ON THE DETOUR AND VERTEX DETOUR HULL NUMBERS OF A GRAPH

A.P. Santhakumaran ${ }^{1}$ and S.V. Ullas Chandran ${ }^{2}$
${ }^{1}$ Department of Mathematics Hindustan University Hindustan Institute of Technology and Science, Padur, Chennai - 603 103, India apskumar1953@yahoo.co.in
${ }^{2}$ Department of Mathematics, Mahatma Gandhi College, Kesavdasapuram, Pattom P.O., Thiruvanathapuram - 695 004, India
svuc.math@gmail.com

Abstract

For vertices x and y in a connected graph G, the detour distance $D(x, y)$ is the length of a longest $x-y$ path in G. An $x-y$ path of length $D(x, y)$ is an $x-y$ detour. The closed detour interval $I_{D}[x, y]$ consists of x, y, and all vertices lying on some $x-y$ detour of G; while for $S \subseteq V(G), I_{D}[S]=\bigcup_{x, y \in S} I_{D}[x, y]$. A set S of vertices is a detour convex set if $I_{D}[S]=S$. The detour convex hull $[S]_{D}$ is the smallest detour convex set containing S. The detour hull number $d h(G)$ is the minimum cardinality among subsets S of $V(G)$ with $[S]_{D}=V(G)$. Let x be any vertex in a connected graph G. For a vertex y in G, denote by $I_{G}[y]^{x}$, the set of all vertices distinct from x that lie on some $x-y$ detour of G; while for $S \subseteq V(G), I_{D}[S]^{x}=\bigcup_{y \in S} I_{D}[y]^{x}$. For $x \notin S, S$ is an x-detour set of G if $I_{D}[S]^{x}=V(G)-\{x\}$ and an x-detour set of minimum cardinality is the x-detour number $d_{x}(G)$ of G. For $x \notin S, S$ is an x-detour convex set if $I_{D}[S]^{x}=S$. The x-detour convex hull of $S,[S]_{D}^{x}$ is the smallest x-detour convex set containing S. The x-detour hull number $d h_{x}(G)$ is the minimum cardinality among the subsets S of $V(G)-\{x\}$ with $[S]_{D}^{x}=V(G)-\{x\}$. In this paper, we investigate how the detour hull number and the vertex detour hull number of a connected graph are affected by adding a pendant edge.

Key words and Phrases:d Detour, detour number, detour hull number, x-detour number, x-detour hull number.

[^0]
Abstract

Abstrak. Misalkan x dan y berada di graf terhubung G, jarak detour $D(x, y)$ adalah panjang dari lintasan $x-y$ yang terpanjang di G. Lintasan $x-y$ dengan panjang $D(x, y)$ adalah suatu detour $x-y$. Interval detour tertutup $I_{D}[x, y]$ memuat x, y dan semua titik yang berada dalam suatu detour $x-y$ dari G; sedangkan untuk $S \subseteq V(G), I_{D}[S]=\bigcup_{x, y \in S} I_{D}[x, y]$. Himpunan titik S adalah suatu himpunan konveks detour jika $I_{D}[S]=S$. Konveks hull detour $[S]_{D}$ adalah himpunan konveks detour terkecil yang memuat S. Bilangan hull detour $d h(G)$ adalah kardinalitas minimum diantara sub-subhimpunan S dari $V(G)$ dengan $[S]_{D}=V(G)$. Misalkan x adalah suatu titik di graf terhubung G. Untuk suatu titik y di G, dinotasikan dengan $I_{G}[y]^{x}$, himpunan dari semua titik berbeda dari x yang terletak pada suatu detour $x-y$ dari G; sedangkan untuk $S \subseteq V(G), I_{D}[S]^{x}=\bigcup_{y \in S} I_{D}[y]^{x}$. Untuk $x \notin S, S$ adalah suatu himpuan detour- x dari G jika $I_{D}[S]^{x}=V(G)-\{x\}$ dan suatu himpuan detour-x dengan kardinalitas minimum adalah bilangan detour-x $d_{x}(G)$ dari G. Untuk $x \notin S, S$ adalh suatu himpunan detour-x konveks jika $I_{D}[S]^{x}=$ S. Konveks hull detour- x dari $S,[S]_{D}^{x}$ adalah himpunan konveks detour- x yang memuat S. Bilangan hull detour- $x d h_{x}(G)$ adalah kardinalitas minimum diantara sub-subhimpunan S dari $V(G)-\{x\}$ dengan $[S]_{D}^{x}=V(G)-\{x\}$. Pada paper ini, kami memeriksa pengaruh penambahan sisi anting dari suatu graf terhubung terhadap bilangan hull detour dan bilangan hull detour titik.

