,αi,βi ∈ Path (Q) , t (αi) = t (βi) ∈ H
}

is the basic ideal of LR (Q) that is generated by H.

Other properties of hereditary subsets exist, including the role of the inter-
section of hereditary subsets in the construction of basic ideals in Leavitt’s path of
algebra. These properties are given with complete proof as follows.

Proposition 2.4. Given any commutative unital ring R, quiver Q and hereditary
subsets H1, H2 in Q0. Then,

(a) If H1 ⊆ H2 then (H1) ⊆ (H2).
(b) (H1 ∩H2) = (H1) (H2).

Proof. (a) Take an arbitrary x ∈ (H1), x =
∑n

i=1 kiαiβi
∗ with ki ∈ R, αi,βi ∈

Path (Q), t (αi) = t (βi) ∈ H1 Since H1 ⊆ H2, then t (αi) = t (βi) ∈ H2, and
x =

∑n
i=1 kiαiβi

∗ with ki ∈ R,αi,βi ∈ Path (Q). This means x ∈ (H2) and
therefore (H1) ⊆ (H2).

(b) Take any non-zero element y ∈ (H1) (H2) then y =
∑

a∈(H1),b∈(H2)
ab. Consider

a non-zero monomial ab in y with a =
∑

p∈R pαβ∗ ∈ (H1), b =
∑

q∈R qγδ∗ ∈
(H2) where t (α) = t (β) ∈ H1, t (γ) = t (δ) ∈ H2. Based on equation (1), we

have 0 ̸= ab =
∑

k∈R kλδ∗ with λ =


αγ′ if γ = βγ′

α if γ = β
αβ′∗ if β = γβ′

This means that t (λ) = t (δ) ∈ H2, thus:
i. If λ = αγ′ then t (α) = s (γ′) ∈ H1 and t (γ′) = t (λ) ∈ H1 since H1 is

hereditary. So, t (λ) = t (δ) ∈ H1 ∩H2 or ab =
∑

k∈R kλδ∗ ∈ (H1 ∩H2).
ii. If λ = α then t (λ) = t (α) ∈ H1, so t (λ) = t (δ) ∈ H1 ∩ H2 or ab =∑

k∈R kλδ∗ ∈ (H1 ∩H2).

iii. If λ = αβ′∗ then t (α) = t (β′) ∈ H1 or t (α) = t
(
s−1 (s (α))

)
∈ H1.

Therefore, t (α) = s (λ) ∈ H1, since H1 is saturated and t (λ) ∈ H1, since
H1 is hereditary. Thus, t (λ) = t (δ) ∈ H1 ∩ H2, in other words, ab =∑

k∈R kλδ∗ ∈ (H1 ∩H2).

□



7

Based on Proposition 2.3, a hereditary subset H (not necessarily saturated)
can construct a basic ideal (H) in LR(Q), and according to Lemma 2.1, (H) ∩Q0

is hereditary saturated. Related to these two properties, we have the property(
H
)
= (H) , where H is a saturation of hereditary subset H.

Lemma 2.5. [9] Given an arbitrary commutative unital ring R, quiver Q and a
hereditary subset H in Q0, then the basic ideal

(H) = SpanR

{∑n

i=1
kiαiβ

∗
i |ki ∈ R,αiβi ∈ Path (Q) , t (βi) ∈ H

}
=
(
H
)

Proof. Since the subset H is hereditary then H ⊆ H. Based on Proposition 2.4 (a),
we get (H) ⊆

(
H
)
. Conversely, according to Lemma 2.1, X =

{
u ∈ Q0 : u ∈ (H)

}
is a saturated hereditary subset that contains H, so that H ⊆ X. Take any point
v ∈ H then v ∈ X so that v ∈ (H). Consequently, for every monomial αiβ

∗
i ∈

(
H
)
,

there is v ∈ H so that v = t (αi) = t (βi) ∈ H and αiβ
∗
i = αivβ

∗
i ∈ (H) since

v ∈ (H). In other words,
(
H
)
⊆ (H). Thus, (H) =

(
H
)
. □

Proposition 2.3. motivates to study an ideal in a Leavitt path algebra over a
commutative unital ring, which is constructed by combining the ideal of this ring
with a hereditary subset. This means that it is necessary to study not only the role
of the hereditary subset but also the role of the ideal of the commutative unital
ring for constructing the ideal in the Leavitt path algebra LR(Q).

