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Abstract. A vertex coloring that ensures every pair of different colors is repre-
sented at least once is termed complete coloring. The diachromatic number of an
acyclic digraph denotes the maximum number of colors required for its complete
coloring. This study delves into the diachromatic numbers of lobster digraphs, fire-
works digraphs, banana tree digraphs, and coconut tree digraphs under specific and
arbitrary directional orientations.
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1. INTRODUCTION

A prominent concept in digraph theory is vertex coloring, which involves as-
signing colors to the vertices of a digraph so that no two adjacent vertices share
the same color. A. F. Mébius (1790 - 1868) initially explored vertex coloring while
investigating the map coloring problem, wherein vertices represent regions and ad-
jacent regions are connected by edges. This inquiry famously led to the formulation
of the four-color problem.

One advancement stemming from vertex coloring is complete coloring, which
involves ensuring that each pair of different colors appears at least once in the color-
ing of vertices. An intriguing problem within vertex coloring concerns determining
the minimum number of colors required for the coloring process, encapsulated by
the chromatic number in graphs and the dichromatic number in digraphs as pro-
posed by [I]. Specifically regarding complete coloring, [2] initially introduced the
concept of the achromatic number in graphs, representing the maximum number of
colors utilized in a complete coloring. Achromatic numbers are also explored in [3],
with a specific focus on circulant graphs. In 2017, [4] introduced an extension of the
achromatic number to digraphs, termed the diachromatic number. One of the stud-
ies on diachromatic number is conducted by [B], who specifically investigates the
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diachromatic number of the directed double star graph Kj , ,. Another study on
diachromatic number is by [6], who explores the relationship between diachromatic
number and harmonious chromatic number.

This paper considers various potential direction orientations for certain di-
graphs whose diachromatic numbers are under investigation. Consequently, we
adopt the following direction orientations: O’ for the lobster digraph Lo(2;7), O”
for the firework digraph F'(2,p), O" for the banana tree digraph Bs ;, and O"” for
the coconut tree digraph CT'(m,4).

Definition 1.1. [7] The lobster graph L, (q;r) with n,q,r € N, n > 2 is a graph
with vertex set

V(Ln(qu)) = {bivhijvfijk‘l S [ S n, 1 S .7 S qv]- S k S rn 2 2}3
and edge set
E(Ly(g;7)) = {bibit1[l <i<n—1,n>2}
U {hijbi, fijkhijll <i<n,1<j<q1<k<r}
We define specifically for La(2;7) orientation of direction O’ is as follows;
for the backbone vertices by and by, doyt(b1) = 2, din(b1) = 1, dout(b2) = 3, and
din(b2) = 0, and while for the hand vertices hi;, doyt(hij) = 7 and dip(hij) = 1

for i = 1,2 and j = 1,2, and for the finger vertices fijr, dowt(fijz) = 0 and
din(fiji) =1, for i =1,2, j =1,2 and 1 < k < r. So we obtain a directed lobster

graph Lo(2;7) denoted by Lo(2; r;.

Definition 1.2. [8] The firework graph F(n,p) with n,p > 2 is a graph with vertex
set

V(F(n,p)) ={bi,v;|1<i<n,1<j<p-1}
and edge set
E(F(n,p)) = {bivi[1<i<n,1<j<p-1}
U{vinvegnll <i<n—1}.

~—

Particularly, for F(2,p) orientation of direction O” is as follows; dyy:(b1) =
p—1, din(b1) = 0, dows(b2) = p — 1, din(b2) = 0, dout(v1i1) = 1, din(v11) ,
dout('UQl) = 0, din(”Ql) = 2, dout(vlj) = 07 din(vlj) = ]-7 dout(v2j) = 07 and
din(vej) = 1 for 2 < j < p—1. Thus, we acquire a directed firework graph

represented as F'(n,p).

Definition 1.3. [9] The banana tree graph By withn > 1 and t > 2 is a graph
with vertex set

V(Bn,t) = {U7bi7vij|1 S ) S ’I’L,l SJS t— 1}



and edge set

E(Bnﬂg) = {bivij|1 S ) S ’I’L,l S ] S t— 1,t Z 2}
U {vav]l <i<n}.

Specifically, for the orientation of direction O" in Bg,, it is as follows;
dout(bl) =1t- ]-7 dzn<b1) = Oa dout(bQ) =1t— 13 dln(bQ) = Oa dout(vll) = ]-a
din(v11) = 1, dowt(v21) = 0, din(v21) = 2, dout(v) = 1, din(v) = 1, dout(v1;) = 0,
din(Ulj) = 1, dout(vgj) = O7 and din(’l)gj) =1 for 2 S ] S t—1. Therefore7 we

obtain a directed banana tree graph denoted by B ;. Subsequently, an illustration
—
of the graph By, with the orientation of direction O" is presented.
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FIGURE 1. Banana Tree Graph Bs

Definition 1.4. [10] The coconut tree graph CT(m,n) with m,n € N is a graph
with vertex set

V(CT(m,n)) = {b;,v;|1 <i<n,1 <j<m},
and edge set

U {brv;|k = max{i},1 <i<n,1 <j<m}.

