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Abstract. A vertex coloring that ensures every pair of different colors is repre-

sented at least once is termed complete coloring. The diachromatic number of an

acyclic digraph denotes the maximum number of colors required for its complete

coloring. This study delves into the diachromatic numbers of lobster digraphs, fire-

works digraphs, banana tree digraphs, and coconut tree digraphs under specific and

arbitrary directional orientations.
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1. INTRODUCTION

A prominent concept in digraph theory is vertex coloring, which involves as-
signing colors to the vertices of a digraph so that no two adjacent vertices share
the same color. A. F. Möbius (1790 - 1868) initially explored vertex coloring while
investigating the map coloring problem, wherein vertices represent regions and ad-
jacent regions are connected by edges. This inquiry famously led to the formulation
of the four-color problem.

One advancement stemming from vertex coloring is complete coloring, which
involves ensuring that each pair of different colors appears at least once in the color-
ing of vertices. An intriguing problem within vertex coloring concerns determining
the minimum number of colors required for the coloring process, encapsulated by
the chromatic number in graphs and the dichromatic number in digraphs as pro-
posed by [1]. Specifically regarding complete coloring, [2] initially introduced the
concept of the achromatic number in graphs, representing the maximum number of
colors utilized in a complete coloring. Achromatic numbers are also explored in [3],
with a specific focus on circulant graphs. In 2017, [4] introduced an extension of the
achromatic number to digraphs, termed the diachromatic number. One of the stud-
ies on diachromatic number is conducted by [5], who specifically investigates the
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diachromatic number of the directed double star graph
−−−−→
K1,n,n. Another study on

diachromatic number is by [6], who explores the relationship between diachromatic
number and harmonious chromatic number.

This paper considers various potential direction orientations for certain di-
graphs whose diachromatic numbers are under investigation. Consequently, we
adopt the following direction orientations: O′ for the lobster digraph L2(2; r), O

′′

for the firework digraph F (2, p), O′′′ for the banana tree digraph B2,t, and O′′′′ for
the coconut tree digraph CT (m, 4).

Definition 1.1. [7] The lobster graph Ln(q; r) with n, q, r ∈ N, n ≥ 2 is a graph
with vertex set

V (Ln(q; r)) = {bi, hij , fijk|1 ≤ i ≤ n, 1 ≤ j ≤ q, 1 ≤ k ≤ r, n ≥ 2},

and edge set

E(Ln(q; r)) = {bibi+1|1 ≤ i ≤ n− 1, n ≥ 2}
∪ {hijbi, fijkhij |1 ≤ i ≤ n, 1 ≤ j ≤ q, 1 ≤ k ≤ r}.

We define specifically for L2(2; r) orientation of direction O′ is as follows;
for the backbone vertices b1 and b2, dout(b1) = 2, din(b1) = 1, dout(b2) = 3, and
din(b2) = 0, and while for the hand vertices hij , dout(hij) = r and din(hij) = 1
for i = 1, 2 and j = 1, 2, and for the finger vertices fijk, dout(fijk) = 0 and
din(fijk) = 1, for i = 1, 2, j = 1, 2 and 1 ≤ k ≤ r. So we obtain a directed lobster

graph L2(2; r) denoted by
−−−−−→
L2(2; r).

Definition 1.2. [8] The firework graph F (n, p) with n, p ≥ 2 is a graph with vertex
set

V (F (n, p)) = {bi, vij |1 ≤ i ≤ n, 1 ≤ j ≤ p− 1}
and edge set

E(F (n, p)) = {bivij |1 ≤ i ≤ n, 1 ≤ j ≤ p− 1}
∪ {vi1v(i+1)1|1 ≤ i ≤ n− 1}.

Particularly, for F (2, p) orientation of direction O′′ is as follows; dout(b1) =
p − 1, din(b1) = 0, dout(b2) = p − 1, din(b2) = 0, dout(v11) = 1, din(v11) = 1,
dout(v21) = 0, din(v21) = 2, dout(v1j) = 0, din(v1j) = 1, dout(v2j) = 0, and
din(v2j) = 1 for 2 ≤ j ≤ p − 1. Thus, we acquire a directed firework graph

represented as
−−−−→
F (n, p).

Definition 1.3. [9] The banana tree graph Bn,t with n ≥ 1 and t ≥ 2 is a graph
with vertex set

V (Bn,t) = {v, bi, vij |1 ≤ i ≤ n, 1 ≤ j ≤ t− 1}
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and edge set

E(Bn,t) = {bivij |1 ≤ i ≤ n, 1 ≤ j ≤ t− 1, t ≥ 2}
∪ {vi1v|1 ≤ i ≤ n}.

Specifically, for the orientation of direction O′′′ in B2,t, it is as follows;
dout(b1) = t − 1, din(b1) = 0, dout(b2) = t − 1, din(b2) = 0, dout(v11) = 1,
din(v11) = 1, dout(v21) = 0, din(v21) = 2, dout(v) = 1, din(v) = 1, dout(v1j) = 0,
din(v1j) = 1, dout(v2j) = 0, and din(v2j) = 1 for 2 ≤ j ≤ t − 1. Therefore, we

obtain a directed banana tree graph denoted by
−−→
B2,t. Subsequently, an illustration

of the graph
−−→
B2,t with the orientation of direction O′′′ is presented.

v15 v16 v17 v v27 v26 v25

v14 b1 v1(t−1) v2(t−1) b2 v24

v13 v12 v11 v21 v22 v23

Figure 1. Banana Tree Graph
−−→
B2,t

Definition 1.4. [10] The coconut tree graph CT (m,n) with m,n ∈ N is a graph
with vertex set

V (CT (m,n)) = {bi, vj |1 ≤ i ≤ n, 1 ≤ j ≤ m},

and edge set

E(CT (m,n)) = {bibi+1|1 ≤ i ≤ n− 1}
∪ {bkvj |k = max{i}, 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Specifically, in the case of the orientation of direction O′′′′ for CT (m, 4), it
is as follows; dout(b1) = 1, din(b1) = 0, dout(b2) = 1, din(b2) = 1, dout(b3) = 1,
din(b3) = 1, dout(b4) = m, din(b4) = 1, dout(vj) = 0, and din(vj) = 1 for 1 ≤ j ≤ m.

Hence, the result yields a directed banana tree graph represented as
−−−−−−→
CT (m, 4). An

illustration of the graph
−−−−−−→
CT (m, 4) with orientation of direction O′′′′ is presented

below.
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Figure 2. Coconut Tree Graph
−−−−−−→
CT (m, 4)

Definition 1.5. [11] Given a digraph
−→
G . A complete coloring of the digraph

−→
G

is a vertex coloring such that each different color pair appears at least once in the

digraph
−→
G .