Proposition 2.6. Given a Leavitt path algebra LR(Q) over a commutative unital
ring R on quiver Q. If I ⊆ R is an ideal and H ⊆ E0 is hereditary then:

(IH) = SpanI

{
n∑

i=1

aiαiβ
∗
i |ai ∈ I, αiβi ∈ Path (Q) , t (αi) = t (βi) ∈ H

}
(2)

is an ideal of LR(Q). Besides, (IH) = (IH) with H is the saturation of H.

Proof. Suppose J = (IH) is an ideal expressed by (2). Take any element of the
form αβ∗ with t (α) = t (β) = u ∈ H, and every x, y ∈ LR(Q), a ∈ I. We will show
that axαuβ∗y ∈ J , by simply showing that aγδ∗uµσ∗ ∈ J for every a ∈ I,u ∈ H,
γ, δ, µ, σ ∈ Path (Q). First case, aγδ∗uµσ∗ = 0, then it is clear that aγδ∗uµσ∗ ∈ J .
Second case, aγδ∗uµσ∗ ̸= 0 with three possibilities. Based on the definition of
multiplication (1), we get aγδ∗uµσ∗ = aγµ′σ∗ if µ = δµ′, or aγδ∗uµσ∗ = aγσ∗

if δ = µ, or aγδ∗uµσ∗ = aγδ′σ∗ if δ = µδ′. Note again that u = t(µ) ∈ H with
H a hereditary subset, then we have t(µ) = t(µ′) ∈ H for the first possibility,
t(µ) = t(δ) ∈ H for the second possibility, and t(δ) = t(δ′) ∈ H for the third
possibility, where s(µ) = s(δ) = u. Thus, 0 ̸= aγδ∗uµσ∗ ∈ J for all possibilities.
Therefore, J = (IH) is an ideal of LR(Q). Since H is hereditary then by Lemma
2.5, we have

(H) =
(
H
)
= SpanR

{∑n

i=1
kiαiβ

∗
i |ki ∈ R,αi, βi ∈ Path (Q) , t (αi) = t (βi) ∈ H

}
,
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If the coefficients in R are replaced in I, then equation (2) can also be written as

(IH) = SpanI

{∑n

i=1
aiαiβ

∗
i |ai ∈ R,αi, βi ∈ Path (Q) , t (αi) = t (βi) ∈ H

}
=
(
IH
)

□

Proposition 2.6 has stated an important property regarding the ideal of LR(Q)
constructed from an ideal I ⊆ R and a hereditary subset H. As mentioned above,
the union of saturated subsets is not necessarily saturated, whereas the union of
hereditary subsets is hereditary. Therefore, we can develop Proposition 2.6 into
more detailed properties, as stated in the following proposition.

Proposition 2.7. Given a Leavitt path algebra LR(Q) over a commutative unital
ring R on a quiver Q and an ideal I ⊆ R. If {Hi}i∈Γ is a family of hereditary

disjoint subsets of Q0, then:(
I
⋃
i∈Γ

Hi

)
=

(
I
⋃
i∈Γ

Hi

)
= ⊕i∈Γ (IHi) = ⊕i∈Γ

(
IHi

)
Proof. Since Hi is hereditary for every i ∈ Γ then H =

⋃
i∈Γ Hi is hereditary.