Specifically, in the case of the orientation of direction O for CT(m,4), it
is as follows; dout(b1) = 1, din(b1) = 0, dout(b2) = 1, din(b2) = 1, dout(bs) = 1,
dln(bg) = 1, dout<b4> =m, dln(b4) = 1, dout('Uj) = 0, and din<’l)j) =1 fOI‘ 1 S j S m.
Hence, the result yields a directed banana tree graph represented as CT'(m,4). An
illustration of the graph CT(m,4; with orientation of direction O”” is presented
below.
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F1GURE 2. Coconut Tree Graph C’T(m,4;

Definition 1.5. [I1] Given a digraph 8 A complete coloring of the digraph 8
is a vertex coloring such that each different color pair appears at least once in the

digraph 8

Lemma 1.6. Given a digraph G = (V(a), A(a)) Let w be the number of colors
that can be used in the complete coloring of G'. The value of w satisfies , Py <

e

ProOOF. Considering a digraph = (V(a), A(a)) and denoting w as the number
of colors that can be utilized for complete coloring of 87 assume ., P > \A(8)|
Let f: A(a) — C ={C1,Cy,...,C,} represent a complete coloring function, where
C is the set of color types. Without loss of generality, there must exist a color pair
{C;,C;} C C, with C; # Cj, such that for every arc (z,y),(z,u) € A(a)7 either
flx) # Ci, fly) # Cy, f(z) # Cj, or f(u) # C;. This contradicts the requirement
of complete coloring in 8 that mandates every different color pair appears at least
once. Hence, the assumption is incorrect. Consequently, the number of colors
suitable for complete coloring satisfies ., P» < |A(G)]. O

2. MAIN RESULTS

Definition 2.1. [] The diachromatic number, denoted as dac(a), refers to the
mazximum number of colors utilized in the complete coloring of an acyclic digraph
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Theorem 2.2. Given a lobster digraph L2(2;r; with r € N as Deﬁned and
with direction orientation O'. It follows that dac(Ly(2;7r)) = 3 for r = 1,2 and
dac(La(2; 1")) =4 for any r > 3.

ProoF. Considering a lobster digraph Lo (2; r; as Defined in Definition where
r € N, and with the following direction orientation: for the vertices backbone, by
and b, dout(b1) = 2, din(b1) = 1, dowt(b2) = 3, and d;,(b2) = 0; for the vertices
hand, h;j, dout(hij) = r and din(h;j) = 1 for ¢ = 1,2 and j = 1,2; and for the
vertices finger, fijk, dout(fijr) = 0 and di,(fijx) = 1 for i = 1,2, j = 1,2, and
1 <k < r, let w represent the number of colors usable for digraph L2(2;7). The
lobster digraph Lo(2; 1; comprises 9 arcs. Employing complete coloring, we have
wP2 <|A(L2(2;1))|. Consequently, w(w — 1) <9, leading to the maximum w = 3.
Let A = {C1,C5,C3} be the set of color types, and f: V(La(2;1 )) — A constitute
a complete coloring. Without loss of generality, if f(by) = Co and f(b2) = Cj,
then L2(2;1) can be colored with 3 colors, yielding dac(L2(2;1)) = 3. For L2(2;2),

let B = {C4,Cs,C3,C4} denote the set of color types, and f : V(Ly(2;2)) — B
be a complete coloring. Without loss of generality, if f(b1) = Cq, f(ba) = Chi,
f(h11) = Cs, and f(hi2) = Cy, some color pairs {C, C;} for t € {1,3,4} cannot
be found in Ly(2;2) due to constraints on dyyu:(b1). Hence, dac(L2(2;2)) < 4,
leading to dac(L2(2;2;) = 3. Similarly, for L2(2;3) comprising 17 arcs, complete
coloring yields , Py < |A(L2(2;3))]|, resulting in w(w — 1) < 17 and w = 4. Let
C = {C1,C5,C5,Cy} represent the set of color types, and f : V(L2(2;3;) — C
constitute a complete coloring. Without loss of generality, if f(b;) = Cs, f(b2) =
C1, f(h11) = Cy, f(hi2) = C1, f(ha1) = Cs, and f(ha2) = Cy, the digraph L(2;3
can be colored with 4 colors, resulting in dac(L2(2;3)) = 4. For Ly(2;r) with r > 4,

let D = {C4,Cs,C3,C4,Cs} denote the set of color types, and f : V(Lo(2;r)) — D
be a complete coloring. Without loss of generality, if f(ha1) = C1, f(haa) = Co,
f(h11) = C4, and f(h12) = Cs, a pair of the form {C5, C;} for ¢t € {1,2, 3,4} cannot

be found in L2(2;r) due to constraints on dyt(he1). Hence, complete coloring with

5 color types on Lo(2;7) for r > 4 is not possible, i.e., dac(Ly(2;7r)) = 4 for
r>4. O

Lemma 2.3. Given a lobster digraph L2(2;r; with v € N as Definition and
with arbitrary direction orientation. It follows that dac(Lo(2;1)) <5 for anyr > 8.

ProoF. Consider a lobster digraph L2(2;r; Defined in Definition u with r € N

and arbitrary orientation. When r > 8, Lo(2;7) comprises four star graphs, each
with at least 8 leaves (vertices representing fingers). Let A = {C1,C5,C5,Cy,C5}

denote the set of color types, and the function f : V(La(2;7)) — A ensures a
complete coloring for any r > 8. From A, color pairs {C;, Ct} with C; # Cj, are
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derived where 1 <7 <4 andi+1 < k < 5. Note that the maximum number of such
pairs with ¢ = 1 is 4. Since each pair requires 2 arcs, there must be at least 8 arcs

in Lo(2;r) to achieve complete coloring with 5 colors. Without loss of generality,
if f(ho1) = Ch, f(ha) = Ca, f(h11) = Cy, and f(hi2) = Cs, and each vertex

ha1, haa, hi1, and hiy has 8 arcs, then complete coloring of Lo(2;r) with 5 colors
is feasible. This yields dac(Lg(Q;r;) > 5. Now, let B = {C1,C5,C3,C4,C5,Cs}

represent the set of color types, and f : V/(La(2;7)) — B achieves complete coloring
for any » > 8. From B, color pairs {C;,Cy} with C; # Cj are obtained where

