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1. INTRODUCTION

In the study of mathematical chemistry, the discussion focuses on chemical
graph theory [1]. The graph energy is described as pi-electron energy by considering
the molecule as a graph [2]. The graph energy applications can be found in several
research including the study of protein sequences [3], pattern and facial recognition
[4], and object identification [5].

Initially in the graph, the energy is constructed from its adjacency matrix.
Nowadays, the discussion of graph matrices is extended to degree or distance-based
and Seidel-based matrices. This research focuses on the Seidel-based matrices,
including Seidel [6], Seidel Laplacian [7], and Seidel signless Laplacian matrices [8].

Furthermore, graphs defined on group and ring are interesting topics in the
last few decades, for instance, the prime ideal graph [9]. The topology properties
of this graph have been done by Syarifudin, et al. [10] with the following definition.

Definition 1.1. [9] The prime ideal graph is represented by Ω(R, I), where R is
any commutative ring as the vertex set excluding {0}, I is its prime ideal which
two distinct vertices u and v are linking with an edge whenever uv ∈ I.

Through the years, discussion on the Seidel energy of a graph has developed.
In 2021, Sarmin, et al. [11] presented the Seidel energy of the Cayley graph,
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and Romdhini, et al. [12] investigated the Seidel-based energies of the commuting
graph. Both research are constructed from the dihedral groups. Moreover, the
Seidel matrix is also applied to the commuting graph for U6n group [13].

The above background motivated us to extend the study to Ω(R, I) where
R is associated with the Seidel-based matrices. In Section 2, we write several
results from the previous literature. Then the formulation of energies is presented
in Section 3.

2. PRELIMINARIES

In this part, we shall discuss the fundamental properties of Ω(R, I). First,
we show the result from the previous literature from [10].

Let the cardinality of R is η, with R\{0} = {p1, p2, . . . , pµ, r1, r2, . . . , rη−µ−1}
and I = {p1, p2, . . . , pµ}. Let dvp be the degree of vertex vp in Ω(R, I) which is the
number of vertices adjacent to vp. The distance between vp and vq in Ω(R, I) is
the number of edges in the shortest path from vp to vq and is denoted by dpq.

Theorem 2.1. (Lemma 2.1 in [10]) The vertex degree of vp in Ω(R, I) is

dvp =

{
η − 2, for every vp ∈ I\{0}
µ− 1, for every vp ∈ R\I.

Afterward, the distance between two vertices was explored in [10].

Theorem 2.2. (Lemma 2.2 in [10]) The distance between vp and vq in Ω(R, I) is
given by

dpq =

{
1, for every vp ∈ I\{0}and vq ∈ R
2, for every vp, vq ∈ R\I.

For the construction of the Seidel matrix of Ω(R, I), we need the following
definition.

Definition 2.3. [6] An n × n Seidel matrix of Ω(R, I) is S(Ω(R, I)) = [spq] in
which (p, q)-th entry is

spq =

 −1, if vp ̸= vq are adjacent
1, if vp ̸= vq are not adjacent
0, otherwise.

Let S(Ω(R, I)) be the degree matrix of Ω(R, I) as Diag(dv1 , dv2 , . . . , dvn).
Now the Seidel-based definitions of Ω(R, I) are given below.

Definition 2.4. [7] An n× n Seidel Laplacian matrix of Ω(R, I) is

SL(Ω(R, I)) = D(Ω(R, I))− S(Ω(R, I)).

Definition 2.5. [8] An n× n Seidel signless Laplacian matrix of Ω(R, I) is

SSL(Ω(R, I)) = D(Ω(R, I)) + S(Ω(R, I)).



On Energy of Prime Ideal Graph 3

Suppose λ1, λ2, . . . , λn are n numbers that stated as eigenvalues of S(Ω(R, I)),
hence the spectrum of S(Ω(R, I)) is

SpecS(Ω(R, I)) =
{
λk1
1 , λk2

2 , . . . , λkm
m

}
,

where k1, k2, . . . , km are the respective multiplicities, and m ≤ n. The Seidel energy
of Ω(R, I) [2] is written by

ES(Ω(R, I)) =

m∑
i=1

ki |λi| , (1)

and the Seidel-spectral radius of Ω(R, I) [14] is

ρS(Ω(R, I)) = max{|λ| : λ ∈ Specs(Ω(R, I))}.

