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Abstract. Let A be a free R-algebra where R is a unital commutative ring. An

ideal I in A is called a free ideal if it is a free R-submodule with the basis contained

in the basis of A. The definitions of free ideal and basic ideal in the free R-algebra are

equivalent. The free ideal notion plays an important role in the proof of some special

properties of a basic ideal that can characterize the free R-algebra. For example, a

free R-algebra A is basically semisimple if and only if it is a direct sum of minimal

basic ideals in A. In this work, we study the properties of basically semisimple free

R-algebras.

Key words and Phrases: Free ideal, basic ideal, minimal basic ideal, basically
semisimple algebra.

Abstrak. Misalkan A adalah R-aljabar bebas dengan R ring komutatif dengan

elemen satuan. Ideal I di A disebut ideal bebas jika I merupakan suatu R-submodul

bebas dengan basis yang termuat dalam basis dari A. Definisi ideal bebas dan ideal

dasar dalam R-aljabar bebas adalah ekuivalen. Ideal bebas berperan penting dalam

pembuktian beberapa sifat khusus dari ideal dasar yang dapat mengkarakterisasi

R-aljabar bebas. Sebagai contoh, suatu R-aljabar bebas A adalah semisederhana

mendasar jika dan hanya jika A merupakan hasil tambah langsung dari ideal-ideal

dasar minimal di A. Penelitian ini membahas sifat-sifat semisederhana mendasar

dari R-aljabar bebas.
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1. Introduction

An R-algebra is said to be a free R-algebra if it is both, a ring and a free
R-module [2]. Any algebra over a field is always a free algebra. Throughout this
paper, ring R is a unital commutative ring.

Let K be a field and X any basis of K-algebra A′. An arbitrary ideal I ′ in
the K-algebra A′ always satisfies the following condition : kx ∈ I ′ implies x ∈ I ′,
for every non-zero k ∈ K and x ∈ X . This is due to each non-zero element in
K has an inverse. This condition is not always true for an ideal in a free R-
algebra. As a counter example, consider M = {(a, b) : a, b ∈ Z6} is a Z6-algebra.
Take M ′ = {(m,n) : m,n ∈ 2Z6} the ideal in M, which does not satisfy the
condition. It is because there exists a basis S = {(1, 0), (0, 1)} of M, in which
2(1, 0) = (2, 0) ∈ M ′ but (1, 0) /∈ M ′. However, the ideal M” = {(a, 0) : a ∈ Z6}
in M satisfies the condition, i.e. if r(1, 0) = (r, 0) ∈ M”, then (1, 0) ∈ M” for
every non-zero r ∈ Z6. We define this special ideal as follows. Let A be a free
R-algebra. An ideal I in A is called a basic ideal, if for every non-zero r ∈ R and
every x ∈ X, rx ∈ I then x ∈ I for any basis X ⊂ A. This term refers to the basic
ideal in Leavitt path algebras over unital commutative ring on a graph (see [4]).

We know that an ideal (or subalgebra) of R-algebra A is an ideal (or subring)
of A and is an R-submodule [2]. Not all ideals in a free R-algebra have a basis,
because not all R-submodules in a free R-module are free R-submodules. From the
above example, M ′ does not have a basis, although it is generated by {(2, 0), (0, 2)}.
However, the ideal M” is an ideal having a basis {(1, 0)} ⊂ S. Another simple
example, let ring Z can be viewed as free algebra over itself and as a basis is {1}.
The ideal 2Z = 〈2〉 is not a basic ideal in Z. Moreover, the ideal 2Z is a free Z-
submodule in Z with basis {2} * {1}. This motivates us to define an ideal that has
a certain basis. Generally, an ideal in a free R-algebra is called a free ideal, if it
has a basis contained in a basis of the algebra. We will show that the property of
an ideal to be free is necessary and sufficient for being a basic ideal

Based on the basic ideal in Leavitt path algebras over a unital commutative
ring studied by Tomforde [4], the further notions are also defined such as minimal
basic ideal, prime basic ideal, and semiprime basic ideal. Those notions characterize
some properties of Leavitt path algebras, e.g. basically semisimple, basically prime
and basically semiprime [5]. Analogously, we show that a minimal basic ideal in a
free R-algebra will characterize basically semisimple free R-algebra.

