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Abstract. Let G = (V,E) be a graph of order n. A bijection f : V (G) →
{1, 2, · · · , n} is called inclusive distance antimagic labeling if w(u) ̸= w(v) for any

two distinct vertices u, v ∈ V (G), where w(v) =
∑

x∈N [v]

f(x). We start our dis-

cussion with the connection between distance magic labeling and inclusive distance

antimagic labeling. Then, we investigate the existence of an inclusive distance an-

timagic labeling for circulant graphs, disjoint union graphs, and join graphs.
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1. INTRODUCTION

All graphs in this paper are considered to be finite, simple, and undirected.
The concept of magic labeling based on distance was separately introduced by
Vilfred [1] in his doctoral thesis in 1994 and Miller et al. [2] in 2003 with the
following definition.

Definition 1.1. Let G = (V,E) be a graph of order n. A bijection f : V (G) →
{1, 2, · · · , n} is called a distance magic labeling if there exists a positive integer k
such that

∑
x∈N(v) f(x) = k, for every v ∈ V (G). The constant k is referred to as

the magic constant of the labeling f . The sum
∑

x∈N(v) f(x) is called the weight of

vertex v under f , and is denoted as w(v). If a graph G admits a distance magic
labeling, then G is called a distance magic graph, or G is distance magic.

Research on distance magic labeling has been extensively conducted for sev-
eral families of graphs. Furthermore, studies on distance-based labeling has ex-
panded into several variants, one example of which is graph labeling considering
that all weights must be distinct, with the vertex weight defined as the sum of labels
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of all its closed neighbors. This notion was termed as inclusive distance antimagic
labeling, introduced by Dafik et al. [3] with the definition as follows:

Definition 1.2. Let G = (V,E) be a graph of order n. A bijection f : V (G) →
{1, 2, · · · , n} is called an inclusive distance antimagic labeling if w(u) ̸= w(v) for
any two distinct vertices u, v ∈ V (G), where w(v) =

∑
x∈N [v] f(x). The set N [v]

is the closed neighborhod of vertex v, and is defined as N(v) ∪ v. If the graph G
admits such a labeling, then G is said to be an inclusive distance antimagic graph,
or G is inclusive distance antimagic.

Observation 1.3. If a graph G is inclusive distance antimagic, then for any two
distinct vertices u and v, we have N [u] ̸= N [v].

Conjecture 1.4. A graph G is inclusive distance antimagic if and only if G does
not have two vertices with the same closed neighborhood.

From the notion of inclusive distance antimagic labeling, they investigate the
existence of such a labeling for various simple graphs.

Theorem 1.5. [3] The Complete graph Kn is not inclusive distance antimagic.

Theorem 1.6. [3] The Path graph Pn is inclusive distance antimagic, for n ̸= 2.

Theorem 1.7. [3] The Cycle graph Cn is inclusive distance antimagic, for n ̸= 2, 3.

The term distance-based labeling was generalized by O’Neal and Slater [4,
5] for distance magic labeling, and by Simanjuntak and Wijaya [6] for distance
antimagic labeling, by defining the notation for the labeling weight as w(v) =∑

x∈ND(v) f(x), whereND(v) = {y ∈ V (G)|d(v, y) ∈ D} andD ⊆ {0, 1, · · · , diam(G)},
with diam(G) denotes the diameter of graph G. If all vertices have the same weight,
we call the labeling a D−distance magic labeling, whereas if all vertices have dis-
tinct weights, we call the labeling a D−distance antimagic labeling.

If D = {1}, a D-distance magic labeling is a distance magic labeling and
D-distance antimagic labeling is distance antimagic labeling. For D = {0, 1}, a
D-distance antimagic labeling is an inclusive distance antimagic labeling. Ngurah
[7] proved that for D ⊆ {0, 1, · · · diam(G)}, if a graph G has a D−distance magic
labeling, then G also has a (D ∪ {0})−distance antimagic labeling. For the case
D = {1}, then this statement can be rewritten in the theorem as follows:

Theorem 1.8. [7] If G is a distance magic graph, then G is inclusive distance
antimagic.

Extensive research has been conducted on the existence of distance magic
labeling in certain graphs. Miller et al. [2] provided several simple observations
for certain graphs that have distance magic labeling, such as path graphs P1 and
P3, cycle graph C4, complete graph K1, and wheel graph W4 (Wheel graph W4

isomorphic with C4 + K1). Additionally, Cichacz and Froncek [8] proved that
the circulant graph C2p+2(1, p) is distance magic, followed by the circulant graph
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C2(p2−1)(1, p), for p even, is also distance magic. According to Theorem 1.8, these
graphs are also inclusive distance antimagic.