Lemma 1.6. Given a digraph
−→
G = (V (

−→
G), A(

−→
G)). Let w be the number of colors

that can be used in the complete coloring of
−→
G . The value of w satisfies wP2 ≤

|A(
−→
G)|.

Proof. Considering a digraph
−→
G = (V (

−→
G), A(

−→
G)) and denoting w as the number

of colors that can be utilized for complete coloring of
−→
G , assume wP2 > |A(

−→
G)|.

Let f : A(
−→
G) → C = {C1, C2, ..., Cw} represent a complete coloring function, where

C is the set of color types. Without loss of generality, there must exist a color pair

{Ci, Cj} ⊆ C, with Ci ̸= Cj , such that for every arc (x, y), (z, u) ∈ A(
−→
G), either

f(x) ̸= Ci, f(y) ̸= Cj , f(z) ̸= Cj , or f(u) ̸= Ci. This contradicts the requirement

of complete coloring in
−→
G that mandates every different color pair appears at least

once. Hence, the assumption is incorrect. Consequently, the number of colors

suitable for complete coloring satisfies wP2 ≤ |A(
−→
G)|. □

2. MAIN RESULTS

Definition 2.1. [4] The diachromatic number, denoted as dac(
−→
G), refers to the

maximum number of colors utilized in the complete coloring of an acyclic digraph−→
G .
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Theorem 2.2. Given a lobster digraph
−−−−−→
L2(2; r) with r ∈ N as Defined 1.1 and

with direction orientation O′. It follows that dac(
−−−−−→
L2(2; r)) = 3 for r = 1, 2 and

dac(
−−−−−→
L2(2; r)) = 4 for any r ≥ 3.

Proof. Considering a lobster digraph
−−−−−→
L2(2; r) as Defined in Definition 1.1, where

r ∈ N, and with the following direction orientation: for the vertices backbone, b1
and b2, dout(b1) = 2, din(b1) = 1, dout(b2) = 3, and din(b2) = 0; for the vertices
hand, hij , dout(hij) = r and din(hij) = 1 for i = 1, 2 and j = 1, 2; and for the
vertices finger, fijk, dout(fijk) = 0 and din(fijk) = 1 for i = 1, 2, j = 1, 2, and

1 ≤ k ≤ r, let w represent the number of colors usable for digraph
−−−−−→
L2(2; r). The

lobster digraph
−−−−−→
L2(2; 1) comprises 9 arcs. Employing complete coloring, we have

wP2 ≤ |A(
−−−−−→
L2(2; 1))|. Consequently, w(w − 1) ≤ 9, leading to the maximum w = 3.

Let A = {C1, C2, C3} be the set of color types, and f : V (
−−−−−→
L2(2; 1)) → A constitute

a complete coloring. Without loss of generality, if f(b1) = C2 and f(b2) = C1,

then
−−−−−→
L2(2; 1) can be colored with 3 colors, yielding dac(

−−−−−→
L2(2; 1)) = 3. For

−−−−−→
L2(2; 2),

let B = {C1, C2, C3, C4} denote the set of color types, and f : V (
−−−−−→
L2(2; 2)) → B

be a complete coloring. Without loss of generality, if f(b1) = C2, f(b2) = C1,
f(h11) = C3, and f(h12) = C4, some color pairs {C2, Ct} for t ∈ {1, 3, 4} cannot

be found in
−−−−−→
L2(2; 2) due to constraints on dout(b1). Hence, dac(

−−−−−→
L2(2; 2)) < 4,

leading to dac(
−−−−−→
L2(2; 2)) = 3. Similarly, for

−−−−−→
L2(2; 3) comprising 17 arcs, complete

coloring yields wP2 ≤ |A(
−−−−−→
L2(2; 3))|, resulting in w(w − 1) ≤ 17 and w = 4. Let

C = {C1, C2, C3, C4} represent the set of color types, and f : V (
−−−−−→
L2(2; 3)) → C

constitute a complete coloring. Without loss of generality, if f(b1) = C3, f(b2) =

C1, f(h11) = C2, f(h12) = C1, f(h21) = C3, and f(h22) = C4, the digraph
−−−−−→
L2(2; 3)

can be colored with 4 colors, resulting in dac(
−−−−−→
L2(2; 3)) = 4. For

−−−−−→
L2(2; r) with r ≥ 4,

let D = {C1, C2, C3, C4, C5} denote the set of color types, and f : V (
−−−−−→
L2(2; r)) → D

be a complete coloring. Without loss of generality, if f(h21) = C1, f(h22) = C2,
f(h11) = C4, and f(h12) = C3, a pair of the form {C5, Ct} for t ∈ {1, 2, 3, 4} cannot

be found in
−−−−−→
L2(2; r) due to constraints on dout(h21). Hence, complete coloring with

5 color types on
−−−−−→
L2(2; r) for r ≥ 4 is not possible, i.e., dac(

−−−−−→
L2(2; r)) = 4 for

r ≥ 4. □

Lemma 2.3. Given a lobster digraph
−−−−−→
L2(2; r) with r ∈ N as Definition 1.1 and

with arbitrary direction orientation. It follows that dac(
−−−−−→
L2(2; r)) ≤ 5 for any r ≥ 8.

Proof. Consider a lobster digraph
−−−−−→
L2(2; r) Defined in Definition 1.1 with r ∈ N

and arbitrary orientation. When r ≥ 8,
−−−−−→
L2(2; r) comprises four star graphs, each

with at least 8 leaves (vertices representing fingers). Let A = {C1, C2, C3, C4, C5}
denote the set of color types, and the function f : V (