1 <i<b5andi+1 <k < 6 to color Ly(2;r). Without loss of generality,
if f(hgg) Cl,f(hgl) = Cg,f(hll) = Cg and f(hlg) = C4, then there exist

pairs {C5,Cs} such that for all (x,y),(z,u) € A(L2(2;7)), it holds f(z) # Cs or

fly) # Cs or f(z) # Cg or f(u) # Cs. Thus, it is demonstrated that Lo(2;r
cannot be colored with complete coloring using 6 color types. It is observed that

| o

dac(La(2;7 )) = 5 for any r > 8. Moreover, due to the arbitrary orientation allowing

the utilization of as many color types as possible, we conclude dac(L2(2;7)) < 5,
for any r > 8.

Lemma 2.4. Given a lobster digraph La(2;7) with v = 6 or r = 7 as Definition

and with arbitrary direction orientation. It follows that dac(L2(2;1)) < 5 for
r=6orr=".

ProoF. Considering the lobster digraph Lo(2;7) Defined in Definition u with
arbitrary orientation, let A = {C1,Cs,C3,C4,Cs} denote the set of color types,

and the function f : V(L2(2;r)) — A represents the complete coloring for r = 6.
Moreover, without loss of generality, suppose f(h11) = C1, f(hi2) = Ca, f(ha1) =

Cs, f(b2) = Cs, f(b1) = Cs, and f(ha2) = Cy. It is evident that the digraph Lo (2;6

can be entirely colored using 5 colors, yielding dac(L2(2;6)) = 5. Furthermore,
due to the arbitrary orientation allowing the utilization of as many color types as

possible, we conclude dac(L2(2;6)) < 5. The scenario for r = 7 mirrors that of
r = 6. 0

Lemma 2.5. Given a lobster digraph Ls(2; 5; as Deﬁm’tion and with arbitrary
digraph direction orientation. It follows that dac(L2(2;5)) < 5.

PROOF.Given the lobster digraph Ls(2;5) defined in Definition with arbitrary
orientation, let A = {C1, Cq,C3,Cy, C5} represent the set of color types, and the

function f : V(L2(2;5)) — A denotes a complete coloring. Furthermore, without
loss of generality, if f(h11) = C1, f(h12) = Ca, f(ha1) = C3, f(ha2) = Cs, f(b1) =
Cy, and f(f211) = Ci, then for every pair {C;,C;} C A with C; # Cj, there

exist (z,y), (z,u) € A(L2(2;5)) such that f(z) = C;, f(y) = C;, f(z) = C;, and
f(u) = C;. This demonstrates that the lobster digraph L2(2;5; can be colored



using 5 color types with complete coloring. Hence, dac(L2(2;5)) = 5 is established.
Moreover, due to the arbitrary orientation allowing the usage of as many colors as

possible, we conclude dac(L2(2; 5}) <5. O

Lemma 2.6. Given a lobster digraph Ls(2; 4; as Deﬁnition and with arbitrary
direction orientation. It follows that dac(L2(2;4)) < 4.

PROOF. Given the lobster digraph Ls(2; 4; defined in Definition with arbitrary
orientation, let A = {Cy,Cs,C3,Cy,C5} denote the set of color types, and the
(2;4)

function f : V(L2(2;4)) — A represent a complete coloring. Furthermore, with-
out loss of generality, if f(h11) = Ci, f(hi2) = Ca, f(ha1) = Cs, f(he2) = Cs,
f(b1) = Cs, and f(be) = C1, then there exists a pair {Cy,C4} such that for all

(x,y), (z,u) € A(Lo( ;1th01dsf)#Clorf();zéC4orf()7éC40r

f(u) # Cy. Hence, complete coloring with 5 color types on the digraph Ls(2;4) is
not feasible. Furthermore, let B = {C4, C3, C5,C4} be the set of color types, and

the function f : V(L2(2;4)) — B represents a complete coloring. Without loss of
generality, if f(hll) = Cl, f(h12) = CQ, f(hgl) = 03, and f(hgg) = Cl, then it
evidently satisfies complete coloring with 4 color types. Thus, dac(L2(2;4)) = 4.
Additionally, since the orientation is arbitrary allowing the usage of as many color

types as possible, we conclude dac(Ly(2; 4)) <4. O

Lemma 2.7. Given a lobster digraph Ls(2; 3; as Deﬁmtion and with arbitrary
direction orientation. It follows that dac(L2(2;3) < 4.

PRrOOF. Given the lobster digraph Ls(2;3) defined in Definition with arbitrary
orientation, let A = {C, Cs, C3, Cy} represent the set of color types, and the func-

tion f : V(L2(2;3)) — A denote a complete coloring. Without loss of generality,
if f(hll) = Cl, f(hlg) = 04, f(hgl) = CQ, and f(hgg) = 03, then it evidently
satisfies complete coloring with 4 color types. Therefore, dac(L2(2;3)) = 4. Fur-
thermore, since the orientation is arbitrary allowing the usage of as many color
types as possible, we conclude dac(L2(2;3)) < 4. O

Lemma 2.8. Given a lobster digraph Ls(2; 2; as Deﬁnition and with arbitrary
direction orientation. It follows that dac(L2(2;2)) < 3.