The following corollary represents the contrapositive of Theorem 1.8:

Corollary 1.9. If graph G is not inclusive distance antimagic, then G is not dis-
tance magic.

Corollary 1.10. If graph G has pairs of vertices with the same closed neighborhood,
then G is not distance magic.

In this paper, we will present the existence of inclusive distance antimagic
labeling for circulant graphs, disjoint union graphs, and join graphs. This paper
also discusses some examples of graph that have pairs of vertices with the same
closed neighborhood. According to Corollary 1.10, these graphs are not distance
magic.

2. CIRCULANT GRAPHS

As stated in Theorem 1.5, complete graph Kn is not inclusive distance an-
timagic, mainly because all vertices in Kn has the same closed neighborhood set,
which is V (Kn) itself. Since Kn is a regular graph, then Dafik et al. [3] proposed
a conjecture regarding the inclusive distance antimagic property in regular graphs.

Conjecture 2.1. Every r-regular graph except complete graph Kn is inclusive dis-
tance antimagic.

In this section, several examples of regular graphs will be given that have at
least two vertices with the same closed neighborhood set. According to Observa-
tion 1.3, these graphs are not inclusive distance antimagic. This also serves as a
counterexample to Conjecture 2.1. Circulant graphs are regular graphs where some
of them have at least one pair of vertices with the same closed neighborhood set.

Definition 2.2. Let 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤
⌊n
2

⌋
, where n and ai, i =

1, 2, · · · , k are positive integers. The Circulant Graph Cn(a1, a2, · · · , ak) is a reg-
ular graph of order n with vertex set V = {v0, v1, · · · , vn−1} and edge set E =
{viv(i+aj) mod n | i = 0, 1, · · · , n−1 and j = 1, 2, · · · , k}. The numbers a1, a2, · · · , ak
are called the generators of the circulant graph.

For example, circulant graph C6(1, 3) is a graph with vertex set V = {v0, v1,
v2, v3, v4, v5} and edge set E = {v0v1, v1v2, v2v3, v3v4, v4v5, v5v0, v0v3, v1v4, v2v5},
as shown in Figure 1.
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Figure 1. A Circulant Graph C6(1, 3)

Theorem 2.3. Let 1 ≤ a1 < a2 < n are positive integers such that a1 + a2 =
n. Then circulant graph C2n(a1, a2, n) has pairs of vertices with the same closed
neighborhood set, which means the graph is not inclusive distance antimagic.

Proof. Suppose graph C2n(a1, a2, n) with vertex set V = {v0, v1, v2, · · · v2n−1}.
Consider two vertices v0 and vn. Since a1 < a2 < n, the closed neighborhood
of v0 is N [v0] = {v0, va1 , va2 , vn, v2n−a2 , v2n−a1}, and the closed neighborhood of
vn is N [vn] = {v0, vn−a2

, vn−a1
, vn, vn+a1

, vn+a2
}. However, since a1 + a2 = n,

it follows that va1
= vn−a2

, va2
= vn−a1

, v2n−a2
= vn+a1

, and v2n−a1
= vn+a2

.
Therefore, v0 and vn have the same closed neighborhood set. □

Figure 2 below shows the circulant graph C8(1, 3, 4), which, according to
Theorem 2.3 is not inclusive distance antimagic since v0 and v4 have the same
closed neighborhood set N [v0] = N [v4] = {v0, v1, v3, v4, v5, v7}.

v0

v1

v2

v3

v4

v5

v6

v7

Figure 2. A Circulant Graph C8(1, 3, 4)

Here we present several corollaries from Theorem 2.3.
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Corollary 2.4. Let k is an even number, and a1, a2, ..., ak, n are natural numbers
with a1 < a2 < · · · < ak < n. If ai + ak−i+1 = n for every i ≤ k

2 , then circulant
graph C2n(a1, a2, · · · , ak, n) is not inclusive distance antimagic.

Corollary 2.5. Let k and n are even number, and a1, a2, ..., ak are natural numbers
with a1 < a2 < · · · < ak < n. If ai + ak−i+1 = n for every i ≤ k

2 , then circulant
graph C2n(a1, a2, · · · , a k

2
, n
2 , a k

2+1, · · · , ak, n) is not inclusive distance antimagic.

Theorem 2.6. Suppose the set S ⊂ V (G) forms a complete subgraph in graph G.
If for every pair of vertices u, v ∈ S it holds that N(u)−S = N(v)−S, then graph
G is not inclusive distance antimagic.