The above definitions also apply to SL(Ω(R, I)) as well as SSL(Ω(R, I)).
Suppose In is the identity matrix of order n and Jn is n×n square matrix with all
entries are 1. Furthermore, for calculating the eigenvalues of Ω(R, I), we need the
following formulation of the determinant.

Lemma 2.6. (Lemma 2.2 in [15]) For real numbers α, β, γ, δ, the determinant of∣∣∣∣(λ+ α)In1
− αJn1

−γJn1×n2

−δJn2×n1 (λ+ β)In2 − βJn2

∣∣∣∣
can be declared in simple formula as

(λ+ α)n1−1(λ+ β)n2−1 ((λ− (n1 − 1)α)(λ− (n2 − 1)β)− n1n2γδ) .

3. MAIN RESULTS

This section presents the Ω(R, I) energy corresponding with Seidel-based ma-
trices. Firstly, we need to show the simplification of the following determinants.

Theorem 3.1. For real numbers α, β, γ, the determinant of

|M | =
∣∣∣∣(λ− α+ β)Iµ − βJµ −βJµ×(η−µ−1)

−βJ(η−µ−1)×µ (λ− γ + β)Iη−µ−1 + βJη−µ−1

∣∣∣∣
can be declared in simple form as

(λ−α+β)µ−1(λ−β−γ)η−µ−2
(
(λ− α− β(µ− 1))(λ− γ + (η − µ− 2)β)− β2µ(η − µ− 1)

)
.

Proof. We apply some row and column operations. Let Ri be the i-th row and
we denote Ci as the i-column of |M |. The first step, substitute R1+i with R

′

1+i =

R1+i−Ri where 1 ≤ i ≤ µ−1 and substitute Rµ+1+i with R
′

µ+1+i = Rµ+1+i−Rµ+1

in which 1 ≤ i ≤ η − µ− 2, thus

|M | =

∣∣∣∣∣∣∣
λ− α −βJ1×(µ−2) −β −βJ1×(η−µ−2)

−(λ− α+ β)J(µ−2)×1 (λ− α+ β)Iµ−2 0(µ−2)×1 0η−µ−2

−β −βJ1×(µ−2) λ− δ βJ1×(η−µ−2)

0(η−µ−2)×1 0µ−2 (λ− δ − β)J(η−µ−2)×1 (λ− δ − β)Iη−µ−2

∣∣∣∣∣∣∣ .
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Furthermore, we replace C1 with C
′

1 = C1 +C2 + . . .+Cµ−1 and replace Cµ

with C
′

µ = Cµ + Cµ+1 + . . .+ Cη−2, then we have

|M | =

∣∣∣∣∣∣∣∣
λ− α− β(µ− 1) −βJ1×(µ−2) −β(η − µ− 1) −βJ1×(η−µ−2)

0(µ−2)×1 (λ− α+ β)Iµ−2 0(µ−2)×1 0η−µ−2

−βµ −βJ1×(µ−2) λ− δ + (η − µ− 2)β βJ1×(η−µ−2)

0(η−µ−2)×1 0µ−2 0(η−µ−2)×1 (λ− δ − β)Iη−µ−2

∣∣∣∣∣∣∣∣ .
We replace Rµ with R

′

µ = Rµ + β
λ−α+βR2 +

β
λ−α+βR3 + . . . + β

λ−α+βRµ−1

and following by replacing C1 with C
′

1 = C1 +
βµ

λ−δ+(η−µ−1)βCµ, then we have

|M | =

∣∣∣∣∣∣∣∣
u −βJ1×(µ−2) −β(η − µ− 1) −βJ1×(η−µ−2)