Kata kunci: Detour, bilangan detour, bilangan hull detour, bilangan detour- x, bilangan hull detour- x.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic definitions and terminologies, we refer to $[1,6]$. For vertices x and y in a nontrivial connected graph G, the detour distance $D(x, y)$ is the length of a longest $x-y$ path in G. An $x-y$ path of length $D(x, y)$ is an $x-y$ detour. It is known that the detour distance is a metric on the vertex set $V(G)$. The detour eccentricity of a vertex u is $e_{D}(u)=\max \{D(u, v): v \in V(G)\}$. The detour radius, $\operatorname{rad}_{D}(G)$ of G is the minimum detour eccentricity among the vertices of G, while the detour diameter, $\operatorname{diam}_{D}(G)$ of G is the maximum detour eccentricity among the vertices of G. The detour distance and the detour center of a graph were studied in [2]. The closed detour interval $I_{D}[x, y]$ consists of x, y, and all vertices lying on some $x-y$ detour of G; while for $S \subseteq V(G), I_{D}[S]=\bigcup_{x, y \in S} I_{D}[x, y] ; S$ is a detour set if $I_{D}[S]=V(G)$ and a detour set of minimum cardinality is the detour number $d n(G)$ of G. Any detour set of cardinality $d n(G)$ is the minimum detour set or $d n$-set of G. A vertex x in G is a detour extreme vertex if it is an initial or terminal vertex of any detour containing x. The detour number of a graph was introduced in [3] and further studied in $[4,8]$. These concepts have interesting applications in Channel Assignment Problem in radio technologies [5, 7].

A set S of vertices of a graph G is a detour convex set if $I_{D}[S]=S$. The detour convex hull $[S]_{D}$ of S is the smallest detour convex set containing S. The detour convex hull of S can also be formed from the sequence $\left\{I_{D}^{k}[S], k \geq 0\right\}$, where $I_{D}^{0}[S]=S, I_{D}^{1}[S]=I_{D}[S]$ and $I_{D}^{k}=I_{D}\left[I_{D}^{k-1}[S]\right]$. From some term on, this sequence must be constant. Let p be the smallest number such that $I_{D}^{p}[S]=I_{D}^{p+1}[S]$. Then $I_{D}^{p}[S]$ is the detour convex hull $[S]_{D}$ and we call p as the detour iteration number $\operatorname{din}(S)$ of S. A set S of vertices of G is a detour hull set if $[S]_{D}=V(G)$ and a detour hull set of minimum cardinality is the detour hull number $d h(G)$. The detour hull number of a graph was introduced and studied in [11].

For the graph G given in Figure 1, and $S=\left\{v_{1}, v_{6}\right\}, I_{D}[S]=V-\left\{v_{7}\right\}$ and $I_{D}^{2}[S]=V$. Thus S is a minimum detour hull set of G and so $d_{h}(G)=2$. Since S is not a detour set and $S \cup\left\{v_{7}\right\}$ is a detour set of G, it follows from Theorem 1.2 that $d n(G)=3$. Hence the detour number and detour hull number of a graph are different. Note that the sets $S_{1}=\left\{v_{1}, v_{2}\right\}$ and $S_{2}=\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{7}\right\}$ are detour convex sets in G. Let x be any vertex of G. For a vertex y in $G, I_{G}[y]^{x}$ denotes

Figure 1. Graph G with $d_{h}(G)=2$ and $d n(G)=3$
the set of all vertices distinct from x that lie on some $x-y$ detour of G; while for $S \subseteq V(G), I_{D}[S]^{x}=\bigcup_{y \in S} I_{D}[y]^{x}$. It is clear that $I_{D}[x]^{x}=\phi$. For $x \notin S, S$ is an x-detour set if $I_{D}[S]^{x}=V(G)-\{x\}$ and an x-detour set of minimum cardinality is the x-detour number $d_{x}(G)$ of G. Any x-detour set of cardinality $d_{x}(G)$ is the minimum x-detour set or d_{x}-set of G. The vertex detour number of a graph was introduced and studied in [9].