−−−−−→
L2(2; r)) → A ensures a

complete coloring for any r ≥ 8. From A, color pairs {Ci, Ck} with Ci ̸= Ck are
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derived where 1 ≤ i ≤ 4 and i+1 ≤ k ≤ 5. Note that the maximum number of such
pairs with i = 1 is 4. Since each pair requires 2 arcs, there must be at least 8 arcs

in
−−−−−→
L2(2; r) to achieve complete coloring with 5 colors. Without loss of generality,

if f(h21) = C1, f(h22) = C2, f(h11) = C4, and f(h12) = C3, and each vertex

h21, h22, h11, and h12 has 8 arcs, then complete coloring of
−−−−−→
L2(2; r) with 5 colors

is feasible. This yields dac(
−−−−−→
L2(2; r)) ≥ 5. Now, let B = {C1, C2, C3, C4, C5, C6}

represent the set of color types, and f : V (
−−−−−→
L2(2; r)) → B achieves complete coloring

for any r ≥ 8. From B, color pairs {Ci, Ck} with Ci ̸= Ck are obtained where

1 ≤ i ≤ 5 and i + 1 ≤ k ≤ 6 to color
−−−−−→
L2(2; r). Without loss of generality,

if f(h22) = C1, f(h21) = C2, f(h11) = C3 and f(h12) = C4, then there exist

pairs {C5, C6} such that for all (x, y), (z, u) ∈ A(
−−−−−→
L2(2; r)), it holds f(x) ̸= C5 or

f(y) ̸= C6 or f(z) ̸= C6 or f(u) ̸= C5. Thus, it is demonstrated that
−−−−−→
L2(2; r)

cannot be colored with complete coloring using 6 color types. It is observed that

dac(
−−−−−→
L2(2; r)) = 5 for any r ≥ 8. Moreover, due to the arbitrary orientation allowing

the utilization of as many color types as possible, we conclude dac(
−−−−−→
L2(2; r)) ≤ 5,

for any r ≥ 8. □

Lemma 2.4. Given a lobster digraph
−−−−−→
L2(2; r) with r = 6 or r = 7 as Definition

1.1 and with arbitrary direction orientation. It follows that dac(
−−−−−→
L2(2; r)) ≤ 5 for

r = 6 or r = 7.

Proof. Considering the lobster digraph
−−−−−→
L2(2; r) Defined in Definition 1.1 with

arbitrary orientation, let A = {C1, C2, C3, C4, C5} denote the set of color types,

and the function f : V (
−−−−−→
L2(2; r)) → A represents the complete coloring for r = 6.

Moreover, without loss of generality, suppose f(h11) = C1, f(h12) = C2, f(h21) =

C3, f(b2) = C5, f(b1) = C3, and f(h22) = C4. It is evident that the digraph
−−−−−→
L2(2; 6)

can be entirely colored using 5 colors, yielding dac(
−−−−−→
L2(2; 6)) = 5. Furthermore,

due to the arbitrary orientation allowing the utilization of as many color types as

possible, we conclude dac(
−−−−−→
L2(2; 6)) ≤ 5. The scenario for r = 7 mirrors that of

r = 6. □

Lemma 2.5. Given a lobster digraph
−−−−−→
L2(2; 5) as Definition 1.1 and with arbitrary

digraph direction orientation. It follows that dac(
−−−−−→
L2(2; 5)) ≤ 5.

Proof.Given the lobster digraph
−−−−−→
L2(2; 5) defined in Definition 1.1 with arbitrary

orientation, let A = {C1, C2, C3, C4, C5} represent the set of color types, and the

function f : V (
−−−−−→
L2(2; 5)) → A denotes a complete coloring. Furthermore, without

loss of generality, if f(h11) = C1, f(h12) = C2, f(h21) = C3, f(h22) = C5, f(b1) =
C4, and f(f211) = C1, then for every pair {Ci, Cj} ⊆ A with Ci ̸= Cj , there

exist (x, y), (z, u) ∈ A(
−−−−−→
L2(2; 5)) such that f(x) = Ci, f(y) = Cj , f(z) = Cj , and

f(u) = Ci. This demonstrates that the lobster digraph
−−−−−→
L2(2; 5) can be colored
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using 5 color types with complete coloring. Hence, dac(
−−−−−→
L2(2; 5)) = 5 is established.

Moreover, due to the arbitrary orientation allowing the usage of as many colors as

possible, we conclude dac(
−−−−−→
L2(2; 5)) ≤ 5. □

Lemma 2.6. Given a lobster digraph
−−−−−→
L2(2; 4) as Definition 1.1 and with arbitrary

direction orientation. It follows that dac(
−−−−−→
L2(2; 4)) ≤ 4.

Proof. Given the lobster digraph
−−−−−→
L2(2; 4) defined in Definition 1.1 with arbitrary

orientation, let A = {C1, C2, C3, C4, C5} denote the set of color types, and the

function f : V (
−−−−−→
L2(2; 4)) → A represent a complete coloring. Furthermore, with-

out loss of generality, if f(h11) = C1, f(h12) = C2, f(h21) = C3, f(h22) = C5,
f(b1) = C5, and f(b2) = C1, then there exists a pair {C1, C4} such that for all

(x, y), (z, u) ∈ A(
−−−−−→
L2(2; 4)) it holds f(x) ̸= C1 or f(y) ̸= C4 or f(z) ̸= C4 or

f(u) ̸= C1. Hence, complete coloring with 5 color types on the digraph
−−−−−→
L2(2; 4) is

not feasible. Furthermore, let B = {C1, C2, C3, C4} be the set of color types, and

the function f : V (
−−−−−→
L2(2; 4)) → B represents a complete coloring. Without loss of

generality, if f(h11) = C1, f(h12) = C2, f(h21) = C3, and f(h22) = C1, then it

evidently satisfies complete coloring with 4 color types. Thus, dac(
−−−−−→
L2(2; 4)) = 4.

Additionally, since the orientation is arbitrary allowing the usage of as many color

types as possible, we conclude dac(
−−−−−→
L2(2; 4)) ≤ 4. □

Lemma 2.7. Given a lobster digraph
−−−−−→
L2(2; 3) as Definition 1.1 and with arbitrary

direction orientation. It follows that dac(
−−−−→
L2(2; 3) ≤ 4.

Proof. Given the lobster digraph
−−−−−→
L2(2; 3) defined in Definition 1.1 with arbitrary

orientation, let A = {C1, C2, C3, C4} represent the set of color types, and the func-

tion f : V (
−−−−−→
L2(2; 3)) → A denote a complete coloring. Without loss of generality,

if f(h11) = C1, f(h12) = C4, f(h21) = C2, and f(h22) = C3, then it evidently

satisfies complete coloring with 4 color types. Therefore, dac(
−−−−−→
L2(2; 3)) = 4. Fur-

thermore, since the orientation is arbitrary allowing the usage of as many color

types as possible, we conclude dac(
−−−−−→
L2(2; 3)) ≤ 4. □

Lemma 2.8. Given a lobster digraph
−−−−−→
L2(2; 2) as Definition 1.1 and with arbitrary

direction orientation. It follows that dac(
−−−−−→
L2(2; 2)) ≤ 3.