0(µ−2)×1 (λ− α+ β)Iµ−2 0(µ−2)×1 0η−µ−2

0 01×(µ−2) λ− δ + (η − µ− 2)β βJ1×(η−µ−2)

0(η−µ−2)×1 0µ−2 0(η−µ−2)×1 (λ− δ − β)Iη−µ−2

∣∣∣∣∣∣∣∣ ,
(2)

with u = λ−α− β(µ− 1)+ βµ
λ−δ+(η−µ−2)β (−β(η−µ− 1)). Equation 2 is an upper

diagonal matrix, hence

|M | = (λ− α+ β)µ−1(λ− β − δ)η−µ−2
(
(λ− α− β(µ− 1))(λ− δ + (η − µ− 2)β)− β2µ(η − µ− 1)

)
.

□

3.1. Seidel Energy. This part demonstrates the Seidel energy of Ω(R, I).

Theorem 3.2. The characteristic formula of S(Ω(R, I)) is

PS(Ω(R,I))(λ) = (λ− 1)µ−1(λ+ 1)η−µ−2
(
λ2 + (2µ− η + 1)λ+ 2µ(µ− η + 1) + η − 2

)
.

Proof. Let R\{0} = {p1, p2, . . . , pµ, r1, r2, . . . , rη−µ−1} and I = {p1, p2, . . . , pµ}.
We have η − 1 vertices for Ω(R, I). By Definition 2.3 and Theorem 2.1, we obtain
the Seidel matrix of Ω(R, I) as (η − 1)× (η − 1) matrix as follows:

S(Ω(R, I)) =

p1 p2 . . . pµ r1 r2 . . . rη−µ−1



p1 0 −1 . . . −1 −1 −1 . . . −1
p2 −1 0 . . . −1 −1 −1 . . . −1
...

...
...

. . .
...

...
...

. . .
...

pµ −1 −1 . . . 0 −1 −1 . . . −1
r1 −1 −1 . . . −1 0 1 . . . 1
r2 −1 −1 . . . −1 1 0 . . . 1
...

...
...

. . .
...

...
...

. . .
...

rη−µ−1 −1 −1 . . . −1 1 1 . . . 0

. (3)
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We can choose the partition such that

S(Ω(R, I)) =

(
(I − J)µ −Jµ×(η−µ−1)

−J(η−µ−1)×µ (J − I)η−µ−1

)
.

The formulation of characteristic polynomial of S(Ω(R, I)) is presented below:

PS(Ω(R,I))(λ) =

∣∣∣∣ (λ− 1)Iµ + Jµ Jµ×(η−µ−1)

J(η−µ−1)×µ (λ+ 1)Iη−µ−1 − Jη−µ−1

∣∣∣∣ .
By Lemma 2.6 with α = γ = δ = −1, β = 1, n1 = µ, n2 = η − µ− 1, then we get

PS(Ω(R,I))(λ) = (λ− 1)µ−1(λ+ 1)η−µ−2
(
λ2 + (2µ− η + 1)λ+ 2µ(µ− η + 1) + η − 2

)
.

□

As a consequence of the above fact, we present our results as follows:

Theorem 3.3. The spectral radius of Ω(R, I) associated with the Seidel matrix is

ρS(Ω(R, I)) =
η − 2µ− 1 +

√
4µ(η − 1− µ) + (η − 3)2)

2
.

Proof. Based on Theorem 3.2, the roots of PS(Ω(R,I))(λ) = 0 are eigenvalues of
S(Ω(R, I)) or in other words,

(λ− 1)µ−1(λ+ 1)η−µ−2
(
λ2 + (2µ− η + 1)λ+ 2µ(µ− η + 1) + η − 2

)
= 0. (4)

Equation 4 holds if and only if

(λ− 1)µ−1 = 0, (λ+ 1)η−µ−2 = 0, (5)

and

λ2 + (2µ− η + 1)λ+ 2µ(µ− η + 1) + η − 2 = 0. (6)

Therefore, we obtain λ1 = 1 with multiplicity µ− 1 and λ2 = −1 with multiplicity
η − µ − 2 conforming Equation 5. The quadratic formula in Equation 6 gives 2

eigenvalues λ3,4 =
η−2µ−1±

√
4µ(η−1−µ)+(η−3)2

2 . According to this fact, we get the
spectrum of Ω(R, I), SpecS(Ω(R, I)) as follows:[

η−2µ−1+
√

4µ(η−1−µ)+(η−3)2

2 1 −1
η−2µ−1−

√
4µ(η−1−µ)+(η−3)2

2
1 µ− 1 η − µ− 2 1

]
.