Let G be a connected graph and x a vertex in G. Let S be a set of vertices in G such that $x \notin S$. Then S is an x-detour convex set if $I_{D}[S]^{x}=S$. The x-detour convex hull of $S,[S]_{D}^{x}$ is the smallest x-detour convex set containing S. The x-detour convex set can also formed from the sequence $\left\{I_{D}^{k}[S]^{x}, k \geq 0\right\}$, where $I_{D}^{0}[S]^{x}=S, I_{D}^{1}[S]^{x}=I_{D}[S]^{x}$ and $I_{D}^{k}[S]^{x}=I_{D}\left[I_{D}^{k-1}[S]^{x}\right]^{x}$. From some term on, this sequence must be constant. Let p_{x} be the smallest number such that $I_{D}^{p_{x}}[S]^{x}=$ $I_{D}^{p_{x}+1}[S]^{x}$. Then $I_{D}^{p_{x}}[S]^{x}$ is the x-detour convex hull $[S]_{D}^{x}$ of S and we call p_{x} as the x-detour iteration number $\operatorname{din}_{x}(S)$ of S. The set S is an x-detour hull set if $[S]_{D}^{x}=V(G)-\{x\}$ and an x-detour hull set of minimum cardinality is the x detour hull number $d h_{x}(G)$ of G. Any x-detour hull set of cardinality $d h_{x}(G)$ is the minimum x-detour hull set or d_{x}-hull set of G.

For the graph G in Figure 2, the minimum vertex detour hull numbers and vertex detour numbers are given in Table 1. Table 1 shows that, for a vertex x, the x-detour number and the x-detour hull number of a graph are different.

Figure 2. G
Table 1. x-detour numbers and x-detour hull numbers of G in Figure 2

Vertex	Minimum vertex detour sets	Minimum vertex detour hull sets	$\begin{gathered} \text { Vertex } \\ \text { detour } \\ \text { number } \\ \hline \end{gathered}$	Vertex detour hull number
x	$\{y, w\},\{z, w\},\{u, w\}$	[w]	2	1
y	[w]	[w]	1	1
z	[w]	[w]	1	1
u	[w]	[w]	1	1
v	$\{y, w],\{z, w],\{u, w]$	$[x, w],[y, w],\{z, w],[u, w\}$	2	2
w	\{y], $\{z\},\{u\}$	$\{x\},\{y\},\{z\},\{u\}$	1	1

It is clear that every minimum x-detour hull set of a connected graph G of order n contains at least one vertex and at most $n-1$ vertices. Also, since every x-detour set is a x-detour hull set, we have the following proposition. Throughout this paper G denotes a connected graph with at least two vertices. The following theorems will be used in the sequel.

Theorem 1.1. [11] Let G be a connected graph. Then
(i) Each detour extreme vertex of G belongs to every detour hull set of G.
(ii) No cut vertex of G belongs to any minimum detour hull set of G.

Theorem 1.2. [9] Each end vertex of G other than x (whether x is an end vertex or not) belongs to every minimum x-detour set of G.

Theorem 1.3. [10] Let x be a vertex of a connected graph G. Let S be any x-detour hull set of G. Then
(i) Each x-detour extreme vertex of G belongs to S.
(ii) If v is a cut vertex of G and C a component of $G-v$ such that $x \notin V(C)$, then $S \cap V(C) \neq \emptyset$.
(iii) No cut-vertex of G belongs to any minimum x-detour hull set of G.

Theorem 1.4. [10] For any vertex x in a connected graph G of order $n, d h_{x}(G) \leq$ $n-e_{D}(x)$.
2. Graphs of Order n with Vertex Detour Hull Number $n-1, n-2$

$$
\text { AND } n-3
$$

Theorem 2.1. Let G be a connected graph of order $n \geq 2$. Then $d h_{x}(G)=n-1$ for every vertex x in G if and only if $G=K_{2}$.

Proof. Suppose that $G=K_{2}$. Then $d h_{x}(G)=1=n-1$. The converse follows from Theorem 1.4.

Theorem 2.2. Let G be a connected graph of order $n \geq 3$. Then $d h_{x}(G)=n-2$ for every vertex x in G if and only if $G=K_{3}$.