Proof. For two vertices u, v ∈ S, N [u] = S∪(N(u)−S) and N [v] = S∪(N(v)−S).
Since N(u)− S = N(v)− S, it follows that N [u] = N [v]. □

Let p, q, n > 1 be positive integers such that pq = n. The circulant graph
Cn(p, 2p, 3p, · · · ) with vertex set V = {v0, v2, · · · , vn−1} and all of its generators less
than or equal to

⌊
n
2

⌋
, is isomorphic to pKq, that is p copies of the complete graph

Kq. For a positive integer k ≤
⌊
p
2

⌋
, by adding generators k, p−k, p+k, 2p−k, 2p+

k, · · · , circulant graph Cn(k, p− k, p, p+ k, 2p− k, 2p, 2p+ k, · · · ) is an example of
the graph that satisfies Theorem 2.6, with one of its sets S = {v0, vp, · · · v(q−1)p}.

Corollary 2.7. Let p, q, n > 1 be positive integers such that pq = n. For a positive
integer k ≤

⌊
p
2

⌋
, circulant graph Cn(k, p− k, p, p+ k, 2p− k, 2p, 2p+ k, · · · ) is not

inclusive distance antimagic.

3. DISJOINT UNION OF GRAPHS

In this section, we provide the definition of disjoint union of two or more
graphs, then we explore the properties of inclusive distance antimagic labeling of
the disjoint union of graphs.

Definition 3.1. The disjoint union between two graphs G and H, denoted as G∪H,
is a disconnected graph with its components are G and H. It means that V (G∪H) =
V (G)∪V (H) and E(G∪H) = E(G)∪E(H). The disjoint union of more than two
graphs, G1, G2, · · · , Gn, is denoted as

⋃n
i=1 Gi. If each graph Gi is isomorphic to

graph G, then the disjoint union is denoted as nG.

Theorem 3.2. Let G be an inclusive distance antimagic graph, and H be an
h−regular inclusive distance antimagic graph. If ∆(G) ≤ h, then G ∪ H is also
an inclusive distance antimagic graph.

Proof. Let fG and fH be the inclusive distance antimagic labeling for G and H,
respectively. Let |V (G)| = m, and define the labeling fG∪H for G ∪H as follows:

fG∪H(v) =

{
fG(v), v ∈ V (G)

fH(v) +m, v ∈ V (H).
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Let wG, wH , and wG∪H be the weight of vertices based on the labeling fG, fH , and
fG∪H , respectively. Since H is an h−regular graph, then the weight of vertices in
graph G ∪H are:

wG∪H(v) =

{
wG(v), v ∈ V (G)

wH(v) + (h+ 1)m, v ∈ V (H).

For each vertex v in graph G, it holds that wG(v) < m(∆(G) + 1). Since ∆G ≤ h,
therefore for every vertex v in G and y in H

wG∪H(v) = wG(v) < m(∆(G) + 1) ≤ m(h+ 1) < wH(y) +m(h+ 1) = wG∪H(y).

Hence, under the labeling fG∪H , every vertex in graph G ∪H has distinct weight.
Thus, G ∪H is an inclusive distance antimagic graph. □

Theorem 3.3. Let R1, R2, · · · , Rn be regular inclusive distance antimagic graphs.
Then

⋃n
i=1 Ri is an inclusive distance antimagic graph.

Proof. Let ri be the degree of regular graph Ri, for 1 ≤ i ≤ n. Without loss of
generality, assume r1 ≤ r2 ≤ · · · ≤ rn. We will use mathematical induction to prove

the statement that
⋃k

i=1 Ri is inclusive distance antimagic for all k. For k = 1, the
statement is true since R1 is inclusive distance antimagic. Now assume that the
statement holds true for k = n − 1, i.e.,

⋃n−1
i=1 Ri is inclusive distance antimagic.

We want to prove that (
⋃n−1

i=1 Ri) ∪ Rn is also inclusive distance antimagic. Note

that since r1 ≤ r2 ≤ · · · ≤ rn, then ∆(
⋃n−1

i=1 Ri) = rn−1 ≤ rn. By Theorem 3.2,

(
⋃n−1

i=1 Ri) ∪Rn is also inclusive distance antimagic. □

Since ∆(Pn) = ∆(Cn) = 2, then based on the results by Dafik et al. [3] in
Theorems 1.6 and 1.7, and using Theorems 3.2 and 3.3, we can derive the following
corollaries:

Corollary 3.4. Graph Pm ∪ Cn is inclusive distance antimagic, for m ̸= 2 and
n ̸= 2, 3.

Corollary 3.5. Graph
⋃n

i=1 Cki
is inclusive distance antimagic, for ki ̸= 2, 3.

4. JOIN OF GRAPHS

In this section, we provide a definition of the join of graphs, followed by
presenting several theorems related to the existence of inclusive distance antimagic
property of join of graphs.