This leads to the Seidel spectral radius of Ω(R, I) as

ρS(Ω(R, I)) =
η − 2µ− 1 +

√
4µ(η − 1− µ) + (η − 3)2

2
,

and we complete the proof. □

Using the fact from Theorem 3.3, we now compute the Seidel energy of
Ω(R, I).

Theorem 3.4. The Seidel energy of Ω(R, I) is

ES(Ω(R, I)) = η − 3 +
√
4µ(η − 1− µ) + (η − 3)2.
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Proof. According to the spectrum of Ω(R, I) in the proofing part of Theorem 3.3,
the Seidel energy of Ω(R, I) can be obtained as

ES(Ω(R, I)) =(µ− 1)|1|+ (η − µ− 2)| − 1|+

∣∣∣∣∣η − 2µ− 1±
√
4µ(η − 1− µ) + (η − 3)2

2

∣∣∣∣∣
=η − 3 +

√
4µ(η − 1− µ) + (η − 3)2.

□

3.2. Seidel Laplacian Energy. This subsection derives the Seidel Laplacian en-
ergy of Ω(R, I).

Theorem 3.5. The characteristic polynomial of SL(Ω(R, I)) is

PSL(Ω(R,I))(λ) = (λ− µ+ 2)µ−1(λ− η + 1)η−µ−2
(
λ2 − (3µ− 2)λ+ µ(3µ− η − 1)

)
.

Proof. The construction of the Seidel Laplacian matrix of Ω(R, I) is dependent on
the degree matrix of Ω(R, I), D(Ω(R, I)). By Theorem 2.1, we provide D(Ω(R, I))
as (η − 1)× (η − 1) matrix:

D(Ω(R, I)) =

p1 p2 . . . pµ r1 r2 . . . rη−µ−1



p1 µ− 1 0 . . . 0 0 0 . . . 0
p2 0 µ− 1 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

pµ 0 0 . . . µ− 1 0 0 . . . 0
r1 0 0 . . . 0 η − 2 0 . . . 0
r2 0 0 . . . 0 0 η − 2 . . . 0
...

...
...

. . .
...

...
...

. . .
...

rη−µ−1 0 0 . . . 0 0 0 . . . η − 2

(7)

By Definition 2.4, Equations 3 and 7, we provide the Seidel Laplacian matrix of
Ω(R, I) as given below:

SL(Ω(R, I)) =

p1 p2 . . . pµ r1 r2 . . . rη−µ−1



p1 µ− 1 1 . . . 1 1 1 . . . 1
p2 1 µ− 1 . . . 1 1 1 . . . 1
...

...
...

. . .
...

...
...

. . .
...

pµ 1 1 . . . µ− 1 1 1 . . . 1
r1 1 1 . . . 1 η − 2 −1 . . . −1
r2 1 1 . . . 1 −1 η − 2 . . . −1
...

...
...

. . .
...

...
...

. . .
...

rη−µ−1 1 1 . . . 1 −1 −1 . . . η − 2

.

(8)



On Energy of Prime Ideal Graph 7

From Equation 8, we obtain:

SL(Ω(R, I)) =

(
(µ− 2)Iµ + Jµ Jµ×(η−µ−1)

J(η−µ−1)×µ (η − 1)Iη−µ−1 − Jη−µ−1

)
.