In this paper, we refer to [7] for a semisimple ring ( or algebra). A semisimple
ring (or algebra) is a ring (or algebra) which can be decomposed into a direct sum
of its minimal ideals. In addition, an algebra is semisimple if and only if every ideal
in the algebra is generated by a central idempotent element ([3],[7]).

Analogous to [5],[6] and [7], a free R-algebra A is basically semisimple if it is
a direct sum of minimal basic ideals in A. The focus of this paper is to prove that
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a free R-algebra A is basically semisimple if only if it is a finite sum of minimal
basic ideals in A and if only if every basic ideal in A is a direct summand of A and
if only if every basic ideal in A is generated by a central idempotent element.

2. Free Ideals and Basic Ideals

In this section we discuss an ideal of the algebra over a unital commutative
ring R that satisfies certain conditions. We recall first the definition of subalgebra
and ideal in the algebra.

Definition 2.1. [2] A subalgebra of an R-algebra A is a subset S of A that is both a
subring of A and an R-submodule of A. A two-sided ideal of R-algebra A is a subset
I of A that is both a two-sided ideal of A and an R-submodule of A. Furthermore,
an ideal means a two-sided ideal.

As described in the introduction, not every ideal in a free R-algebra A has
a basis because not every subalgebra has a basis too. In addition, an ideal in A
may be a free R-submodule but its basis is not in the basis of A. This motivates
us to define an ideal which has a certain basis by following the pattern of both
Definition 2.1 and definition of free R-algebra [2].

Definition 2.2. Let A be a unital free R-algebra (A is both a unital ring and a
free R-module). An ideal I in A is called a free ideal if it has a basis contained in
a basis of A.

Note that the algebra intended in this paper is always unital algebra. Further-
more, a unital free R-algebra is simply written as a free R-algebra. It is straightfor-
ward that a free R-algebra A generated by the basis X can be denoted as A = 〈X〉,
where 〈X〉 = {

∑m

i=1 rixi : ri ∈ R, xi ∈ X,m ∈ N}. On the other hand, if A is
a unital ring, then for any p ∈ A we can define an ideal generated by p, namely,
(p) = {

∑

j ajpbj : aj, bj ∈ A}. Then (p) is an ideal and also an R-submodule in A.
We should note that the term generated in the algebra A as R-module is different
from that one in ring A. Consider the following example:

Example 2.3. Let M2(Z6) =

{(

a b
c d

)

: a, b, c, d ∈ Z6

}

is a free Z6-algebra with

a basis X =

{(

1 0
0 0

)

,

(

0 0
0 1

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)}

. It seems obvious that:

1. 〈

(

0 0
0 1

)

〉 =

{(

0 0
0 d

)

: d ∈ Z6

}

is a free Z6-subalgebra, but is not an ideal in

M2(Z6). However,
((

0 0
0 1

))

=

{(

a b
c d

)(

0 0
0 1

)(

p q
r s

)

:

(

a b
c d

)

,

(

p q
r s

)

∈ M2(Z6)

}

= M2(Z6)

is a free ideal. Therefore, 〈

(

0 0
0 1

)

〉 6=

((

0 0
0 1

))

.
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2.

((

0 0
0 2

))

=

{(

a b
c d

)(

0 0
0 2

)(

p q
r s

)

:

(

a b
c d

)

,

(

p q
r s

)

∈ M2(Z6)

}

= M2(2Z6)

is an ideal in M2(Z6) but not a free ideal.