PROOF. Given the lobster digraph Ls(2;2) defined in Definition with arbitrary
orientation, let A = {C1, Cs, C5, Cy} represent the set of color types, and the func-

tion f : V(L2(2;2)) — A denote a complete coloring. Without loss of generality,
if f(hll) = Cl, f(hlg) = CQ, f(hgl) = Cg, and f(hQQ) = C4, then there exist
pairs {C1, Cs} such that for all (z,y),(z,u) € A(L2(2;2)) it holds f(x) # C; or
f(y) # Cs or f(z) # Cs or f(u) # Cy. Hence, complete coloring with 4 color types
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on the digraph Lo (2; 2; is not possible. Furthermore, suppose B = {Cy,Cs,C3} is

the set of color types, and the function f : V(L2(2;2)) — B is a complete coloring.
Without loss of generality, if f(h11) = C1, f(hi2) = Cs, and f(ha1) = Cs, then it

evidently satisfies complete coloring with 3 color types. Thus, dac(L2(2;2)) = 3.
Additionally, since the orientation is arbitrary allowing the usage of as many color

types as possible, we conclude dac(Ly(2; 2)) < 3. O

Lemma 2.9. Given a lobster digraph La(2; 1; as Deﬁm'tion and with arbitrary
direction orientation. It follows that dac(L=2(2;1)) < 3.

PROOF. Given the lobster digraph Ls(2;1) defined in Definition with arbitrary
orientation, let A = {C4, Ca,C3} represent the set of color types, and the function

f : V(L2(2;1)) — A denote a complete coloring. Without loss of generality, if
f(hi1) = Cy, f(h12) = Cs, and f(ha1) = Ca, then it’s evident that 3 color types

can be utilized to fully color the lobster digraph Lo(2; 1;. Therefore, we have
dac(L2(2; 1)) = 3. Furthermore, since the orientation is arbitrary allowing the

usage of as many colors as possible, we conclude dac(L2(2;1)) < 3. O

Theorem 2.10. Given a lobster digraph Lo(2; r; defined in Definition where
r € N, and featuring arbitrary orientation, the following relationship is observed:

3 ;r=12
dac(La(2;7)) < ¢4 ;r=3,4,
5 ;1 >0

PROOF. Given a lobster digraph Ls(2;7) defined in Definition where r €
N, and featuring arbitrary orientation. According to Lemma 2.41 and

dac(L2(2;r)) < 5 holds for every r > 5. Subsequently, from Lemma and
dac(L2(2;r)) < 4 is derived for r = 3 and r = 4. Moreover, according to Lemma
and dac(Ly(2;7)) < 3 is established for r = 1 and r = 2. Hence, we conclude:

3 ;r=12
dac(La(2;7)) < <4 ;r=3,4,
5 ;r>05h.

O

Theorem 2.11. Given a firework digraph F(2,p; with p € N and p > 2 as defined

by Deﬁm’tion and with direction orientation O”. It follows that dac(F(2,p)) = 2
for arbitrary p > 2.
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PROOF. Given a firework digraph F(2,p) defined in Definition where p € N
and p > 2, the orientation of the digraph follows as: dyyu:(b1) =p — 1, din(b1) =0,
dout(b2) =p—1, dm(bQ) =0, dout(vn) =1, dm(vll) =1, dout(vm) =0, dm(vzl) =
2, dout(vlj) = 0, dm(vlj) = ]., dout('UQj) = 0, and din(’l]gj) = 1 fOI‘ 2 Sj S P — ].

The firework digraph F'(2,2) comprises 3 arcs. Let w denote the number of colors

that can be utilized to color the digraph F(2,p ) The coloring of the digraph adopts
a complete coloring approach where each different color pair appears at least once.

Hence, P> < |A(F(2,2))|. Consequently, w(w — 1) < 3. Thus, the largest value
of w satisfying the inequality is w = 2. Subsequently, let A = {C1,Cs} be the
set of color types, and the function f : V(F(2,2)) — A represent a complete
coloring. Without loss of generality, if f(b1) = C; and f(v11) = Ca, then evidently
2 color types of the digraph F'(2,2) can be completely colored. Therefore, we
have dac(F(2,2)) = 2. Furthermore, the diachromatic number of the digraph

F(2,p) can be at least completely colored with 2 colors. Thus, dac(F(2, 2)) >2is
obtained. Next, let B = {C1, Cy, C5} denote the set of color types, and the function

f:V(F (2,p;) — B represent a complete coloring. Without loss of generality, if
f(bl) = Cl, f('Ull) = CQ, f(l)21) = 01, and f(bg) = 03, then there are pairs of

the form {C3, C3} such that for all (z,y), (z,u) € A(F(2,p)) it holds f(z) # Cs or
fly) # Cs or f(z) # Cs or f(u) # Cy. Therefore, complete coloring with 3 color

types on the digraph F'(2, p; is not possible. Hence, dac(F'(2,p )) < 3. Consequently,
dac(F(2,p)) = 2. O

Lemma 2.12. Given a firework digraph F(2,p) with p € N and p > 5 as Definition

and with arbitrary direction orientation. It follows that dac(F(2,p)) < 3 for
any p > 5.