Therefore, we get

PSL(Ω(R,I))(λ) =

∣∣∣∣ (λ− µ+ 2)Iµ − Jµ −Jµ×(η−µ−1)

−J(η−µ−1)×µ (λ− η + 1)Iη−µ−1 + Jη−µ−1

∣∣∣∣ .
By Lemma 3.1 with α = µ− 1, β = 1, and γ = η − 2, then we obtain

PSL(Ω(R,I))(λ) = (λ− µ+ 2)µ−1(λ− η + 1)η−µ−2
(
λ2 − (3µ− 2)λ+ µ(3µ− η − 1)

)
.

□

Theorem 3.6. The spectral radius of Ω(R, I) associated with the Seidel Laplacian
matrix is

ρSL(Ω(R, I)) =
3µ− 2 +

√
(3µ− 3)2 − 4µ(3µ− η − 1)

2
.

Proof. We already observed PSL(Ω(R,I))(λ) in Theorem 3.5. By a similar argument,
the roots of PSL(Ω(R,I))(λ) = 0 provides the eigenvalues of Ω(R, I). Now we have

(λ− µ+ 2)µ−1(λ− η + 1)η−µ−2
(
λ2 − (3µ− 2)λ+ µ(3µ− η − 1)

)
= 0. (9)

With a similar idea of Equation 4, then Equation 9 holds whenever

(λ− µ+ 2)µ−1 = 0, (λ− η + 1)η−µ−2 = 0, (10)

and (
λ2 − (3µ− 2)λ+ µ(3µ− η − 1)

)
= 0. (11)

Equation 10 derives λ1 = µ − 2 with multiplicity µ − 1 and λ2 = η − 1 of
multiplicity η − µ − 2. The quadratic formula of of Equation 11 result λ3,4 =
3µ−2±

√
(3µ−3)2−4µ(3µ−η−1)

2 . That means the spectrum of Ω(R, I) as given by[
3µ−2+

√
(3µ−3)2−4µ(3µ−η−1)

2 µ− 2 η − 1
3µ−2−

√
(3µ−3)2−4µ(3µ−η−1)

2
1 µ− 1 η − µ− 2 1

]
.

The Seidel Laplacian spectral radius of Ω(R, I) is

ρSL(Ω(R, I)) =
3µ− 2 +

√
(3µ− 3)2 − 4µ(3µ− η − 1)

2
,

and this states that the proof of the theorem is equipped. □

As a result of the above fact, we derive here is a straightforward result that
counts the SL-energy of Ω(R, I).

Theorem 3.7. The SL-energy of Ω(R, I) is

ESL(Ω(R, I)) = (η − 2)(η − 1) + µ(µ− η + 1).
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Proof. In accordance with the spectrum of Ω(R, I) in the proofing part of Theorem
3.6, the Seidel Laplacian energy of Ω(R, I) can be obtained as

ESL(Ω(R, I)) =(µ− 1)|µ− 2|+ (η − µ− 2)|η − µ− 1|+∣∣∣∣∣3µ− 2±
√
(3µ− 3)2 − 4µ(3µ− η − 1)

2

∣∣∣∣∣
=(η − 2)(η − 1) + µ(µ− η + 1).

□

3.3. Seidel Signless Laplacian Energy. This section focuses on the Seidel sign-
less Laplacian matrix of Ω(R, I).

Theorem 3.8. The characteristic formula of SSL(Ω(R, I)) is

PSSL(Ω(R,I))(λ) = (λ− µ)µ−1(λ− η + 3)η−µ−2
(
λ2 + (µ− 2η + 4)λ− µ(η − µ− 1)

)
.

Proof. By reasoning similar to the proof of Theorem 3.5, by Definition 2.5, Equa-
tions 3 and 7, we construct the Seidel signless Laplacian matrix of Ω(R, I) as
(η − 1)× (η − 1) matrix as follows:

SSL(Ω(R, I)) =

p1 p2 . . . pµ r1 r2 . . . rη−µ−1



p1 µ− 1 −1 . . . −1 −1 −1 . . . −1
p2 −1 µ− 1 . . . −1 −1 −1 . . . −1
...

...
...

. . .
...

...
...