Proof. Suppose that $G=K_{3}$. Then it is clear that $d h_{x}(G)=1=n-2$ for every vertex x in G. Conversely, suppose that $d h_{x}(G)=n-2$ for every vertex x in G. Then by Theorem 1.4, $e_{D}(x) \leq 2$ for every vertex x in G. It follows from Theorem 2.1 that $e_{D}(x) \neq 1$ for every vertex x in G. Thus $e_{D}(x)=2$ for every vertex x in G; or the vertex set can be partitioned into V_{1} and V_{2} such that $e_{D}(x)=1$ for $x \in V_{1}$ and $e_{D}(x)=2$ for $x \in V_{2}$. Thus either $\operatorname{rad}_{D}(G)=\operatorname{diam}_{D}(G)=2$; or we have $\operatorname{rad}_{D}(G)=1$ and $\operatorname{diam}_{D}(G)=2$. This implies that either $G=K_{3}$ or $G=K_{1, n-1}$. If $G=K_{1, n-1}$, then by Theorem 1.3, $d h_{x}(G)=n-1$ for the cut vertex x and $d h_{y}(G)=n-2$ for any end vertex y in G, which is a contradiction to the hypothesis. Hence $G=K_{3}$.

Theorem 2.3. Let G be a connected graph of order $n \geq 2$. Then $G=K_{1, n-1}$ if and only if the vertex set $V(G)$ can be partitioned into two sets V_{1} and V_{2} such that $d h_{x}(G)=n-1$ for $x \in V_{1}$ and $d h_{y}(G)=n-2$ for $y \in V_{2}$.

Proof. Suppose that $G=K_{1, n-1}$. Then $d h_{x}(G)=n-1$ for the cut vertex x in G and $d h_{y}(G)=n-2$ for any end vertex y in G. Conversely, suppose that the vertex set $V(G)$ can be partitioned into two sets V_{1} and V_{2} such that $d h_{x}(G)=n-1$ for $x \in V_{1}$; and we have $d h_{y}(G)=n-2$ for $y \in V_{2}$. Then by Theorem 1.4, $e_{D}(x)=1$ for each $x \in V_{1}$ and $e_{D}(y)=1$ or $e_{D}(y)=2$ for each $y \in V_{2}$. It follows from Theorem 2.1 that $e_{D}(y)=2$ for some $y \in V_{2}$. Hence $\operatorname{rad}_{D}(G)=1$ and $\operatorname{diam}_{D}(G)=2$. Thus $G=K_{1, n-1}$.
Theorem 2.4. Let G be a connected graph of order $n \geq 5$. Then G is a double star or $G=K_{1, n-1}+e$ if and only if the vertex set $V(G)$ can be partitioned into two sets V_{1} and V_{2} such that $d h_{x}(G)=n-2$ for $x \in V_{1}$ and $d h_{y}(G)=n-3$ for $y \in V_{2}$.

Proof. Suppose that G is a double star or $G=K_{1, n-1}+e$. Then it follows from Theorem 1.3 that $d h_{x}(G)=n-2$ or $d h_{x}(G)=n-3$ according to whether x is a cut vertex of G or not. Conversely, suppose that $d h_{x}(G)=n-2$ for $x \in V_{1}$ and $d h_{x}(G)=n-3$ for $x \in V_{2}$. Then by Theorem 1.4, $e_{D}(x) \leq 3$ for every x and so $\operatorname{diam}_{D}(G) \leq 3$. It follows from Theorem 2.1 that $G \neq K_{2}$ and so $\operatorname{diam}_{D}(G) \geq 2$. If $\operatorname{diam}_{D}(G)=2$, then G is the star $K_{1, n-1}$ and by Theorem $2.3, d h_{x}(G)=n-1$ or $d h_{x}(G)=n-2$ for every vertex x. This is a contradiction to the hypothesis. Now, suppose that $\operatorname{diam}_{D}(G)=3$. If G is a tree, then G is a double star. If G is not a tree, then it is clear that $3 \leq \operatorname{cir}(G) \leq 4$, where $\operatorname{cir}(G)$ denotes the length of a longest cycle in G. We prove that $\operatorname{cir}(G)=3$. Suppose that $\operatorname{cir}(G)=4$. Let $C_{4}: v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ be a 4 -cycle in G. Since $n \geq 5$ and G is connected, there is a vertex x not on C_{4} such that x is adjacent to some vertex say, v_{1} of G. Then $x, v_{1}, v_{2}, v_{4}, v_{4}$ is a path of length 4 in G and so $\operatorname{diam}_{D}(G) \geq 4$, which
is a contradiction. Thus $\operatorname{cir}(G)=3$. Also, if G contains two or more cycles, then it follows that $\operatorname{diam}_{D}(G) \geq 4$. Hence G contains a unique triangle, say $C_{3}: v_{1}, v_{2}, v_{3}, v_{1}$. Since $n \geq 5$, at least one vertex of C_{3} has degree at least 3. If there are two or more vertices of C_{3} having degree at least 3 , then $\operatorname{diam}_{D}(G) \geq 4$, which is a contradiction. Thus exactly one vertex of C_{3} has degree at least 3 and it follows that $G=K_{1, n-1}+e$. This completes the proof.