Consider the above example, and suppose I =

((

0 0
0 1

))

; J =

((

0 0
0 2

))

.

Then for any non-zero r ∈ Z6, y ∈ Y, ry ∈ I implies y ∈ I, where Y be any

basis of M2(Z6). However, there exist 4 ∈ Z6,

(

0 0
0 1

)

∈ X, such that 4

(

0 0
0 1

)

=
(

0 0
0 4

)

∈ J, but

(

0 0
0 1

)

/∈ J. Compare these cases with any ideal I ′ in the K-

algebra A′ with a basis X. The ideal I ′ always satisfies the following condition: if
kx ∈ I ′ then x ∈ I ′, for every non-zero k ∈ K, and every x ∈ X. This gives us an
idea to define an ideal in a free R-algebra that satisfies the condition.

Definition 2.4. Let A be a free R-algebra. An ideal I in A is called a basic ideal
if for every non-zero r ∈ R, and every x ∈ X, rx ∈ I then x ∈ I, for any basis
X ⊂ A.

It is well known that for every k ∈ K\{0}, and for every x ∈ X, kx 6= 0, where
X be any basis of the K-algebra. The following lemma shows that this property is
satisfied in free R-algebras. It is very useful for discussing the properties of basic
ideal in the free R-algebra.

Lemma 2.5. Let X be a basis of free R-algebra A. Then rx 6= 0, for every non-zero
r ∈ R, x ∈ X.

Proof. It is clear from the definition of basis X that X is linearly independent, that
it is, if rx = 0 then r = 0 for every x ∈ X. �

According to Definition 2.4, any free R-algebra is a trivial basic ideal. In
addition, {0} is always a basic ideal in any free R-algebra based on Lemma 2.5.
The conclusion of this description is stated in the following corollary.

Corollary 2.6. For any free R-algebra A, both ideal {0} and A are basic ideals.

Besides the above idea, Definition 2.4 also refers to the definition of basic
ideal in Leavitt path algebras over a unital commutative ring. This basic ideal
characterized the basically simple Leavitt path algebras [4]. Recall that a Leavitt
path algebra over a unital commutative ring is basically simple if the only basic
ideals are {0} and itself. Similarly, a free R-algebra A is basically simple if the only
basic ideals are {0} and A.

Furthermore, we will investigate relations between basic ideals and free ideals
in free R-algebras. For every element in any basis of the free algebra is a generator
of a basic ideal as a submodule, if it is in the ideal. This property is stated in the
following lemma.

Lemma 2.7. Let I be a basic ideal of the free R-algebra A. Let X be an arbitrary
basis of A. Then
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(1) For every x ∈ X, x ∈ I if and only if x is a generator of I as an R-
submodule.

(2) For every non zero ri ∈ R and for every xi ∈ X, with i = 1, 2, ..., n, for

some n ∈ N,
n
∑

i=1

rixi ∈ I, then xi ∈ I for every i = 1, 2, ..., n.

Proof. Take any basis X of A. Let x ∈ X such that x ∈ I. Suppose that x is not a
generator of I as an R-submodule. Then there is a non zero c ∈ R such that cx /∈ I.
Since I is basic then x /∈ I, which is a contradiction. Hence, x is a generator. It
is easy to prove the converse. Furthermore, we use the first part of this lemma to
prove the second part. �

Lemma 2.7 leads us to prove that the free ideal is a necessary and sufficient
condition of the basic ideal. This is an important result stated by the following
theorem.

Theorem 2.8. Let A be a free R-algebra and ideal I ⊆ A. Then I is a basic ideal
if only if I is a free ideal.

Proof. It is clear that the trivial basic ideals are free. Let X be any basis of A. Form
a subset HX = {h ∈ X |rh ∈ I, ∀r ∈ R\{0}} = X ∩ I. The first, we will show that
I = {0}, if HX = ∅ for any basis X. It means that x /∈ I for every x ∈ X. Suppose
that I 6= {0}, then there is a non zero a =

∑n
i=1 rixi ∈ I for some ri ∈ R, xi ∈ X.