Proof. Given the lobster digraph
−−−−−→
L2(2; 2) defined in Definition 1.1 with arbitrary

orientation, let A = {C1, C2, C3, C4} represent the set of color types, and the func-

tion f : V (
−−−−−→
L2(2; 2)) → A denote a complete coloring. Without loss of generality,

if f(h11) = C1, f(h12) = C2, f(h21) = C3, and f(h22) = C4, then there exist

pairs {C1, C3} such that for all (x, y), (z, u) ∈ A(
−−−−−→
L2(2; 2)) it holds f(x) ̸= C1 or

f(y) ̸= C3 or f(z) ̸= C3 or f(u) ̸= C1. Hence, complete coloring with 4 color types
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on the digraph
−−−−−→
L2(2; 2) is not possible. Furthermore, suppose B = {C1, C2, C3} is

the set of color types, and the function f : V (
−−−−−→
L2(2; 2)) → B is a complete coloring.

Without loss of generality, if f(h11) = C1, f(h12) = C2, and f(h21) = C3, then it

evidently satisfies complete coloring with 3 color types. Thus, dac(
−−−−−→
L2(2; 2)) = 3.

Additionally, since the orientation is arbitrary allowing the usage of as many color

types as possible, we conclude dac(
−−−−−→
L2(2; 2)) ≤ 3. □

Lemma 2.9. Given a lobster digraph
−−−−−→
L2(2; 1) as Definition 1.1 and with arbitrary

direction orientation. It follows that dac(
−−−−−→
L2(2; 1)) ≤ 3.

Proof. Given the lobster digraph
−−−−−→
L2(2; 1) defined in Definition 1.1 with arbitrary

orientation, let A = {C1, C2, C3} represent the set of color types, and the function

f : V (
−−−−−→
L2(2; 1)) → A denote a complete coloring. Without loss of generality, if

f(h11) = C1, f(h12) = C3, and f(h21) = C2, then it’s evident that 3 color types

can be utilized to fully color the lobster digraph
−−−−−→
L2(2; 1). Therefore, we have

dac(
−−−−−→
L2(2; 1)) = 3. Furthermore, since the orientation is arbitrary allowing the

usage of as many colors as possible, we conclude dac(
−−−−−→
L2(2; 1)) ≤ 3. □

Theorem 2.10. Given a lobster digraph
−−−−−→
L2(2; r) defined in Definition 1.1, where

r ∈ N, and featuring arbitrary orientation, the following relationship is observed:

dac(
−−−−−→
L2(2; r)) ≤


3 ; r = 1, 2,

4 ; r = 3, 4,

5 ; r ≥ 5.

Proof. Given a lobster digraph
−−−−−→
L2(2; r) defined in Definition 1.1, where r ∈

N, and featuring arbitrary orientation. According to Lemma 2.3, 2.4, and 2.5,

dac(
−−−−−→
L2(2; r)) ≤ 5 holds for every r ≥ 5. Subsequently, from Lemma 2.6 and 2.7,

dac(
−−−−−→
L2(2; r)) ≤ 4 is derived for r = 3 and r = 4. Moreover, according to Lemma 2.8

and 2.9, dac(
−−−−−→
L2(2; r)) ≤ 3 is established for r = 1 and r = 2. Hence, we conclude:

dac(
−−−−−→
L2(2; r)) ≤


3 ; r = 1, 2,

4 ; r = 3, 4,

5 ; r ≥ 5.

. □

Theorem 2.11. Given a firework digraph
−−−−→
F (2, p) with p ∈ N and p ≥ 2 as defined

by Definition 1.2 and with direction orientation O′′. It follows that dac(
−−−−→
F (2, p)) = 2

for arbitrary p ≥ 2.
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Proof. Given a firework digraph
−−−−→
F (2, p) defined in Definition 1.2, where p ∈ N

and p ≥ 2, the orientation of the digraph follows as: dout(b1) = p− 1, din(b1) = 0,
dout(b2) = p− 1, din(b2) = 0, dout(v11) = 1, din(v11) = 1, dout(v21) = 0, din(v21) =
2, dout(v1j) = 0, din(v1j) = 1, dout(v2j) = 0, and din(v2j) = 1 for 2 ≤ j ≤ p − 1.

The firework digraph
−−−−→
F (2, 2) comprises 3 arcs. Let w denote the number of colors

that can be utilized to color the digraph
−−−−→
F (2, p). The coloring of the digraph adopts

a complete coloring approach where each different color pair appears at least once.

Hence, wP2 ≤ |A(
−−−−→
F (2, 2))|. Consequently, w(w − 1) ≤ 3. Thus, the largest value

of w satisfying the inequality is w = 2. Subsequently, let A = {C1, C2} be the

set of color types, and the function f : V (
−−−−→
F (2, 2)) → A represent a complete

coloring. Without loss of generality, if f(b1) = C1 and f(v11) = C2, then evidently

2 color types of the digraph
−−−−→
F (2, 2) can be completely colored. Therefore, we

have dac(
−−−−→
F (2, 2)) = 2. Furthermore, the diachromatic number of the digraph

−−−−→
F (2, p) can be at least completely colored with 2 colors. Thus, dac(

−−−−→
F (2, 2)) ≥ 2 is

obtained. Next, let B = {C1, C2, C3} denote the set of color types, and the function

f : V (
−−−−→
F (2, p)) → B represent a complete coloring. Without loss of generality, if

f(b1) = C1, f(v11) = C2, f(v21) = C1, and f(b2) = C3, then there are pairs of

the form {C2, C3} such that for all (x, y), (z, u) ∈ A(
−−−−→
F (2, p)) it holds f(x) ̸= C2 or

f(y) ̸= C3 or f(z) ̸= C3 or f(u) ̸= C2. Therefore, complete coloring with 3 color

types on the digraph
−−−−→
F (2, p) is not possible. Hence, dac(

−−−−→
F (2, p)) < 3. Consequently,

dac(
−−−−→
F (2, p)) = 2. □

Lemma 2.12. Given a firework digraph
−−−−→
F (2, p) with p ∈ N and p ≥ 5 as Definition

1.2 and with arbitrary direction orientation. It follows that dac(
−−−−→
F (2, p)) ≤ 3 for

any p ≥ 5.

Proof. Given a firework digraph
−−−−→
F (2, p) defined in Definition 1.2, where p ∈ N and

p ≥ 5, with arbitrary orientation. For p ≥ 5, the firework digraph
−−−−→
F (2, p) consists

of 2 star graphs, each with at least 4 leaves. Let A = {C1, C2, C3} represent the

set of color types, and the function f : V (
−−−−→
F (2, p)) → A denote a complete coloring.