PROOF. Given a firework digraph F'(2, p) defined in Deﬁnition where p € N and

p > 5, with arbitrary orientation. For p > 5, the firework digraph F'(2, p; consists
of 2 star graphs, each with at least 4 leaves. Let A = {C},Cs,C3} represent the

set of color types, and the function f : V(F(2, p)) — A denote a complete coloring.
Without loss of generality, if f(b1) = C1, f(ba) = Cs, and f(v11) = Cs, then it
evidently achieves complete coloring with 3 color types. Thus, for p > 5, we have
dac(F(Q,p;) > 3. Furthermore, let B = {C4,C5,C3,C4} denote the set of color
types, and the function f : V(F(2,p)) — B represent a complete coloring. Without
loss of generality, if f(b;) = C and f(by) = Cy, then there exists a pair {C3,Cy}
such that for all (z,y),(z,u) € A(F(2,p)) it holds f(z) # C5 or f(y) # Cy or
f(z) # Cy or f(u) # Cs. Hence, complete coloring with 4 color types on the

digraph F(2,p) is not feasible. We conclude dac(F(Q,p;)) = 3 for any p > 5.
Additionally, since the orientation is arbitrary, allowing the utilization of as many

colors as possible, dac(F(2,p;) < 3 for any p > 5. O
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Lemma 2.13. Given a firework digraph F(2, 4; as Deﬁnition and with arbitrary
direction orientation. It follows that dac(F(2,4)) < 3.

Proor. Considering a firework digraph F' (2,4; defined in Definition with
arbitrary orientation. Let w represent the number of colors that can be employed

to color the digraph F'(2,4). Since |A(F(2,4 ))| = 7 and utilizing complete coloring
for the digraph F(2,4), we have ., P> < 7. Consequently, there exists no possibility
of using 4 types of colors to completely color the digraph F(2,4). Furthermore, let

A ={C1,Cs, Cs} denote the set of color types, and the function f : V(F(2,4)) - A
represent a complete coloring. Without loss of generality, if f(b1) = C1, f(b2) = Ca,

flv11) = Cs, and f(ve1) = Ci, then evidently the firework digraph F(2,4) can

be completely colored with 3 color types. Hence, we conclude dac(F'(2,4)) = 3.
Moreover, since the orientation is arbitrary, allowing the utilization of as many

colors as possible, dac(F(2, 4)) <3. O

Lemma 2.14. Given a firework digraph F(2, 3; as Deﬁm'tz'on and with arbitrary
direction orientation. It follows that dac(F(2,3)) < 2.

PRrOOF. Given a firework digraph F'(2,3) defined in Definition with arbitrary
orientation. Let w denote the number of colors available to color the digraph

F(2,3). Since \A(mﬂ = 5, and employing complete coloring for the digraph
F(2,3), we have ., P» < 5. Consequently, there is no possibility of using 3 color types
to fully color the digraph F(2,3). Next, let A = {C1,C>} represent the set of color
types, and function f : V(F(2,3)) — A denote a complete coloring. Without loss of
generality, if f(b1) = C1 and f(b2) = Ca, then clearly the firework digraph m

can be completely colored with 2 color types. Thus, we conclude dac(F(2,3)) = 2.
Furthermore, since the orientation is arbitrary, allowing the utilization of as many

color types as possible, dac(F(2, 3)) <2 O

Lemma 2.15. Given a firework digraph F(2, 2; as Deﬁm'tz'on and with arbitrary
direction orientation. It follows that dac(F(2,2)) < 2.

PROOF. Given a firework digraph F(2,2) defined in Definition with arbitrary
orientation. Let w represent the number of colors available to color the digraph

F(2,2). Since |A(F(2,2;)| = 3, and utilizing complete coloring for the digraph
F(2,2), we have ., P, < 3. Consequently, it is not possible to use 3 types of colors
to fully color the digraph F(2,2). Next, suppose A = {C7,C5} denotes the set

of color types, and function f : V(F(2,2)) — A represents a complete coloring.
Without loss of generality, if f(b1) = Cy and f(b2) = Cq, then evidently the

firework digraph F(2,2) can be completely colored with 2 color types. Thus, we
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obtain dac(F(2,2)) = 2. Furthermore, since the orientation is arbitrary, allowing

the utilization of as many color types as possible, dac(F(2,2)) < 2. O

Theorem 2.16. Considering a firework digraph F(2,p; defined in Deﬁmtion
with arbitrary orientation. We deduce from the following inequality:
2 p=23,

dac(F(2,p)) <
ac( (p)_{3;p>4

that for p € N and p > 2, the diachromatic number of F(2,p) satisfies the given
conditions.

PROOF. Given a firework digraph F(2,p) defined in Definition with arbitrary

orientation. It is established through Lemma and that dac(F(2,p)) < 3
holds true for every p > 4. Furthermore, according to Lemma [2.14] and [2.15]
dac(F(2,p)) < 2 is attained for p = 3 and p = 4. Consequently, we conclude that:
2 ;p=2,3
dac(F2.p)) <4 P07

3 p=>4

O

—
Theorem 2.17. Given a banana tree digraph By witht € N and t > 2 as Defi-

—
nitian and with direction orientation O"'. It follows that dac(Ba
t> 2.