Hence, there exist ri ∈ R, xi ∈ X, such that
∑n

i=1 rixi ∈ I and xi /∈ I. Based on
Lemma 2.7, I is not basic, a contradiction.

Furthermore, if {0} 6= I ( A then there is a basis Y of A such that HY =
Y ∩ I 6= ∅. Suppose that I 6= 〈HY 〉 for every basis Y. Then there is a non zero b ∈ I

and b 6=
∑k

i=1 cihi for every ci ∈ R, hi ∈ HY . Consequently, b =
∑m

j=1 rjyj for

some rj ∈ R, yj ∈ Y, but yj /∈ I, for every basis Y. According to Lemma 2.7, I is
not basic, a contradiction. Hence, I = 〈HY 〉 is a free ideal with a basis HY ⊆ Y,
for a basis Y of A. We can proof the converse using Definition 2.4, directly. �

The description of Example 2.3 shows that an ideal generated by one element
is not always a basic ideal in a free R-algebra. The following lemma states the
sufficient condition of an ideal generated by one element that is a basic ideal.

Lemma 2.9. Let A be a free R-algebra with a basis X. Then an ideal generated by
any h ∈ X, ie. (h) = {

∑

i aihbi : ai, bi ∈ A} is a basic ideal.

Proof. Let h ∈ X. Then h ∈ (h) for h = 1Ah1A. Let Y be any basis of A. Take
any non zero r ∈ R, y ∈ Y such that ry ∈ (h). Then ry =

∑

i

aihbi, for some

ai, bi ∈ A. Suppose that y is not a generator of (h) as an R-submodule of A. Then
ry =

∑

i

aihbi =
∑

i

∑

y 6=yij

rijyij for some rij ∈ R, yij ∈ Y. We have Y is not linearly

independent, a contradiction. Since y is a generator of (h) as an R-submodule,
then y ∈ (h). Hence, (h) is a basic ideal. �
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A free ideal in a free R-algebra will play a role in the classification of the
basic ideal that will characterize the free R-algebra. One of the characterizations
of free R-algebras is the basically semisimple algebra. The definition of minimal
basic ideal is needed to characterize that algebra. This characterization is the focus
of this paper and will be described in the next section.

3. Basically Semisimple Free Algebras over a Commutative Ring

Let A be a free R-algebra, then A may contain a zero divisor. Similarly, as A
an R-module, the multiplication of non-zero elements in R with non-zero elements
in A may be zero in A. In this notions, we will define annihilators of the ring A
and the R-module A which are denoted slightly different. The annihilators and its
properties are useful to discuss the theorem which is a main result of this research.

Definition 3.1. [7] Let A be an R-algebra and a non empty subset S ⊂ A. Then:

(i) The left, right and (two-sided) annihilator of S in A, respectively denoted and
defined as,

Annl(S) = {a ∈ A : as = 0, ∀s ∈ S},

Annr(S) = {a ∈ A : sa = 0, ∀s ∈ S},

Ann(S) = {a ∈ A : as = 0 = sa, ∀s ∈ S} = Annl(S) ∩ Annr(S)

(ii) The annihilator of S in R-module A denoted and defined as,

AnnR(S) = {r ∈ R : rs = 0, ∀s ∈ S}

We can easily show that the left, right, and two-sided annihilator of S in A is
a left, a right, and a (two-sided) ideal in A, respectively. Similarly, the annihilator
of S in R-module A is an ideal of R[7]. However, the annihilators are not necessarily
a basic ideal. Consider the following example:

Example 3.2. Let M = {(a, b) : a, b ∈ Z6} be a free Z6-algebra. Take two ideals
in M :

M ′ = {(p, q) : p, q ∈ 2Z6}; M” = {(a, 0) : a ∈ Z6}.