. . .
...

pµ −1 −1 . . . µ− 1 −1 −1 . . . −1
r1 −1 −1 . . . −1 η − 2 1 . . . 1
r2 −1 −1 . . . −1 1 η − 2 . . . 1
...

...
...

. . .
...

...
...

. . .
...

rη−µ−1 −1 −1 . . . −1 1 1 . . . η − 2

.

It follows that

SSL(Ω(R, I)) =

(
µIµ − Jµ −Jµ×(η−µ−1)

−J(η−µ−1)×µ (η − 3)Iη−µ−1 + Jη−µ−1

)
.

This implies

PSSL(Ω(R,I))(λ) =

∣∣∣∣ (λ− µ)Iµ + Jmu Jµ×(η−µ−1)

J(η−µ−1)×µ (λ− η + 3)Iη−µ−1 − Jη−µ−1

∣∣∣∣ .
By Lemma 3.1 with α = µ− 1, β = −1, and γ = η − 2, then we get

PSSL(Ω(R,I))(λ) = (λ− µ)µ−1(λ− η + 3)η−µ−2
(
λ2 + (µ− 2η + 4)λ− µ(η − µ− 1)

)
.

□

Theorem 3.9. The spectral radius of Ω(R, I) associated with the Seidel Laplacian
matrix is

ρSSL(Ω(R, I)) =
2η − µ− 4 +

√
(µ− 2η + 4)2 + 4µ(η − µ− 1)

2
.
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Proof. According to Theorem 3.8, the roots of PSSL(Ω(R,I))(λ) = 0 are eigenvalues
of SL(Ω(R, I)), or in other words

(λ− µ)µ−1(λ− η + 3)η−µ−2
(
λ2 + (µ− 2η + 4)λ− µ(η − µ− 1)

)
= 0.

We consider the above equation and it holds if and only if

(λ− µ)µ−1, (λ− η + 3)η−µ−2 = 0, (12)

and (
λ2 + (µ− 2η + 4)λ− µ(η − µ− 1)

)
= 0. (13)

Therefore, from Equation 12 we obtain λ1 = µ with multiplicity µ−1, and λ2 = η−3
of multiplicity η − µ − 2. The solution of quadratic formula in Equation 13 are

λ3,4 =
2η−µ−4±

√
(µ−2η+4)2+4µ(η−µ−1)

2 . According to this fact, we get the spectrum
of Ω(R, I), SpecS(Ω(R, I)) as follows:[

2η−µ−4+
√

(µ−2η+4)2+4µ(η−µ−1)

2 µ η − 3
2η−µ−4−

√
(µ−2η+4)2+4µ(η−µ−1)

2
1 µ− 1 η − µ− 2 1

]
.

This leads to the Seidel Laplacian spectral radius of Ω(R, I) as

ρSSL(Γ(R,P )) =
2η − µ− 4 +

√
(µ− 2η + 4)2 + 4µ(η − µ− 1)

2
.

□

The next theorem presents the energy of Ω(R, I) with respect to the Seidel
signless Laplacian matrix.

Theorem 3.10. The SSL-energy of Ω(R, I) is

ESSL(Ω(R, I)) = (η − 3)(η − 2) + µ(µ− η + 2) +
√
(µ− 2η + 4)2 + 4µ(η − µ− 1).

Proof. By using the spectrum of Γ(R,P ), the Seidel signless Laplacian energy of
Ω(R, I) can be calculated as

ESSL(Ω(R, I)) =(µ− 1)|µ− 2|+ (η − µ− 2)|η − µ− 1|+∣∣∣∣∣3µ− 2±
√
(µ− 2η + 4)2 + 4µ(η − µ− 1)

2

∣∣∣∣∣
=(η − 3)(η − 2) + µ(µ− η + 2) +

√
(µ− 2η + 4)2 + 4µ(η − µ− 1).

□
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4. CONCLUDING REMARKS

In this research, we derive the spectrum, spectral radius, and energy of the
prime ideal graph. It is associated with the commutative ring and corresponds to
the Seidel-based matrices.

Acknowledgement. We would like to thank the University of Mataram, Indone-
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