Without loss of generality, if f(b1) = C1, f(b2) = C3, and f(v11) = C3, then it
evidently achieves complete coloring with 3 color types. Thus, for p ≥ 5, we have

dac(
−−−−→
F (2, p)) ≥ 3. Furthermore, let B = {C1, C2, C3, C4} denote the set of color

types, and the function f : V (
−−−−→
F (2, p)) → B represent a complete coloring. Without

loss of generality, if f(b1) = C1 and f(b2) = C2, then there exists a pair {C3, C4}
such that for all (x, y), (z, u) ∈ A(

−−−−→
F (2, p)) it holds f(x) ̸= C3 or f(y) ̸= C4 or

f(z) ̸= C4 or f(u) ̸= C3. Hence, complete coloring with 4 color types on the

digraph
−−−−→
F (2, p) is not feasible. We conclude dac(

−−−−→
F (2, p))) = 3 for any p ≥ 5.

Additionally, since the orientation is arbitrary, allowing the utilization of as many

colors as possible, dac(
−−−−→
F (2, p)) ≤ 3 for any p ≥ 5. □
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Lemma 2.13. Given a firework digraph
−−−−→
F (2, 4) as Definition 1.2 and with arbitrary

direction orientation. It follows that dac(
−−−−→
F (2, 4)) ≤ 3.

Proof. Considering a firework digraph
−−−−→
F (2, 4) defined in Definition 1.2, with

arbitrary orientation. Let w represent the number of colors that can be employed

to color the digraph
−−−−→
F (2, 4). Since |A(

−−−−→
F (2, 4))| = 7 and utilizing complete coloring

for the digraph
−−−−→
F (2, 4), we have wP2 ≤ 7. Consequently, there exists no possibility

of using 4 types of colors to completely color the digraph
−−−−→
F (2, 4). Furthermore, let

A = {C1, C2, C3} denote the set of color types, and the function f : V (
−−−−→
F (2, 4)) → A

represent a complete coloring. Without loss of generality, if f(b1) = C1, f(b2) = C2,

f(v11) = C3, and f(v21) = C1, then evidently the firework digraph
−−−−→
F (2, 4) can

be completely colored with 3 color types. Hence, we conclude dac(
−−−−→
F (2, 4)) = 3.

Moreover, since the orientation is arbitrary, allowing the utilization of as many

colors as possible, dac(
−−−−→
F (2, 4)) ≤ 3. □

Lemma 2.14. Given a firework digraph
−−−−→
F (2, 3) as Definition 1.2 and with arbitrary

direction orientation. It follows that dac(
−−−−→
F (2, 3)) ≤ 2.

Proof. Given a firework digraph
−−−−→
F (2, 3) defined in Definition 1.2, with arbitrary

orientation. Let w denote the number of colors available to color the digraph−−−−→
F (2, 3). Since |A(

−−−−→
F (2, 3))| = 5, and employing complete coloring for the digraph

−−−−→
F (2, 3), we have wP2 ≤ 5. Consequently, there is no possibility of using 3 color types

to fully color the digraph
−−−−→
F (2, 3). Next, let A = {C1, C2} represent the set of color

types, and function f : V (
−−−−→
F (2, 3)) → A denote a complete coloring. Without loss of

generality, if f(b1) = C1 and f(b2) = C2, then clearly the firework digraph
−−−−→
F (2, 3)

can be completely colored with 2 color types. Thus, we conclude dac(
−−−−→
F (2, 3)) = 2.

Furthermore, since the orientation is arbitrary, allowing the utilization of as many

color types as possible, dac(
−−−−→
F (2, 3)) ≤ 2. □

Lemma 2.15. Given a firework digraph
−−−−→
F (2, 2) as Definition 1.2 and with arbitrary

direction orientation. It follows that dac(
−−−−→
F (2, 2)) ≤ 2.

Proof. Given a firework digraph
−−−−→
F (2, 2) defined in Definition 1.2, with arbitrary

orientation. Let w represent the number of colors available to color the digraph−−−−→
F (2, 2). Since |A(

−−−−→
F (2, 2))| = 3, and utilizing complete coloring for the digraph

−−−−→
F (2, 2), we have wP2 ≤ 3. Consequently, it is not possible to use 3 types of colors

to fully color the digraph
−−−−→
F (2, 2). Next, suppose A = {C1, C2} denotes the set

of color types, and function f : V (
−−−−→
F (2, 2)) → A represents a complete coloring.

Without loss of generality, if f(b1) = C1 and f(b2) = C2, then evidently the

firework digraph
−−−−→
F (2, 2) can be completely colored with 2 color types. Thus, we
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obtain dac(
−−−−→
F (2, 2)) = 2. Furthermore, since the orientation is arbitrary, allowing

the utilization of as many color types as possible, dac(
−−−−→
F (2, 2)) ≤ 2. □

Theorem 2.16. Considering a firework digraph
−−−−→
F (2, p) defined in Definition 1.2,

with arbitrary orientation. We deduce from the following inequality:

dac(
−−−−→
F (2, p)) ≤

{
2 ; p = 2, 3,

3 ; p ≥ 4.

that for p ∈ N and p ≥ 2, the diachromatic number of
−−−−→
F (2, p) satisfies the given

conditions.

Proof. Given a firework digraph
−−−−→
F (2, p) defined in Definition 1.2, with arbitrary

orientation. It is established through Lemma 2.12 and 2.13 that dac(
−−−−→
F (2, p)) ≤ 3

holds true for every p ≥ 4. Furthermore, according to Lemma 2.14 and 2.15,

dac(
−−−−→
F (2, p)) ≤ 2 is attained for p = 3 and p = 4. Consequently, we conclude that:

dac(
−−−−→
F (2, p)) ≤

{
2 ; p = 2, 3,

3 ; p ≥ 4.

□

Theorem 2.17. Given a banana tree digraph
−−→
B2,t with t ∈ N and t ≥ 2 as Defi-

nition 1.3 and with direction orientation O′′′. It follows that dac(
−−→
B2,t) = 2 for any

t ≥ 2.

Proof. Given a banana tree digraph
−−→
B2,t defined in Definition 1.3, where t ∈ N

and t ≥ 2, the orientation of the digraph is as follows: dout(b1) = t−1, din(b1) = 0,
dout(b2) = t− 1, din(b2) = 0, dout(v11) = 1, din(v11) = 1, dout(v21) = 0, din(v21) =
2, dout(v) = 1, din(v) = 1, dout(v1j) = 0, din(v1j) = 1, dout(v2j) = 0, and din(v2j) =

1 for 2 ≤ j ≤ t − 1. The banana tree digraph
−−→
B2,2 has 4 arcs. Let w denote the

number of colors that can be used to color the digraph
−−→
B2,2. The coloring of the

digraph is complete coloring, ensuring that each different color pair appears at least

once. Thus, wP2 ≤ |A(
−−→
B2,2)|, leading to w(w − 1) ≤ 4. Consequently, the largest

value of w satisfying the inequality is w = 2. Next, let A = {C1, C2} represent the

set of color types, and the function f : V (
−−→
B2,2) → A represents a complete coloring.