Then Annl(M ′) = {(u, v) : u, v ∈ 3Z6} = Annr(M ′) is not a basic ideal, but

Annl(M”) = {(0, b) : b ∈ Z6} = Annr(M”) is a basic ideal. Furthermore, if we
take a central idempotent (0, 1) ∈ M then Ann({(1, 0)}) = {(0, b) : b ∈ Z6} is a
basic ideal.

The above cases inspire us to investigate the properties of annihilators in
A. The following proposition would state a sufficient condition of annihilator of a
subset in the free R-algebra as a basic ideal.

Proposition 3.3. Let A be a free R-algebra and I a non empty subset of A. If I is a
basic ideal then Annl(I), Annr(I) and Ann(I) is a basic left, right and (two-sided)
ideal in A respectively.
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Proof. We only prove that Annl(I) is a basic left ideal, and the others can be
shown similarly. Based on Proposition 2.8, I is a free ideal with a basis H ⊆ Y
where Y is a basis of A. Let X be any basis of free R-algebra A. For every non-zero
r ∈ R, x ∈ X such that rx ∈ Annl(I), we have (rx)u = r(xu) = 0, for any u ∈ I.
Since x ∈ X, r 6= 0, by Lemma 2.5, x 6= 0 and rx 6= 0. We will show that xu = 0,
as follows:

Suppose xu 6= 0, for some u ∈ I. We have xu ∈ I and xu =
∑k

i=1 rihi 6= 0, where
ri ∈ R, hi ∈ H. Then there is m, with 1 ≤ m ≤ k such that rmhm 6= 0 and
rrmhm 6= 0 for some r ∈ R. We obtain the existence of u ∈ I such that rxu =
∑k

i=1 rrihi 6= 0. It is a contradiction to (rx)u = 0, for every u ∈ I. Thus, xu = 0,

so that x ∈ Annl(I). In other words, Annl(I) is a basic left ideal in A. �

A minimal basic ideal in Leavitt path algebra that characterizes the basically
semisimple algebra has been defined by ([5],[6]). This definition is based on the
definition of the semisimple ring ([3],[7]) and is motivated by the definition of ba-
sically simple Leavitt path algebras over a unital commutative ring [4]. Similarly,
we can define a minimal basic ideal and a basically semisimple free R-algebra.

Definition 3.4. Let A be a free R-algebra and I a basic ideal in A. Then I is a
minimal basic ideal if it does not contain non-zero basic ideal other than itself. A
is basically semisimple if it is a direct sum of minimal basic ideals in A.

In the free Z6-algebras (see Example 2.3 and 3.2), both M2(Z6) and M are
basically semisimple. Since M2(Z6) is basically simple, automatically it is basically
semisimple. Although M is not basically simple, but M = M” ⊕ Ann({(1, 0)}),
in which M” and Ann({(1,0)}) are minimal basic ideals in M. The free algebra
M2(Z6) and M can be represented by a graph. They are isomorphic to Leavitt
path algebra on a graph with two vertices. A graph of M2(Z6) has one edge and a
graph of M has no edges [6].

However, sometimes we could not easily show whether a free R-algebra is
basically semisimple or not. Wisbauer [7] characterized a semisimple ring A with
an identity by A is a finite sum of minimal ideals, or every ideal is a direct summand
of A, and equivalently, A is generated by a central idempotent element. In fact, the
theorem can be implied in basically semisimple free R-algebra by replacing basic
ideals into ideals in the theorem. The following is a main result in this paper.

Theorem 3.5. Let A be a free R-algebra. The following properties are equivalent:

(a) A is basically semisimple,
(b) A is a finite sum of minimal basic ideals,
(c) Every basic ideal is a direct summand of A,
(d) Every basic ideal of A is generated by a central idempotent element.

Proof. Let A be a free R-algebra with a basis X.