) =2 for any

PROOF. Given a banana tree digraph EZ defined in Definition where t € N
and ¢ > 2, the orientation of the digraph is as follows: dyyut(b1) =t —1, d;,(b1) = 0,
dout(b2) =t — 1, din(b2) = 0, dout(v11) = 1, din(v11) = 1, dout(v21) = 0, din(va1) =
2, dout(v) = 1, dln(’U) = 1, dout(vlj) = 0, din(vlj) = 1, dout('UQj) = O7 and din('UQj) =
1for 2 < j <t—1. The banana tree digraph B; 5 has 4 arcs. Let w denote the
number of colors that can be used to color the digraph E; . The coloring of the
digraph is complete colori_ng;, ensuring that each different color pair appears at least
once. Thus, P < |A(Bs2)l, leading to w(w — 1) < 4. Consequently, the largest
value of w satisfying the inequality is w = 2. Next, let A = {C7, C5} represent the
set of color types, and the function f : V(Bsg2) — A represents a complete coloring.
Without loss of generality, if f(b1) = C1 and f(v11) = Ca, then obviously 2 color
types of digraph Bs 2 can be utilized for complete coloring. Hence, dac(B—23>) =2.
Furthermore, the digraph E;t can be at least completely colored with 2 colors.
Therefore, dac(B—gé) > 2. Additionally, consider A = {C1,C5,Cs} as the set of
color types, and let f : V(B—QZ) — A represent a complete coloring. Without loss
of generality, if f(bl) = Cl,f(bz) = 027f(1)11) = Cg,f(v) = 02, aﬂ)f(’l)gl) = 03,
then there exists a pair {C3, C1} such that for all (z,y), (z,u) € A(Bz2.), f(z) # Cs
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or f(y) # Cyor f(z) # Cy or f(u) # Cs. Therefore, complete coloring with 3 color

types on the digraph By, is not feasible. Consequently, dac(Ba;) < 3, yielding
—

dac(Ba) = 2. O

—
Lemma 2.18. Given a banana tree digraph Ba witht € N and t > 2 as Definition

—
and with arbitrary direction orientation. It follows that dac(Bay) < 4 for any
t>"7.

Proor. Consider a banana tree digraph @ defined in Definition where t € N
and t > 2, with an arbitrary direction orientation. For ¢ > 7, By, constitutes the
union of 2 star graphs, each containing 6 or more leaves. Let A = {C},Cs,C3,Cy}
denote the set of color types, and the function f : V(Bs;) — A represents a
complete coloring for any ¢ > 7. From A, color pairs {C;, C} with C; # Cj, are
derived, where 1 < i < 3 and i+ 1 < k < 4. It is observed that the maximum
number of color pairs {C;, Cx} for i = 1 is 3 pairs. To ensure complete coloring with
4 color types, there must be at least 6 arcs in By ¢, considering each pair requires 2
arcs. Without loss of generality, if f(b1) = C1, f(ba) = Ca, f(v11) = Cs, f(v) = Cy,
and f(ve1) = Cs5, and each of the vertices b; and by possesses 6 arcs, it is evident
that complete coloring of Q with 4 color types is feasible. Thus, dac(B—QE) >4
for t > 7. Next, consider B = {C},Cs,C3,Cy,Cs} as the set of color types, and
= . .
let f: V(Bz2:) — B represent a complete coloring for any ¢ > 7. Without loss of
generality, if f(b1) = C1, f(b2) = C2, f(vi1) = Cu, f(v) = C5, afi}f(”m) = Cy,
then there exist pairs {C3,C4} such that for all (z,y), (z,u) € A(Bay), f(x) # Cs
or f(y) # Cy or f(z) # Cy or f(u) # Cs. Thus, complete coloring with 5 color
types on By is infeasible, implying dac(Bz2 ) < 5. Consequently, dac(Bg ) = 4 for
t > 7. Furthermore, since the orientation is arbitrary to maximize the utilization
of color types, we obtain dac(B?g?) <4fort>T. O

—
Lemma 2.19. Given a banana tree digraph Bz as Deﬁnition and with arbi-
trary direction orientation. It follows that dac(Bag) < 4.

PRrROOF. Consider a banana tree digraph BAgz as defined in Definition n, with an
arbitrary direction orientation. Let A = {C,Cs,C3,Cy} denote the set of color
types, and the function f : V(B—g,g) — A represents a complete coloring. Further-
more, without loss of generality, if f(b1) = Cy, f(b2) = Ca, f(vee) = C1, f(v11) =
Cy, f(v) = C5, and f(va1) = Cy, then it is evident that complete coloring of the
digraph By ¢ with 4 color types is feasible. Hence, dac(B—N;>) = 4 is achieved. Fur-
thermore, since the orientation is arbitrary to maximize the utilization of color

—
types, we deduce dac(Ba) < 4. O

—
Lemma 2.20. Given a banana tree digraph Bs s as Deﬁmtion and with arbi-
=
trary direction orientation. It follows that dac(Ba) < 3.

)
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—

Proor. Consider a banana tree digraph Bs 5 as defined in Definition H with an
e

arbitrary direction orientation. The banana tree digraph Bj s comprises 10 arcs.

Let w denote the number of colors that can be utilized to color the digraph B—gg,>
The coloring of the digraph is a complete coloring where each different color pair
appears at least once. Therefore, P < ‘A(B‘Q_g)| This implies w(w — 1) < 10.
Consequently, the largest value of w satisfying the inequality is w = 3. Next, let
A = {C1,Cy, C3} represent the set of color types, and the function f : V(Bas) = A
signifies a complete coloring. Without loss of generality, if f(b1) = C; and f(be) =
Cs, then it is evident that 3 color types of the digraph B 5 can be colored using
complete coloring. Thus, dac(B25) = 3 is established. Furthermore, since the

-
orientation is arbitrary to maximize the utilization of colors, we infer dac(Ba5) <
3. O

e
Lemma 2.21. Given a banana tree digraph Bz as Deﬁnition and with arbi-
trary direction orientation. It follows that dac(Bgz4) < 3.

s
PrOOF. Given a banana tree digraph B3 4 as defined in Definition with arbi-
trary direction orientation. Let A = {C,Cs, C3} represent the set of color types,

and the function f : V(B—M>) — A denotes a complete coloring. Furthermore, with-
out loss of generality, if f(b1) = C1, f(b2) = Ca, f(v11) :_O>2’ and f(ve1) = C,
then it is evident that complete coloring of the digraph B, 4 with 3 color types
is feasible. Thus, we conclude dac(B—W;>) = 3. Moreover, since the orientation is

>
arbitrary to maximize the utilization of color types, we have dac(Bz 4) < 3. O

—
Lemma 2.22. Given a banana tree digraph Bs 3 as Deﬁnition and with arbi-
trary direction orientation. It follows that dac(Ba3) < 3.