Without loss of generality, if f(b1) = C1 and f(v11) = C2, then obviously 2 color

types of digraph
−−→
B2,2 can be utilized for complete coloring. Hence, dac(

−−→
B2,2) = 2.

Furthermore, the digraph
−−→
B2,t can be at least completely colored with 2 colors.

Therefore, dac(
−−→
B2,t) ≥ 2. Additionally, consider A = {C1, C2, C3} as the set of

color types, and let f : V (
−−→
B2,t) → A represent a complete coloring. Without loss

of generality, if f(b1) = C1, f(b2) = C2, f(v11) = C3, f(v) = C2, and f(v21) = C3,

then there exists a pair {C3, C1} such that for all (x, y), (z, u) ∈ A(
−−→
B2,t), f(x) ̸= C3
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or f(y) ̸= C1 or f(z) ̸= C1 or f(u) ̸= C3. Therefore, complete coloring with 3 color

types on the digraph
−−→
B2,t is not feasible. Consequently, dac(

−−→
B2,t) < 3, yielding

dac(
−−→
B2,t) = 2. □

Lemma 2.18. Given a banana tree digraph
−−→
B2,t with t ∈ N and t ≥ 2 as Definition

1.3 and with arbitrary direction orientation. It follows that dac(
−−→
B2,t) ≤ 4 for any

t ≥ 7.

Proof. Consider a banana tree digraph
−−→
B2,t defined in Definition 1.3, where t ∈ N

and t ≥ 2, with an arbitrary direction orientation. For t ≥ 7,
−−→
B2,t constitutes the

union of 2 star graphs, each containing 6 or more leaves. Let A = {C1, C2, C3, C4}
denote the set of color types, and the function f : V (

−−→
B2,t) → A represents a

complete coloring for any t ≥ 7. From A, color pairs {Ci, Ck} with Ci ̸= Ck are
derived, where 1 ≤ i ≤ 3 and i + 1 ≤ k ≤ 4. It is observed that the maximum
number of color pairs {Ci, Ck} for i = 1 is 3 pairs. To ensure complete coloring with

4 color types, there must be at least 6 arcs in
−−→
B2,t, considering each pair requires 2

arcs. Without loss of generality, if f(b1) = C1, f(b2) = C2, f(v11) = C3, f(v) = C4,
and f(v21) = C3, and each of the vertices b1 and b2 possesses 6 arcs, it is evident

that complete coloring of
−−→
B2,t with 4 color types is feasible. Thus, dac(

−−→
B2,t) ≥ 4

for t ≥ 7. Next, consider B = {C1, C2, C3, C4, C5} as the set of color types, and

let f : V (
−−→
B2,t) → B represent a complete coloring for any t ≥ 7. Without loss of

generality, if f(b1) = C1, f(b2) = C2, f(v11) = C4, f(v) = C5, and f(v21) = C4,

then there exist pairs {C3, C4} such that for all (x, y), (z, u) ∈ A(
−−→
B2,t), f(x) ̸= C3

or f(y) ̸= C4 or f(z) ̸= C4 or f(u) ̸= C3. Thus, complete coloring with 5 color

types on
−−→
B2,t is infeasible, implying dac(

−−→
B2,t) < 5. Consequently, dac(

−−→
B2,t) = 4 for

t ≥ 7. Furthermore, since the orientation is arbitrary to maximize the utilization

of color types, we obtain dac(
−−→
B2,t) ≤ 4 for t ≥ 7. □

Lemma 2.19. Given a banana tree digraph
−−→
B2,6 as Definition 1.3 and with arbi-

trary direction orientation. It follows that dac(
−−→
B2,6) ≤ 4.

Proof. Consider a banana tree digraph
−−→
B2,6 as defined in Definition 1.3, with an

arbitrary direction orientation. Let A = {C1, C2, C3, C4} denote the set of color

types, and the function f : V (
−−→
B2,6) → A represents a complete coloring. Further-

more, without loss of generality, if f(b1) = C1, f(b2) = C2, f(v22) = C1, f(v11) =
C4, f(v) = C3, and f(v21) = C4, then it is evident that complete coloring of the

digraph
−−→
B2,6 with 4 color types is feasible. Hence, dac(

−−→
B2,6) = 4 is achieved. Fur-

thermore, since the orientation is arbitrary to maximize the utilization of color

types, we deduce dac(
−−→
B2,6) ≤ 4. □

Lemma 2.20. Given a banana tree digraph
−−→
B2,5 as Definition 1.3 and with arbi-

trary direction orientation. It follows that dac(
−−→
B2,5) ≤ 3.
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Proof. Consider a banana tree digraph
−−→
B2,5 as defined in Definition 1.3, with an

arbitrary direction orientation. The banana tree digraph
−−→
B2,5 comprises 10 arcs.

Let w denote the number of colors that can be utilized to color the digraph
−−→
B2,5.

The coloring of the digraph is a complete coloring where each different color pair

appears at least once. Therefore, wP2 ≤ |A(
−−→
B2,5)|. This implies w(w − 1) ≤ 10.

Consequently, the largest value of w satisfying the inequality is w = 3. Next, let

A = {C1, C2, C3} represent the set of color types, and the function f : V (
−−→
B2,5) → A

signifies a complete coloring. Without loss of generality, if f(b1) = C1 and f(b2) =

C2, then it is evident that 3 color types of the digraph
−−→
B2,5 can be colored using

complete coloring. Thus, dac(
−−→
B2,5) = 3 is established. Furthermore, since the

orientation is arbitrary to maximize the utilization of colors, we infer dac(
−−→
B2,5) ≤

3. □

Lemma 2.21. Given a banana tree digraph
−−→
B2,4 as Definition 1.3 and with arbi-

trary direction orientation. It follows that dac(
−−→
B2,4) ≤ 3.