(a ⇒ b)A is basically semisimple, namely, A = ⊕
t∈Λ

It, where It be the minimal basic

ideal in A and Λ is an index set. Then A =
∑

t∈Λ It, where Iti ∩
∑

tj∈Λ
ti 6=tj

Itj = {0}.
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Since 1A ∈ A, then 1A =
∑k

i=1 rixi, with rixi ∈ Iti for some ri ∈ R, xi ∈ X and
ti ∈ Λ. Furthermore, for every monomial y ∈ A,

y = y1A = y
∑k

i=1
rixi =

∑k

i=1
riyxi

Thus A =
k
∑

i=1

Iti that is a finite sum of minimal basic ideals.

(b ⇒ a) Suppose J1, J2, ..., Jm are minimal basic ideals in A, such that A =
∑m

i=1 Ji.
We will prove that A is basically semisimple, as follows.

If J1 ∩
∑m

i=2 Ji = P 6= {0}, then ideal P ⊆ J1. Since J1 is a minimal basic ideal,
we have J1 ⊆ P. It means that J1 ∩

∑m

i=2 Ji = J1, so that J1 has no effect on
the representation of A. But, J1 ∩

∑m

i=2 Ji = {0} then A = J1 ⊕
∑m

i=2 Ji. Note
the remainder sum

∑m

i=2 Ji, and by the same reason that J2 has no effect on the
representation of A or

∑m

i=2 Ji = J2 ⊕
∑m

i=3 Ji. The process is continued for the
remainder of the next sum, and remove all the basic ideal that has no effect on
the representation of A. We obtain representation of A as the sum of remaining
minimal basic ideals. Because every remaining minimal basic ideal which intersects
to the remainder of the sum is {0}, then the representation of A is the direct sum.
Thus, A is basically semisimple.

(c ⇒ d) For every basic ideal I ⊂ A, by hypothesis there is a basic ideal J ⊂ A
such that A = I ⊕ J. We will show that I is generated by a central idempotent
element. Since A has an identity 1A, then 1A = a + b with a ∈ I, b ∈ J. So we
obtain: a = a1A = a(a+ b) = a2+ab or ab = a−a2. In addition, I and J are ideals
and A = I⊕J then ab ∈ I∩J = {0}. It means that ab = a−a2 = 0 or a2 = a. Thus
a is idempotent. Furthermore, for every x ∈ I, then x = x1A = x(a+ b) = xa+ xb
or xb = x− xa ∈ I ∩ J = {0}, since xb ∈ I, xb ∈ J. Hence, x = xa or I is generated
by a. In the other hand, for every monomial y ∈ A, y = ya + yb and y = ay + by
then ya, ay ∈ I, yb, by ∈ J. Then it should be ay = ya or a is a central idempotent,
because of A = I ⊕ J. Thus, I = (a) , in which a is a central idempotent.

(d ⇒ c) For every basic ideal I ⊂ A, I = (i) , whence i is a central idempotent. We
will find a basic ideal J such that A = I ⊕ J, as follow :

We have i ∈ I and i is a central idempotent. Then for any a ∈ A, a = ai+ a− ai,
in which ai ∈ I and a − ai ∈ Ann(i), so a ∈ I + Ann(i). In the other hand,
for every p ∈ I ∩ Ann(i), p = yi for some y ∈ A and pi = 0. It implies that
p = yi = yi2 = (yi)i = pi = 0, then I ∩ Ann(i) = {0}. Hence, A = I ⊕Ann(i).

Furthermore, we will prove that Ann(i) is a basic ideal. Since i is central idem-
potent, then Ann(i) = {a ∈ A : ai = 0 = ia}. If i = 0, then it is clear that
Ann(i) = A is a basic ideal for Corollary 2.6. If i 6= 0 then 1Ai1A = i ∈ I and
i /∈ Ann(i). For every non-zero r ∈ R, x ∈ X, such that rx ∈ Ann(i) then we have
rx 6= 0 from Lemma 2.5. Since rx ∈ Ann(i) and A = I ⊕ Ann(i) then rx /∈ I.
From Proposition 2.8, ideal I is free with the basis H = I ∩X, so we have x /∈ I.
It should be x ∈ Ann(i). Hence, Ann(i) is a basic ideal.