—
Proor. Given a banana tree digraph Bj3 as described in Definition , with
arbitrary direction orientation. Let A = {C4, Cs, C3} denote the set of color types,

and the function f : V(Bg23) — A represent a complete coloring. Furthermore,
without loss of generality, if f(b;) = C1, f(b2) = Co, f(v) = C4, f(v11) = Ca, and
f(va1) = Cs, then it is evident that complete coloring of the digraph Bj 3 with

-~
3 color types is possible. Therefore, we conclude dac(Bsz3) = 3. Moreover, since
the orientation is arbitrary to maximize the utilization of color types, we have

—_—
daC(Bzyg) S 3. O

—
Lemma 2.23. Given a banana tree digraph Bz o as Deﬁnition and with arbi-
trary direction orientation. It follows that dac(Bs2) < 2.

>
PRrOOF. Given a banana tree digraph B3 o> as defined in Definition with arbi-
trary direction orientation. The digraph Bs 5 consists of 4 arcs. Let w represent the

—
number of colors that can be utilized to color the digraph B3 5. The coloring of the
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digraph is conducted as a complete coloring where each different color pair appears
at least once. Consequently, ,P» < |A(Ba,2)|. This implies that w(w—1) < 4, lead-
ing to the largest feasible value of w being w = 2. Additionally, let A = {C;,C2}
denote the set of color types, and the function f : V(Bg 2) — A represent a complete
coloring. Without loss of generality, if f(b1) = C; and f(b2) = Cy, then it’s evident
—
that 2 color types can completely color the digraph By o. Hence, dac(Bs2) = 2.
Furthermore, since the orientation is arbitrary and aims to utilize as many colors
. e
as possible, we conclude that dac(Bz2) < 2. O

0
Theorem 2.24. Given a banana tree digraph Bo; defined in Definition with
arbitrary direction orientation. It follows that

N 2 ;t=2,
daC(BQ,t) <43 it= 3, 47 57
4 ;t>6.

—
Proor. Given a banana tree digraph Bj; as defined in Definition with ar-

s
bitrary direction orientation. According to Lemma and 2.19L dac(Bgy) < 4
holds for every ¢ > 6. Subsequently, Lemma [2:20, Lemma [2:21] and Lemma [2:22]
yield dac(Bs;) < 3 for t =3, t =4, and t = 5. Moreover, Lemma establishes

—
dac(Bz) < 2 for t = 2. Consequently, we conclude

. 2 ;t=2,
dac(Bay) < (3 ;t=3,4,5,
4 ;t>6.

O

Theorem 2.25. Given a coconut tree digraph CT(m,4; with m € N as Definition
and with direction orientation O"". Then we have dac(CT(m,él;) =2.

PROOF. Given a coconut tree digraph CT'(m, 4; as defined in Definition m with
m € N. The direction orientation of the digraph is as follows: dpu(b1) = 1,
dln(bl) = O7 dout(bg) = 1, dln(bg) = 1, dout(bg,) = 1, dln(bg,) = 1, dout(b4) =m,
din(bs) = 1, doyi(v;) = 0, and d;p(v;) = 1 for 1 < j < m. The coconut tree
digraph CT(1,4) has 4 arcs. Let w represent the number of colors that can be
used to color the digraph CT(m,4). The coloring of the digraph utilizes complete
coloring, ensuring that each different color pair appears at least once. Thus, , P> <
|A(CT(1,4))|. Consequently, w(w — 1) < 4. Therefore, the largest value of w
satisfying this inequality is w = 2. Next, let A = {C7,Cs} denote the set of

color types, and the function f: V(CT(1,4)) — A represents a complete coloring.
Without loss of generality, if f(b1) = C1, f(by) = Cq, and f(b3) = C1, then it’s
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evident that 2 color types of the digraph CT'(1,4) can be completely colored. Thus,
we have dac(CT(1,4)) = 2. Moreover, the diachromatic number of the digraph

CT(m,4) can be at least completely colored with 2 colors. Hence, dac(CT (m, 4)) >
2. Furthermore, let B = {C,Cy,C5} represent the set of color types, and the

function f : V(CT(m,4)) — B is a complete coloring. Without loss of generality,
if f(by) = C1, f(b1) = Ca, f(b2) = Cs5, and f(b3) = Cs, then there exists a pair
of the form {C5, C4} such that for all (z,vy), (z,u) € A(CT(m,4)) holds f(z) # Cs
or f(y) # Cy or f(z) # Cy or f(u) # Cs. Hence, complete coloring with 3 color
types on the digraph C’T(m,4; is not possible. Therefore, dac(C’T(m,4;) < 3.
Consequently, dac(CT(m,4)) = 2. O

Lemma 2.26. Given a coconut tree digraph CT(m,4; with m € N as Definition

and with arbitrary direction orientation. It follows that dac(CT(m,éL;) <3 for
arbitrary m > 3.