3. Detour and Vertex Detour Hull Numbers and Addition of A Pendant Edge

In this section we discuss how the detour hull number and the vertex detour hull number of a connected graph are affected by adding a pendant edge to G. Let G^{\prime} be a graph obtained from a connected graph G by adding a pendant edge $u v$, where u is not a vertex of G and v is a vertex of G.

Theorem 3.1. If G^{\prime} is a graph obtained from a connected graph G by adding a pendant edge $u v$ at a vertex v of G, then $d_{h}(G) \leq d_{h}\left(G^{\prime}\right) \leq d_{h}(G)+1$.

Proof. Let S be a minimum detour hull set of G and let $S^{\prime}=S \cup\{u\}$. We show that S^{\prime} is a detour hull set of G^{\prime}. Let $x \in V\left(G^{\prime}\right)$. If $x=u$, then $x \in S^{\prime}$. So, assume that $x \in V(G)$. Then $x \in I_{D}^{k}[S]_{G}$ for some $k \geq 0$. Since $I_{D}^{n}[S]_{G}=I_{D}^{n}[S]_{G^{\prime}}$ for all $n \geq 0$, we have $x \in I_{D}^{k}[S]_{G^{\prime}}$. Also, since $S \subseteq S^{\prime}$, we see that $I_{D}^{n}[S]_{G^{\prime}} \subseteq I_{D}^{n}\left[S^{\prime}\right]_{G^{\prime}}$ for all $n \geq 0$. Hence $x \in I_{D}^{k}\left[S^{\prime}\right]_{G^{\prime}}$. This implies that S^{\prime} is a detour hull set of G^{\prime} so that $d_{h}\left(G^{\prime}\right) \leq\left|S^{\prime}\right|=|S|+1=d_{h}(G)+1$. For the lower bound, let S^{\prime} be a minimum detour hull set of G^{\prime}. Then by Theorem 1.1, $u \in S^{\prime}$ and $v \notin S^{\prime}$. Let $S=\left(S^{\prime}-\{u\}\right) \cup\{v\}$. We prove that S is a detour hull set of G. For this, first we claim that $I_{D}^{k}\left[S^{\prime}\right]_{G^{\prime}}-\{u\} \subseteq I_{D}^{k}[S]_{G}$ for all $k \geq 0$. We use induction on k. Since $S^{\prime}-\{u\} \subseteq S$, the result is true for $k=0$. Let $k=1$ and let $x \in I_{D}\left[S^{\prime}\right]_{G^{\prime}}-\{u\}$. Then $x \neq u$. If $x \in S^{\prime}$, then $x \in S \subseteq I_{D}[S]_{G}$. If $x \notin S^{\prime}$, then there exist $y, z \in S^{\prime}$ such that $x \in I_{D}[y, z]_{G^{\prime}}$ with $x \neq y, z$. If $y \neq u$ and $z \neq u$, then $y, z \in S$ and so $I_{D}[y, z]_{G}=I_{D}[y, z]_{G^{\prime}}$. Thus $x \in I_{D}[S]_{G}$. Now, let $y=u$ or $z=u$, say $z=u$. Since v is a cut vertex of G^{\prime}, it follows that $x \in I_{D}[y, v]_{G^{\prime}}=I_{D}[y, v]_{G}$ and hence $x \in I_{D}[S]_{G}$. Assume that the result is true for $k=l$. Then $I_{D}^{l}\left[S^{\prime}\right]_{G^{\prime}}-\{u\} \subseteq I_{D}^{l}[S]_{G}$. Now, let $x \in I_{D}^{l+1}\left[S^{\prime}\right]_{G^{\prime}}-\{u\}$. If $x \in I_{D}^{l}\left[S^{\prime}\right]_{G^{\prime}}$, then by induction hypothesis, we have $x \in I_{D}^{l}[S]_{G} \subseteq I_{D}^{l+1}[S]_{G}$. If $x \notin I_{D}^{l}\left[S^{\prime}\right]_{G^{\prime}}$, then there exist $y, z \in I_{D}^{l}\left[S^{\prime}\right]_{G^{\prime}}$ such that $x \in I_{D}[y, z]_{G^{\prime}}$ with $x \neq y, z$. If $y \neq u$ and $z \neq u$, then it follows from induction hypothesis that $y, z \in I_{D}^{l}[S]_{G}$. Also, since $I_{D}[y, z]_{G^{\prime}}=I_{D}[y, z]_{G}$, we have $x \in I_{D}^{l+1}[S]_{G}$. Let $y=u$ or $z=u$, say $z=u$. Then $y \neq u$ and so by induction hypothesis, $y \in I_{D}^{l}[S]_{G}$. Since v is a cut vertex of G^{\prime}, it follows that $x \in I_{D}[y, v]_{G^{\prime}}=I_{D}[y, v]_{G}$. Also, since $v \in S \subseteq I_{D}^{l}[S]_{G}$, it follows that $x \in I_{D}^{l+1}[S]_{G}$. Hence the proof of the claim is complete by induction. Now, since S^{\prime} is a minimum detour hull set of G^{\prime}, there is an integer $r \geq 0$ such that $I_{D}^{r}\left[S^{\prime}\right]_{G^{\prime}}=V\left(G^{\prime}\right)$ and it follows from the above claim that $I_{D}^{r}[S]_{G}=V(G)$. Thus S is a detour hull set of G so that $d_{h}(G) \leq|S|=\left|S^{\prime}\right|=d_{h}\left(G^{\prime}\right)$. This completes the proof.