Based on Proposition 2.6, we get
(
IH
)
=
(
I
⋃

i∈Γ Hi

)
=
(
I
⋃

i∈Γ Hi

)
= (IH)

and (IHi) =
(
IHi

)
for every i ∈ Γ. It remains to be shown in the middle equa-

tion that
(
I
⋃

i∈Γ Hi

)
= ⊕i∈Γ (IHi). Take an arbitrary x ∈ (IH), based on (2),

x ∈
∑n

l=1 alαlβ
∗
l for some al ∈ I, αl, βl ∈ Path(Q), t(αl) = t(βl) ∈ H. Since

H =
⋃

i∈Γ Hi then for every l, t(αl) ∈ Hi for some i ∈ Γ. Consequently, x =∑n
l=1 alαlβ

∗
l ∈

∑
i∈Γ (IHi), thus (IH) ⊆

∑
i∈Γ (IHi). Conversely, since (IHi) ⊆

(IH) for every i then clearly that
∑

i∈Γ (IHi) ⊆ (IH). Thus, we get
∑

i∈Γ (IHi) =
(IH). Finally, suppose that there exist j ∈ Γ such that

∑
i∈Γ,j ̸=i (IHi) ∩ (IHj) ̸=

{0}. That is, there exist 0 ̸= y ∈
∑

i∈Γ,j ̸=i (IHi) ∩ (IHj), and based on (2),

y =
∑n

k=1 skγkδ
∗
k for some sk ∈ I, γk, δk ∈ Path(Q), t(γk) = t(δk) ∈ Hj and

also t (γk) = t (δk) ∈
⋃

i∈Γ,j ̸=i Hi. This means that Hj and
⋃

i∈Γ,j ̸=i Hi are not

disjoint and it is a contradiction. Thus,
(⋃

i∈Γ,j ̸=i Hi

)
∩Hj = {0} and therefore,(

I
⋃

i∈Γ Hi

)
= ⊕i∈Γ (IHi) □

3. THE ROLE OF VERTICES IN CYCLE WITHOUT EXIT TO FORM
BASIC IDEAL

We have studied the ideal (IH) of the Leavitt path algebra LR(Q), which
is constructed by the ideal I of the commutative unital ring R and the hereditary
subset H. On the other hand, we have the hereditary subset Pc(Q), which is the
set of vertices lying on a cycle c of the quiver Q without exit ([18]). The elements
in Pc(Q) play a role in constructing ideal of the Leavitt path algebra.
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Theorem 3.1. Given a commutative unital ring R and quiver Q. Let v ∈ Pc(Q)
with c is a cycle without exit such that s(c) = v, and Λv denotes the set of paths
leading to v but not containing all edges in c. If I is an ideal in R then (IPc (Q)) =
(Iv) ∼= Mn

(
I
[
x, x−1

])
is an ideal in LR(Q).

Proof. The set of all vertices on the cycle c without exit, denoted Pc(Q), is a here-
ditary subset. This is because for every x, y ∈ Q0 with x ≤ y, x ∈ Pc(Q), it must be
y ∈ Pc(Q), since the cycle c does not contain an exit. Furthermore, since s(c) = v ∈
Pc(Q) then Pc (Q) = {v}. Therefore, by Proposition 2.6, (IPc (Q)) = (Iv) =

(
Ic0
)
.

Let B =
{
µckσ|µ, σ ∈ Λv, k ∈ Z

}
with c0 = v, ck = (c∗)

−k
, for integer k < 0, then

B is linearly independent over I. Take an arbitrary k ∈ Z and
∑k

i=1 tiµic
k
i σ

∗
i = 0

then 0 = µ∗
j

(∑k
i=1 tiµic

k
i σ

∗
i

)
σj = tjuc

k
j v = tjc

k
j for every j ∈ {1, 2, . . . ,m} , so

tj = 0. According to Proposition 2.6, the form of elements in (Iv) is aαβ∗ with
a ∈ I, and path α, β satisfying t(α) = t(β) ∈ Pc(Q) = T (v), so that α = µcl,
β = σcm for some µ, σ ∈ Λv and an integer l,m ≤ 0. This implies that B generates
(Iv). Thus, B is the I-basic of (Iv).
We define a function φ : (Iv) → Mn