Proof. Given a banana tree digraph
−−→
B2,4 as defined in Definition 1.3, with arbi-

trary direction orientation. Let A = {C1, C2, C3} represent the set of color types,

and the function f : V (
−−→
B2,4) → A denotes a complete coloring. Furthermore, with-

out loss of generality, if f(b1) = C1, f(b2) = C2, f(v11) = C2, and f(v21) = C1,

then it is evident that complete coloring of the digraph
−−→
B2,4 with 3 color types

is feasible. Thus, we conclude dac(
−−→
B2,4) = 3. Moreover, since the orientation is

arbitrary to maximize the utilization of color types, we have dac(
−−→
B2,4) ≤ 3. □

Lemma 2.22. Given a banana tree digraph
−−→
B2,3 as Definition 1.3 and with arbi-

trary direction orientation. It follows that dac(
−−→
B2,3) ≤ 3.

Proof. Given a banana tree digraph
−−→
B2,3 as described in Definition 1.3, with

arbitrary direction orientation. Let A = {C1, C2, C3} denote the set of color types,

and the function f : V (
−−→
B2,3) → A represent a complete coloring. Furthermore,

without loss of generality, if f(b1) = C1, f(b2) = C2, f(v) = C1, f(v11) = C2, and

f(v21) = C3, then it is evident that complete coloring of the digraph
−−→
B2,3 with

3 color types is possible. Therefore, we conclude dac(
−−→
B2,3) = 3. Moreover, since

the orientation is arbitrary to maximize the utilization of color types, we have

dac(
−−→
B2,3) ≤ 3. □

Lemma 2.23. Given a banana tree digraph
−−→
B2,2 as Definition 1.3 and with arbi-

trary direction orientation. It follows that dac(
−−→
B2,2) ≤ 2.

Proof. Given a banana tree digraph
−−→
B2,2 as defined in Definition 1.3, with arbi-

trary direction orientation. The digraph
−−→
B2,2 consists of 4 arcs. Let w represent the

number of colors that can be utilized to color the digraph
−−→
B2,2. The coloring of the
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digraph is conducted as a complete coloring where each different color pair appears

at least once. Consequently, wP2 ≤ |A(
−−→
B2,2)|. This implies that w(w−1) ≤ 4, lead-

ing to the largest feasible value of w being w = 2. Additionally, let A = {C1, C2}
denote the set of color types, and the function f : V (

−−→
B2,2) → A represent a complete

coloring. Without loss of generality, if f(b1) = C1 and f(b2) = C1, then it’s evident

that 2 color types can completely color the digraph
−−→
B2,2. Hence, dac(

−−→
B2,2) = 2.

Furthermore, since the orientation is arbitrary and aims to utilize as many colors

as possible, we conclude that dac(
−−→
B2,2) ≤ 2. □

Theorem 2.24. Given a banana tree digraph
−−→
B2,t defined in Definition 1.3, with

arbitrary direction orientation. It follows that

dac(
−−→
B2,t) ≤


2 ; t = 2,

3 ; t = 3, 4, 5,

4 ; t ≥ 6.

Proof. Given a banana tree digraph
−−→
B2,t as defined in Definition 1.3, with ar-

bitrary direction orientation. According to Lemma 2.18 and 2.19, dac(
−−→
B2,t) ≤ 4

holds for every t ≥ 6. Subsequently, Lemma 2.20, Lemma 2.21, and Lemma 2.22

yield dac(
−−→
B2,t) ≤ 3 for t = 3, t = 4, and t = 5. Moreover, Lemma 2.23 establishes

dac(
−−→
B2,t) ≤ 2 for t = 2. Consequently, we conclude

dac(
−−→
B2,t) ≤


2 ; t = 2,

3 ; t = 3, 4, 5,

4 ; t ≥ 6.

□

Theorem 2.25. Given a coconut tree digraph
−−−−−−→
CT (m, 4) with m ∈ N as Definition

1.4 and with direction orientation O′′′′. Then we have dac(
−−−−−−→
CT (m, 4)) = 2.

Proof. Given a coconut tree digraph
−−−−−−→
CT (m, 4) as defined in Definition 1.4, with

m ∈ N. The direction orientation of the digraph is as follows: dout(b1) = 1,
din(b1) = 0, dout(b2) = 1, din(b2) = 1, dout(b3) = 1, din(b3) = 1, dout(b4) = m,
din(b4) = 1, dout(vj) = 0, and din(vj) = 1 for 1 ≤ j ≤ m. The coconut tree

digraph
−−−−−→
CT (1, 4) has 4 arcs. Let w represent the number of colors that can be

used to color the digraph
−−−−−−→
CT (m, 4). The coloring of the digraph utilizes complete

coloring, ensuring that each different color pair appears at least once. Thus, wP2 ≤
|A(

−−−−−→
CT (1, 4))|. Consequently, w(w − 1) ≤ 4. Therefore, the largest value of w

satisfying this inequality is w = 2. Next, let A = {C1, C2} denote the set of

color types, and the function f : V (
−−−−−→
CT (1, 4)) → A represents a complete coloring.

Without loss of generality, if f(b1) = C1, f(b2) = C2, and f(b3) = C1, then it’s
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evident that 2 color types of the digraph
−−−−−→
CT (1, 4) can be completely colored. Thus,

we have dac(
−−−−−→
CT (1, 4)) = 2. Moreover, the diachromatic number of the digraph

−−−−−−→
CT (m, 4) can be at least completely colored with 2 colors. Hence, dac(

−−−−−−→
CT (m, 4)) ≥

2. Furthermore, let B = {C1, C2, C3} represent the set of color types, and the

function f : V (
−−−−−−→
CT (m, 4)) → B is a complete coloring. Without loss of generality,

if f(b4) = C1, f(b1) = C2, f(b2) = C3, and f(b3) = C2, then there exists a pair

of the form {C3, C1} such that for all (x, y), (z, u) ∈ A(
−−−−−−→
CT (m, 4)) holds f(x) ̸= C3

or f(y) ̸= C1 or f(z) ̸= C1 or f(u) ̸= C3. Hence, complete coloring with 3 color

types on the digraph
−−−−−−→
CT (m, 4) is not possible. Therefore, dac(

−−−−−−→
CT (m, 4)) < 3.

Consequently, dac(
−−−−−−→
CT (m, 4)) = 2. □

Lemma 2.26. Given a coconut tree digraph
−−−−−−→
CT (m, 4) with m ∈ N as Definition

1.4 and with arbitrary direction orientation. It follows that dac(
−−−−−−→
CT (m, 4)) ≤ 3 for

arbitrary m ≥ 3.