(a ⇒ c) Let A be basically semisimple. Based on the proof of (a ⇔ b), we have
A = J1 ⊕ J2 ⊕ ... ⊕ Jm with J1, J2, ..., Jm are minimal basic ideals in A. For any
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basic ideal I ⊂ A, we will investigate that there exists a basic ideal J ⊂ A such
that A = I ⊕ J. We have Ji ∩ I = Ji or Ji ∩ I = {0}, ∀i = 1, 2, ...,m by hypothesis
that J1, J2, ..., Jm are minimal basic ideals. For every i = 1, 2, ...,m, if Ji ∩ I = Ji
then Ji ⊆ I. It means that A = J1⊕J2⊕ ...⊕Jm ⊆ I, thus I = A. In this case, just
take the basic ideal J = {0}. If not, it means that there is a minimal basic ideal
Jn1

, 1 ≤ n1 ≤ m such that Jn1
∩ I = {0}. Further, look at another minimal basic

ideal. If there exists here, select a minimal basic ideal Jn2
, 1 ≤ n2 ≤ m,n2 6= n1

such that (Jn1
⊕ Jn2

) ∩ I = {0}. The process is continued such that we obtain
no more basic ideal, in which the intersection of the basic ideal and ideal I equals
to {0}. Finally, this results in the basic ideals Jn1

, Jn2
, ..., Jns

, with s ≤ m, and
1 ≤ n1, n2, ..., ns ≤ m, such that (Jn1

⊕ Jn2
⊕ ...⊕ Jns

)∩ I = {0}. Furthermore, let
ג = (Jn1

⊕ Jn2
⊕ ...⊕ Jns

)⊕ I, we will show ג = A and we sufficiently prove A ⊆ ,ג
as follows :

It is clear that Jn1
, Jn2

, ...Jns
⊆ .ג Suppose there is a minimal basic ideal Jk with

k 6= ni, i = 1, 2, ..., s such that Jk∩ג = {0}, then (Jn1
⊕Jn2

⊕...⊕Jns
⊕Jk)∩I = {0},

which is a contradiction with the election of Jn1
, Jn2

, ..., Jns
. Thus, it should be

Jk ∩ ג = Jk, ∀k, 1 ≤ k ≤ m, and k 6= ni, i = 1, 2, ..., s. It means that ג = A,, since
A = J1 ⊕ J2 ⊕ ... ⊕ Jm ⊆ .ג In this case, it is true that A = I ⊕ J by taking basic
ideal J = Jn1

⊕ Jn2
⊕ ...⊕ Jns

.

(c ⇒ a) We will prove that A is basically semisimple, by hypothesis for every basic
ideal I ⊂ A, there exists a basic ideal J such that A = I ⊕ J.

At first, we will show that any basic ideal generated by a non-zero central idempo-
tent p, namely, (p) contains a minimal basic ideal. Consider that

ℑ = {I ⊂ (p) : basic ideal I ⊂ A, p /∈ I}

is the family of basic ideals in A that is contained in (p) and contains no p. According
to Zorn’s lemma, there is a maximal Q in ℑ. Based on the proof of (c ⇔ d), we
obtain Q = (q) for a central idempotent q, and (p) = (q) ⊕ (p− pq) . We will see
that (p− pq) is a minimal basic ideal, as follows:

Suppose that (p− pq) contains a non trivial basic ideal N with N 6= (p− pq) then
p − pq /∈ N. Consequently, p /∈ (q) + N and since (q) ⊂ (q) + N ⊂ (p) then
(q) +N ∈ ℑ. This contradicts Q = (q) as a maximal element in ℑ. Hence, (p− pq)
is a minimal basic ideal. Finally, consider M is a sum of all minimal basic ideals
in A. By hypothesis, there is basic ideal C in A such that A = M ⊕ C. Because C
contains no minimal basic ideals then C = {0}, so that A = M. Thus, A is a direct
sum of minimal basic ideals or A is basically semisimple. �

Example 3.6. Consider T = (x, y : xy = 1 6= yx) is Toeplitz algebra over unital
commutative ring R. The algebra is a ring generated by two variables x and y that
satisfy xy = 1 6= yx. If the algebra T is viewed as R-module then its generators
are infinite, which will be more easily understood by the approach of Leavitt path
algebra with the following graph:

This time it is not so straightforward that the maps x 7→ e∗+f∗ and y 7→ e+f yield
an isomorphism between T and leavitt path algebra [1]. It is due to all of vertices



68 K. Wardati et al.

and edges are representation of element in T, namely,

v 7→ yx;w 7→ xy − yx = 1− yx; e 7→ y2x; e∗ 7→ yx2; f 7→ y − y2x; f∗ 7→ x− yx2

Based on the graph, we have non-zero idempotent elements in T, which are a part
of a basis of T, including xy = 1, yx, 1− yx, and yx− y2x2. Furthermore, according
to Lemma 2.9 we have I = (1− yx) is a basic ideal generated by 1− yx. However,
I = (1− yx) 6= T because there is a monomial y2x ∈ T and y2x /∈ I. Moreover,
1 − yx is idempotent but not central idempotent, because there is y ∈ T whence
y(1 − yx) = y − y2x 6= (1 − yx)y = 0. Hence, there is a basic ideal in T that is
not generated by a central idempotent element. Then based on the Theorem 3.5,
T = (x, y : xy = 1 6= yx) is not basically semisimple.

4. Concluding Remarks

Based on the above discussion, we conclude many significant remarks. One
of them is that a free ideal is a necessary and sufficient condition of an ideal in a
free algebra over ring to be a basic ideal. In addition, an ideal generated by one
element in a free algebra over ring is a basic ideal if the element is in its basis.
The two significant results are useful to discuss Theorem 3.5. This theorem is a
main point of this paper. In the future, we will discuss basically (semi) prime free
algebras over ring and its properties that characterized by (semi) prime basic ideal.

Acknowledgement. The authors are grateful to Prof. Bas Edixhoven of Leiden
University who has given corrections to the definition of the free ideal and some
inputs to this article. The authors also thank to the anonymous reviewers for their
comments and suggestions.

References

[1] Abrams, G., Aranda Pino, G. Perera, F., and Molina, S.M., ”Chain conditions for Leavitt
path algebras”, Forum Math. (To appear.)

[2] Grillet, P.A., Abstract Algebra, Graduated Texts in Mathematics, Spinger-Verlag, New York,
2007.

[3] Lam, T.Y., A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
[4] Tomforde, M., ”Leavitt Path Algebras with Coefficient In A Commutative Ring”, J. Pure

Appl. Algebra, 215 (2011), 471–484.
[5] Wardati, K., Wijayanti, I.E. and Wahyuni, S., ”On Basic Ideal in Leavitt Path Algebra”

(In Indonesia), Proceedings of Mathematical National Conference XVI, Mathematics De-

partement, Padjadjaran University, Bandung, Indonesia, ISBN 978-602-19590-2-2, (2012),
75-84.

[6] Wardati, K., Wijayanti, I.E. and Wahyuni, S., ”Basically Semisimple of Leavitt Path Alge-
bra on Acyclic Finite Graph” (In Indonesia), Presented in ”Seminar Nasional dan Workshop
Aljabar dan Pembelajarannya”, Mathematics Departement, Universitas Negeri Malang, In-
donesia, 2013.



On Free Ideals in Free Algebras 69

[7] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach Publishers, 1991.