Remark 3.2. The bounds for $d_{h}\left(G^{\prime}\right)$ in Theorem 3.1 are sharp. Let G^{\prime} be the graph obtained from the graph G in Figure 3, by adding a pendant edge at one of its end vertices. Then $d_{h}\left(G^{\prime}\right)=d_{h}(G)=2$. If G^{\prime} is obtained from G by adding a pendant edge at one of its cut vertices, then $d_{h}\left(G^{\prime}\right)=d_{h}(G)+1$.

Figure 3. Graph G with $d_{h}\left(G^{\prime}\right)=d_{h}(G)+1$

Theorem 3.3. Let G^{\prime} be a graph obtained from a connected graph G by adding a pendant edge uv at a vertex v of G. Then $d_{h}(G)=d_{h}\left(G^{\prime}\right)$ if and only if v is a vertex of some minimum detour hull set of G.

Proof. First, assume that there is a minimum detour hull set S of G such that $v \in S$. Let $S^{\prime}=(S-\{v\}) \cup\{u\}$. Then $\left|S^{\prime}\right|=|S|$. We show that S^{\prime} is a detour hull set of G^{\prime}. First, we claim that $I_{D}^{k}[S]_{G} \subseteq I_{D}^{k+1}\left[S^{\prime}\right]_{G^{\prime}}$ for all $k \geq 0$. We prove this by using induction on k. Let $k=0$. Let $x \in S$. If $x \neq v$, then $x \in S^{\prime} \subseteq I_{D}\left[S^{\prime}\right]_{G^{\prime}}$. If $x=v$, then $x \in I_{D}[y, u]_{G^{\prime}} \subseteq I_{D}\left[S^{\prime}\right]_{G^{\prime}}$, where $y \in S$ such that $y \neq v$. Thus $S \subseteq I_{D}\left[S^{\prime}\right]_{G^{\prime}}$. Assume the result for $k=l$. Then $I_{D}^{l}[S]_{G} \subseteq I_{D}^{l+1}\left[S^{\prime}\right]_{G^{\prime}}$. Let $x \in I_{D}^{l+1}[S]_{G}$. If $x \in I_{D}^{l}[S]_{G}$, then by induction hypothesis, $x \in I_{D}^{l+1}\left[S^{\prime}\right]_{G^{\prime}} \subseteq I_{D}^{l+2}\left[S^{\prime}\right]_{G^{\prime}}$. If $x \notin I_{D}^{l}[S]_{G}$, then there exist $y, z \in I_{D}^{l}[S]_{G}$ such that $x \in I_{D}[y, z]_{G}=I_{D}[y, z]_{G^{\prime}}$. By induction hypothesis, we have $y, z \in I_{D}^{l+1}\left[S^{\prime}\right]_{G^{\prime}}$ and so $x \in I_{D}^{l+2}\left[S^{\prime}\right]_{G^{\prime}}$. Hence by induction $I_{D}^{k}[S]_{G} \subseteq I_{D}^{k+1}\left[S^{\prime}\right]_{G^{\prime}}$ for all $k \geq 0$. Now, since S is a detour hull set of G, there exists an integer $r \geq 0$ such that $I_{D}^{r}[S]_{G}=V(G)$ and it follows from the above claim that $I_{D}^{r+1}\left[S^{\prime}\right]_{G^{\prime}}=V\left(G^{\prime}\right)$. Thus S^{\prime} is a detour hull set of G so that $d_{h}\left(G^{\prime}\right) \leq\left|S^{\prime}\right|=|S|=d_{h}(G)$. The other inequality follows from Theorem 3.1.