ProOF. Given a coconut tree digraph CT(m,4) with m € N and m > 3 as
specified in Definition with arbitrary directional orientation. For m > 3, the

coconut tree digraph CT(m,4) comprises a combination of a star digraph and a
path digraph, where the star digraph has at least 3 leaves. Let A = {C1,Cs,C3}

represent the set of color types, and the function f : V(CT(m,4;) — A denotes a
complete coloring. Without loss of generality, if f(by) = Cy, f(b1) = Ca, f(b2) =
C3, and f(b3) = C5, then it evidently achieves complete coloring with 3 color

types. Hence, for m > 3, dac(CT(m,4)) > 3 is established. Furthermore, let B =

{C1,C4,C3,Cy4} denote the set of color types, and the function f : V/(CT(m, 4)) —
B signifies a complete coloring. Without loss of generality, if f(by) = C1, f(b1) =
Cy, f(b2) = Cs, and f(bs) = Ca, then pairs of the form {Cs5,C4} are present such

that for all (z,y),(z,u) € A(CT(m74;) it holds that f(x) # Cs or f(y) # Cy or
f(z) # Cq or f(u) # Cs. Therefore, complete coloring with 4 color types on the

digraph CT(m,4) is not achievable. Thus, dac(CT(m,4)) = 3 for any m > 3.
Furthermore, considering the arbitrary orientation to utilize as many colors as

possible, dac(CT(m,éL;) < 3 for any m > 3. O

Lemma 2.27. Given a coconut tree digraph C’T(2,4; as Definition and with
arbitrary direction orientation. It follows that dac(CT(2,4)) < 2.

PrOOF. Given a coconut tree digraph CT(2,4; as defined in Definition with
arbitrary directional orientation. Let w denote the number of colors that can be

utilized to color the digraph CT(2,4;. Considering that |A(CT(2,4;)\ = 5 and
employing complete coloring for the digraph, we have ,, P, < 5. Consequently, it’s

impossible to employ 3 types of colors for complete coloring of the digraph CT'(2,4).
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Next, let’s consider A = {C1,Cs} as the set of color types, and the function f :

V(CT(2,4)) — A represents a complete coloring. Without loss of generality, if
f(b1) = Ch, f(be) = Cy, and f(b3) = C4, it’s evident that the coconut tree digraph

CT(2,4) can be entirely colored with 2 color types. Hence, dac(CT(2,4)) = 2.
Furthermore, considering the arbitrary orientation to employ as many color types

as possible, we obtain dac(CT(2,4)) < 2. O

Lemma 2.28. Given a coconut tree digraph C’T(1,4; as Definition and with
arbitrary direction orientation. It follows that dac(CT(1,4)) < 2.

PRrROOF. Given a coconut tree digraph C’T(l,4; as defined in Definition with
arbitrary directional orientation. Let A = {C4, C3} represent the set of color types,

and the function f : V(CT'(1,4 )) — A denotes a complete coloring. Without loss of
generality, if f(b;) = C1, f(ba) = Ca, and f(bs) = C, it’s evident that the coconut

tree digraph CT(1,4) can be completely colored with 2 color types. Therefore,
dac(CT(1,4)) = 2. Furthermore, considering the arbitrary orientation to utilize as

many color types as possible, we obtain dac(CT(1, 4)) <2. O

Theorem 2.29. Given a coconut tree digraph CT(m,4) as defined in Definition
with arbitrary directional orientation. It follows that

dac(C’T(m,éﬂ) < {2 m=12

3 ;m>3.

PROOF. Given a coconut tree digraph CT'(m,4) with m € N as defined in Defini-
tion [1.4] and with arbitrary directional orientation. Lemma establishes that

dac(CT(m, 4}) < 3 holds for every m > 3. Furthermore, according to Lemma
and 2.28|, dac(CT(m,4)) < 2 is valid for m = 1 and m = 2. Thus, we conclude that

dac(C’T(m,4;) < {2 m=12

3 ;m>3.

3. CONCLUSION

In this paper, we investigate the diachromatic numbers of several acyclic
directed graphs, leading to the following conclusions:
(1) For the lobster digraph Lo(2; 7"; with the direction orientation O’, we find

that dac(L2(2;r)) = 3 holds when r = 1,2, and dac(Lg(Q;r;) = 4 for any
r> 3.
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Regarding the lobster digraph Lo (2;r) with an arbitrary direction orienta-
tion, the diachromatic number satisfies

3 ;r=12
dac(L2(2;7)) < ¢4 ;r=3,4,.
5 ;r>05.

For the fireworks digraph F(2, p; with the direction orientation O,
dac(F(2,p;) = 2 is observed for any p > 2.

The diachromatic number of the fireworks digraph F(2, p) with an arbitrary
direction orientation is given by

2 sp=23,
3 sp>4.

dac(F(2,p)) < {

The diachromatic number of the banana tree digraph B—gi with the direction
B—2>¢):2foranyt22.

When considering the banana tree digraph .g; with an arbitrary direction
orientation, we find

orientation 0" is dac(

N 2 5t=2,
dac(Bzt) < (3 ;t=3,4,5,
4 ;t>6.

The diachromatic number of the coconut tree digraph CT'(m, 4; with the

direction orientation O is dac(CT(m,4)) = 2 for any m € N.
For the coconut tree digraph with an arbitrary direction orientation, the
diachromatic number is bounded by

dac(C’T(m,4;) < {2 m=12

3 ;m>3.
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