(
I
[
x, x−1

])
, φ
(
aµckσ∗) = axkeµ,σ for any

aµckσ∗ ∈ (Iv) with a ∈ I, monomial µckσ∗ ∈ B, axkeµ,σ ∈ Mn

(
I
[
x, x−1

])
which

axk is an entry in (µ, σ) and the other entry is 0. It is easy to show that φ is an
algebraic isomorphism, so that (Iv) ∼= Mn

(
I
[
x, x−1

])
. □

It appears that the ideal (Iv) is not a basic ideal for any non-trivial ideal I in
R since v /∈ (Iv). However, if I = R then (v) = (c0) is a basic ideal because Pc(Q)
hereditary (according to Proposition 2.3), with v is the basic point of the cycle c
without exit.

Corollary 3.2. Given an arbitrary quiver Q and a commutative unital ring R.
Take an arbitrary v ∈ Pc(Q) and a cycle c without an exit such that s(c) = v. Let
Λv is the set of paths that end at a v but do not contain all edges in c, and n = |Λv|,
then

(
c0
)
= (v) ∼= Mn

(
R
[
x, x−1

])
is a basic ideal in LR(Q).

Theorem 3.3. Let R be any commutative unital ring and Q a quiver. If I is an
ideal of R, and P{ci}(Q) is the set of all vertices on all cycles without exits of the

quiver Q, then
(
IP{ci} (Q)

) ∼= ⊕i∈ΓMni

(
I
[
x, x−1

])
where {ci} is the set of distinct

cycle in Q without exit, ni = |Λvi | with vi is the base of the cycle ci and Λvi is the
set of all paths that end at vi but do not contain any edges of ci.

Proof. Note that P{ci} (Q) =
⋃
Pci (Q). Since Pci (Q) hereditary then

⋃
Pci (Q) is

also hereditary. According to Proposition 2.7 and Theorem 3.1, we have:(
I
⋃
i∈Γ

Pci (Q)

)
=

(
I
⋃
i∈Γ

Pci (Q)

)
= ⊕i∈Γ

(
IPci (Q)

)
= ⊕i∈Γ (IPci (Q))

= ⊕i∈Γ (Ivi) ∼= ⊕i∈ΓMni

(
I
[
x, x−1

])
Thus,

(
IP{ci} (Q)

) ∼= ⊕i∈ΓMni

(
I
[
x, x−1

])
. □
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In accordance with Corollary 3.2, if I = R, then we have
(
I
⋃

i∈Γ Pci (Q)
)
=

⊕i∈Γ (vi) ∼= ⊕i∈ΓMni

(
I
[
x, x−1

])
is a basic ideal in LR(Q). This basic ideal is

constructed by the set of all distinct vertices of the cycles without exits.

4. CONCLUSION

The set of all vertices in the quiver Q on a cycle c without an exit is denoted
by Pc(Q), and is hereditary. Given R a commutative unital ring, an ideal I of R,
and a vertex v ∈ Pc(Q) such that s(c) = v, then (Iv) ∼= Mn

(
I
[
x, x−1

])
is an ideal

in LR(Q), where n = |Λv| and Λv is the set of all paths that end at v but do not
contain any edges from c. However, the ideal (Iv) is not a basic ideal. If I = R,
then (Rv) = (v) ∼= Mn

(
R
[
x, x−1

])
is a basic ideal in LR(Q). This basic ideal

is an ideal constructed by the set of vertices on a cycle without exit. In general,(⋃
i∈Γ Pci (Q)

)
= ⊕i∈Γ (vi) ∼= ⊕i∈ΓMni

(
R
[
x, x−1

])
is a basic ideal generated by

the set of all distinct vertices of the cycles ci without exits.
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