Conversely, let $d_{h}(G)=d_{h}\left(G^{\prime}\right)$. Let S^{\prime} be a minimum detour hull set of G^{\prime}. Then by Theorem 1.3, u $\in S^{\prime}$ and $v \notin S^{\prime}$. Let $S=\left(S^{\prime}-\{u\}\right) \cup\{v\}$. Then, as in the proof of Theorem 3.1, we can prove that S is a detour hull set of G. Since $|S|=\left|S^{\prime}\right|=d_{h}\left(G^{\prime}\right)=d_{h}(G)$, we see that S is a minimum detour hull set of G and $v \in S$. This completes the proof.

Theorem 3.4. Let G be a connected graph and let x be any vertex in G. If G^{\prime} is a graph obtained from G by adding a pendant edge $x u$, then $d h_{x}\left(G^{\prime}\right)=d h_{x}(G)+1$.

Proof. Let S be a minimum x-detour hull set of G and let $S^{\prime}=S \cup\{u\}$. Then, as in Theorem 3.1, it is straight forward to verify that $I_{D}^{n}[S]_{G}^{x} \subseteq I_{D}^{n}\left[S^{\prime}\right]_{G^{\prime}}^{x}$ for all $n \geq 0$. Since S is an x-detour hull set of G, there is an integer $r \geq 0$ such that
$I_{D}^{r}[S]_{G}^{x}=V(G)-\{x\}$ and it is clear that $I_{D}^{r}\left[S^{\prime}\right]_{G^{\prime}}^{x}=V\left(G^{\prime}\right)-\{x\}$. Hence S^{\prime} is an x-detour hull set of G^{\prime} so that $d h_{x}\left(G^{\prime}\right) \leq\left|S^{\prime}\right|=d h_{x}(G)+1$. Now, suppose that $d h_{x}\left(G^{\prime}\right)<d h_{x}(G)+1$. Let S^{\prime} be a minimum x-detour hull set of G^{\prime}. Then, by Theorem 1.3, $u \in S^{\prime}$. Let $S=S^{\prime}-\{u\}$. Then, as in Theorem 3.1, it is straight forward to prove that $I_{D}^{n}\left[S^{\prime}\right]_{G^{\prime}}^{x}-\{u\} \subseteq I_{D}^{n}[S]_{G}^{x}$ for all $n \geq 0$. Since S^{\prime} is an x-detour hull set of G^{\prime}, there is an integer $r \geq 0$ such that $I_{D}^{r}\left[S^{\prime}\right]_{G^{\prime}}^{x}=V\left(G^{\prime}\right)-\{x\}$. Hence $I_{D}^{r}[S]_{G}^{x}=V(G)-\{x\}$. Thus S is an x-detour hull set of G so that $d h_{x}(G) \leq|S|=$ $d h_{x}\left(G^{\prime}\right)-1$, which is a contradiction to $d h_{x}\left(G^{\prime}\right)<d h_{x}(G)+1$. Hence the result follows.

Theorem 3.5. Let G^{\prime} be a graph obtained from a connected graph G by adding a pendant edge uv at a vertex v of G. Then $d h_{u}\left(G^{\prime}\right)=d h_{v}(G)$.