Proof. Given a coconut tree digraph
−−−−−−→
CT (m, 4) with m ∈ N and m ≥ 3 as

specified in Definition 1.4, with arbitrary directional orientation. For m ≥ 3, the

coconut tree digraph
−−−−−−→
CT (m, 4) comprises a combination of a star digraph and a

path digraph, where the star digraph has at least 3 leaves. Let A = {C1, C2, C3}
represent the set of color types, and the function f : V (

−−−−−−→
CT (m, 4)) → A denotes a

complete coloring. Without loss of generality, if f(b4) = C1, f(b1) = C2, f(b2) =
C3, and f(b3) = C2, then it evidently achieves complete coloring with 3 color

types. Hence, for m ≥ 3, dac(
−−−−−−→
CT (m, 4)) ≥ 3 is established. Furthermore, let B =

{C1, C2, C3, C4} denote the set of color types, and the function f : V (
−−−−−−→
CT (m, 4)) →

B signifies a complete coloring. Without loss of generality, if f(b4) = C1, f(b1) =
C2, f(b2) = C3, and f(b3) = C2, then pairs of the form {C3, C4} are present such

that for all (x, y), (z, u) ∈ A(
−−−−−−→
CT (m, 4)) it holds that f(x) ̸= C3 or f(y) ̸= C4 or

f(z) ̸= C4 or f(u) ̸= C3. Therefore, complete coloring with 4 color types on the

digraph
−−−−−−→
CT (m, 4) is not achievable. Thus, dac(

−−−−−−→
CT (m, 4)) = 3 for any m ≥ 3.

Furthermore, considering the arbitrary orientation to utilize as many colors as

possible, dac(
−−−−−−→
CT (m, 4)) ≤ 3 for any m ≥ 3. □

Lemma 2.27. Given a coconut tree digraph
−−−−−→
CT (2, 4) as Definition 1.4 and with

arbitrary direction orientation. It follows that dac(
−−−−−→
CT (2, 4)) ≤ 2.

Proof. Given a coconut tree digraph
−−−−−→
CT (2, 4) as defined in Definition 1.4, with

arbitrary directional orientation. Let w denote the number of colors that can be

utilized to color the digraph
−−−−−→
CT (2, 4). Considering that |A(

−−−−−→
CT (2, 4))| = 5 and

employing complete coloring for the digraph, we have wP2 ≤ 5. Consequently, it’s

impossible to employ 3 types of colors for complete coloring of the digraph
−−−−−→
CT (2, 4).
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Next, let’s consider A = {C1, C2} as the set of color types, and the function f :

V (
−−−−−→
CT (2, 4)) → A represents a complete coloring. Without loss of generality, if

f(b1) = C1, f(b2) = C2, and f(b3) = C1, it’s evident that the coconut tree digraph
−−−−−→
CT (2, 4) can be entirely colored with 2 color types. Hence, dac(

−−−−−→
CT (2, 4)) = 2.

Furthermore, considering the arbitrary orientation to employ as many color types

as possible, we obtain dac(
−−−−−→
CT (2, 4)) ≤ 2. □

Lemma 2.28. Given a coconut tree digraph
−−−−−→
CT (1, 4) as Definition 1.4 and with

arbitrary direction orientation. It follows that dac(
−−−−−→
CT (1, 4)) ≤ 2.

Proof. Given a coconut tree digraph
−−−−−→
CT (1, 4) as defined in Definition 1.4, with

arbitrary directional orientation. Let A = {C1, C2} represent the set of color types,

and the function f : V (
−−−−−→
CT (1, 4)) → A denotes a complete coloring. Without loss of

generality, if f(b1) = C1, f(b2) = C2, and f(b3) = C1, it’s evident that the coconut

tree digraph
−−−−−→
CT (1, 4) can be completely colored with 2 color types. Therefore,

dac(
−−−−−→
CT (1, 4)) = 2. Furthermore, considering the arbitrary orientation to utilize as

many color types as possible, we obtain dac(
−−−−−→
CT (1, 4)) ≤ 2. □

Theorem 2.29. Given a coconut tree digraph
−−−−−−→
CT (m, 4) as defined in Definition

1.4, with arbitrary directional orientation. It follows that

dac(
−−−−−−→
CT (m, 4)) ≤

{
2 ;m = 1, 2,

3 ;m ≥ 3.

Proof. Given a coconut tree digraph
−−−−−−→
CT (m, 4) with m ∈ N as defined in Defini-

tion 1.4, and with arbitrary directional orientation. Lemma 2.26 establishes that

dac(
−−−−−−→
CT (m, 4)) ≤ 3 holds for every m ≥ 3. Furthermore, according to Lemma 2.27

and 2.28, dac(
−−−−−−→
CT (m, 4)) ≤ 2 is valid for m = 1 and m = 2. Thus, we conclude that

dac(
−−−−−−→
CT (m, 4)) ≤

{
2 ;m = 1, 2,

3 ;m ≥ 3.

□

3. CONCLUSION

In this paper, we investigate the diachromatic numbers of several acyclic
directed graphs, leading to the following conclusions:

(1) For the lobster digraph
−−−−−→
L2(2; r) with the direction orientation O′, we find

that dac(
−−−−−→
L2(2; r)) = 3 holds when r = 1, 2, and dac(

−−−−−→
L2(2; r)) = 4 for any

r ≥ 3.
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(2) Regarding the lobster digraph
−−−−−→
L2(2; r) with an arbitrary direction orienta-

tion, the diachromatic number satisfies

dac(
−−−−−→
L2(2; r)) ≤


3 ; r = 1, 2,

4 ; r = 3, 4,

5 ; r ≥ 5.

.

(3) For the fireworks digraph
−−−−→
F (2, p) with the direction orientation O′′,

dac(
−−−−→
F (2, p)) = 2 is observed for any p ≥ 2.

(4) The diachromatic number of the fireworks digraph
−−−−→
F (2, p) with an arbitrary

direction orientation is given by

dac(
−−−−→
F (2, p)) ≤

{
2 ; p = 2, 3,

3 ; p ≥ 4.
.

(5) The diachromatic number of the banana tree digraph
−−→
B2,t with the direction

orientation O′′′ is dac(
−−→
B2,t) = 2 for any t ≥ 2.

(6) When considering the banana tree digraph
−−→
B2,t with an arbitrary direction

orientation, we find

dac(
−−→
B2,t) ≤


2 ; t = 2,

3 ; t = 3, 4, 5,

4 ; t ≥ 6.

(7) The diachromatic number of the coconut tree digraph
−−−−−−→
CT (m, 4) with the

direction orientation O′′′′ is dac(
−−−−−−→
CT (m, 4)) = 2 for any m ∈ N.

(8) For the coconut tree digraph with an arbitrary direction orientation, the
diachromatic number is bounded by

dac(
−−−−−−→
CT (m, 4)) ≤

{
2 ;m = 1, 2,

3 ;m ≥ 3.
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