Definition 4.1. The join between two graphs G and H, denoted by G + H, is a
graph with vertex set and edge set as follows:

V (G+H) = V (G) ∪ V (H)

E(G+H) = E(G) ∪ E(H) ∪ {uv|u ∈ V (G), v ∈ V (H).}

Dafik et al. [3] provide an example of join graphs that are not inclusive
distance antimagic, such as P2 +H, (P2 ∪mK1) +H, and Kn +H. The following
theorem summarizes those results more generally.
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Theorem 4.2. Let H be any graph, and G be a graph that has pairs of vertices
with the same closed neighborhood set (meaning graph G is not inclusive distance
antimagic). Then G+H is not an inclusive distance antimagic graph.

Proof. If there are two vertices in G, say u and v, have same closed neighborhood
set in G, then u and v also have same closed neighborhood set in G +H. This is
because in G +H, every vertex in graph G is connected to every vertex in graph
H, including u and v. □

Corollary 4.3. If any of the graphs G1, G2, · · ·Gn has pairs of vertices with the
same closed neighborhood set, then G1 +G2 + · · ·+Gn is not an inclusive distance
antimagic graph.

Theorem 4.4. Let graph G of order n be an inclusive distance antimagic graph.
Then the graph G + K1 is an inclusive distance antimagic graph if and only if
∆(G) ̸= n− 1.

Proof. If ∆(G) = n − 1, then in graph G +K1 there exist at least two vertices of
degree n. Since graph G+K1 has order n+ 1, then these vertices of degree n will
have same close neighborhood set. For ∆(G) < n − 1, let V (G) = {v1, v2, · · · vn}
and f : V (G) → {1, 2, · · ·n} be the inclusive distance antimagic labeling of G. Let
w(vi) denote the weight of vertex vi under the labeling f . Now, let u be the vertex
of K1. Define a bijection f ′ for G+K1 such that f ′(vi) = f(vi) for every 1 ≤ i ≤ n
and f ′(u) = n+1. Then, the weights based on bijection f ′ are w′(vi) = w(vi)+n+1,

for 1 ≤ i ≤ n, and w′(u) = 1 + 2 + · · · + (n + 1) = (n+1)(n+2)
2 . Since there are no

vertices in graph G of degree n − 1, then in G + K1 only vertex u has degree n.
Consequently, maxi w

′(vi) < w′(u), ensuring that each vertex in graph G+K1 has
distinct weight under the bijection f ′. □

Aside from paths and cycles, Dafik et al. [3] also provide examples of graphs
that are inclusive distance antimagic, such as star Sn, star DSn, broom Brn,m, and
wheel Wn. Among all those graphs, only the wheel graph Wn that satisfies ∆ =
|V |−1, while the others do not. Hence based on Theorem 4.4, Sn+K1, DSn+K1,
and Brn,m +K1 are an inclusive distance antimagic graphs, whereas Wn +K1 is
not.

Theorem 4.5. Let graph H of order m be an inclusive distance antimagic graph.
For 2 ≤ m ≤ n, graph H +Kn is also an inclusive distance antimagic graph.

Proof. Let fH be the inclusive distance antimagic labeling for H, with wH be the
weight of vertices under fH . Define a bijection fH+Kn

such that fH+Kn
(v) = fH(v),

for every v ∈ V (H), and each vertex in Kn can be labeled arbitrarily within the
range {m + 1,m + 2, · · · ,m + n}. Then, the weight of vertices in graph H + Kn

are:

wH+Kn
(v) =

{
wH(v) + (mn+ 1 + 2 + · · ·+ n), v ∈ V (H)
fH+Kn

(v) + (1 + 2 + · · ·+m), v ∈ V (Kn).
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Obviously, fH+Kn
(v) ≤ m + n ≤ mn, for every v ∈ V (Kn), and wH(v) > 0, for

every v ∈ V (H). Since m ≤ n, then 1 + 2 + · · · + n ≥ 1 + 2 + · · · +m. Thus, for
every u ∈ V (H), v ∈ V (Kn), it holds that wH+Kn

(u) > wH+Kn
(v). Moreover, it

can be observed that for every vertex in H, and every vertex in Kn, has distinct
weights. Therefore, H +Kn is inclusive distance antimagic. □

There are several examples of graph H + Kn, such as the fan graph Fn,m

which is the join graph Pm +Kn, and the cone graph Cm,n which is the join graph

Cm +Kn. According to Theorem 4.5, the fan graph Fn,m for 2 < m ≤ n, and the
cone graph Cm,n for 3 < m ≤ n, are inclusive distance antimagic.
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