Proof. Let S be a minimum v-detour hull set of G. Then $v \notin S$. As in Theorem 3.1, it is straight forward to prove that $I_{D}^{n}[S]_{G}^{v} \subseteq I_{D}^{n}[S]_{G^{\prime}}^{u}$ for all $n \geq 0$. Since S is a v detour hull set of G, there is an integer $r \geq 0$ such that $I_{D}^{r}[S]_{G}^{v}=V(G)-\{v\}$. Now, since $v \in I_{D}[z]_{G}^{u}$ for any $z \in S$, it follows that $I_{D}^{r}[S]_{G}^{u}=V\left(G^{\prime}\right)-\{u\}$. Hence S is a u detour hull set of G^{\prime} so that $d h_{u}\left(G^{\prime}\right) \leq|S|=d h_{v}(G)$. For the other inequality, let T be a minimum u-detour hull set of G^{\prime}. Then $u \notin T$ and by Theorem 1.3(iii), $v \notin T$. As in Theorem 3.1, it is straight forward to prove that $I_{D}^{n}[T]_{G^{\prime}}^{u}-\{v\} \subseteq I_{D}^{n}[T]_{G}^{v}$ for all $n \geq 0$. Since T is a u-detour hull set of G^{\prime}, there is an integer $r \geq 0$ such that $I_{D}^{r}[T]_{G^{\prime}}^{u}=V\left(G^{\prime}\right)-\{u\}$. Hence it follows that $I_{D}^{r}[T]_{G}^{v}=V(G)-\{v\}$ and T is a v-detour hull set of G. Thus $d h_{v}(G) \leq|T|=d h_{u}\left(G^{\prime}\right)$. This completes the proof.

Theorem 3.6. Let G be a connected graph and x any vertex of G. Let G^{\prime} be a graph obtained from G by adding a pendant edge uv at a vertex $v \neq x$ of G. Then $d h_{x}(G) \leq d h_{x}\left(G^{\prime}\right) \leq d h_{x}(G)+1$.
Proof. The proof is similar to Theorem 3.1.
Theorem 3.7. Let G be a connected graph and x any vertex of G. Let G^{\prime} be a graph obtained from G by adding a pendant edge uv at a vertex $v \neq x$ of G. Then $d h_{x}(G)=d h_{x}\left(G^{\prime}\right)$ if and only if v belongs to some minimum x-detour hull set of G.

Proof. The proof is similar to Theorem 3.3.

References

[1] Buckley, F., and Harary, F., Distance in Graphs, Addison-Wesley, Reading MA, 1990.
[2] Chartrand, G., Escuadro, H., and Zhang, P., "Detour distance in graphs", J. Combin. Math. Combin. Comput., 53 (2005), 75-94.
[3] Chartrand, G., Johns, G.L., and Zhang P., "Detour number of a graph", Util. Math., 64 (2003), 97-113.
[4] Chartrand, G., Johns, G.L., and Zhang P., "On the detour number and geodetic number of a graph", Ars Combinatoria, 72 (2004), 3-15.
[5] Chartrand, G., Nebesky, L., and Zhang, P., "A survey of Hamilton colorings of graphs", Preprint.
[6] Chartrand, G., and Zhang, P., Introduction to Graph Theory, Tata McGraw- Hill Edition, New Delhi, 2006.
[7] Hale, W., "Frequency Assignment; Theory and Applications", Proc. IEEE, 68 (1980), 14971514.
[8] Santhakumaran, A.P., and Athisayanathan, S., "Connected detour number of a graph", J. Combin. Math. Combin. Comput., 69 (2009), 205-218.
[9] Santhakumaran, A.P., and Titus, P., "The vertex detour number of a graph", AKCE J. Graphs. Combin., 4:1 (2007), 99-112.
[10] Santhakumaran, A.P., and Ullas Chandran, S.V., "The vertex detour hull number of a graph", Discuss. Math. Graph Theory, 32 (2012), 319-328.
[11] Santhakumaran, A.P., and Ullas Chandran, S.V., "The detour hull number of a graph", Algebra \& Discrete Math., 14:2 (2012), 307-322.

[^0]: 2000 Mathematics Subject Classification: 05C12
 Received: 27-08-2013, revised: 21-01-2014, accepted: 21-01-2014.

