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Abstract. We present existence theorems for coupled systems of quadratic integral

equations of fractional order. As applications we deduce existence theorems for two

coupled systems of Cauchy problems. Also, an example illustrating the existence

theorem is given.
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Abstrak. Makalah ini membahas teorema tentang eksistensi solusi dari sistem

persamaan integral kuadratik orde fraksional. Sebagai aplikasi, teorema eksistensi

untuk sistem masalah Cauchy diturunkan. Selain itu, sebuah contoh diberikan

untuk menggambarkan teorema eksistensi tersebut.

Kata kunci: Persamaan integral kuadratik orde fraksional, sistem kopel, masalah

Cauchy, titik tetap Schauder.

1. Introduction

Systems occur in various problems of applied nature, for instance, see (Bashir
Ahmad, Juan Nieto [9]- Y. Chen, H. An [11], El-Sayed and Hashem [22], Gafiy-
chuk, Datsko, Meleshko [24], Gejji [25] and Lazarevich [27] ). Recently, X. Su
[32] discussed a two-point boundary value problem for a coupled system of frac-
tional differential equations. Gafiychuk et al. [33] analyzed the solutions of coupled
nonlinear fractional reaction-diffusion equations. The solvability of the coupled sys-
tems of integral equations in reflexive Banach space proved in El-Sayed and Hashem
[18]- El-Sayed and Hashem [20]. Also, a comparison between the classical method
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of successive approximations (Picard) method and Adomian decomposition method
of coupled system of quadratic integral equations proved in El-Sayed, Hashem and
Ziada [21].
Let R be the set of real numbers whereas I = [0, 1], L1 = L1[I] be the space of
Lebesgue integrable functions on I.

Firstly, we prove the existence of at least one continuous solution for the coupled
system of quadratic functional integral equation of fractional order

x(t) = a1(t) + g1(t, y(ψ1(t)))

Z t

0

(t − s)α−1

Γ(α)
f1(s, y(φ1(s))) ds, t ∈ I, α > 0

(1)

y(t) = a2(t) + g2(t, x(ψ2(t)))

Z t

0

(t − s)β−1

Γ(β)
f2(s, x(φ2(s))) ds, t ∈ I, β > 0.

Quadratic integral equations are often applicable in the theory of radiative
transfer, the kinetic theory of gases, the theory of neutron transport, the queuing
theory and the traffic theory. Many authors studied the existence of solutions for
several classes of nonlinear quadratic integral equations (see e.g. Argyros [1]- Banaś,
Rzepka [8] and El-Sayed, Hashem[13]- El-Sayed, Rzepka[23]). However, in most of
the above literature, the main results are realized with the help of the technique
associated with the measure of noncompactness. Instead of using the technique of
measure of noncompactness we use Tychonoff fixed point theorem. The existence
of continuous solutions for some quadratic integral equations was proved by using
Schauder-Tychonoff fixed point theorem Salem [31].
Also, the existence of solutions of the two Cauchy problems

RD
αx(t) = f1(t, y(φ1(t))), t ∈ (0, 1) and x(0) = 0, α ∈ (0, 1)

(2)

RD
βy(t) = f2(t, x(φ2(t))), t ∈ (0, 1) and y(0) = 0, β ∈ (0, 1)

(where RD
α is the Riemann-Liouville fractional order derivative)

and

dx(t)
dt

= f1(t, y(φ1(t))), t ∈ (0, 1), x(0) = x0,

(3)
dy(t)
dt

= f2(t, x(φ2(t))), t ∈ (0, 1), y(0) = y0,

will be proved.

The proof of the main result will be based on the following fixed-point theorem.

Theorem 1.1. (Schauder Fixed Point Theorem)Curtain and Pritchard [12].
Let Q be a nonempty, convex, compact subset of a Banach space X, and T : Q→
Q be a continuous map. Then T has at least one fixed point in Q.
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Definition 1.2. The fractional-order integral of order β (positive real number) of
the function f is defined on [a, b] by (see Kilbas, Srivastava and Trujillo [26],
Podlubny [28], Miller and Ross [29] and Samko, Kilbas, Marichev [30])

Iβ
a f(t) =

∫ t

a

(t− s)β−1

Γ(β)
f(s) ds, (4)

and when a = 0, we have Iβf(t) = Iβ
0 f(t).

Definition 1.3. The Riemann-Liouville fractional-order derivative of order α ∈
(0, 1) of the function f is given by (see Kilbas, Srivastava and Trujillo [26],
Podlubny [28], Miller and Ross [29] and Samko, Kilbas, Marichev [30])

RD
αf(t) =

d

dt
I1−αf(t).

For the properties of fractional calculus (see Kilbas, Srivastava and Trujillo
[26], Podlubny [28], Miller and Ross [29] and Samko, Kilbas, Marichev [30] for
example).

2. Existence of Continuous Solutions

Now, the coupled system (1) will be investigated under the assumptions:

(i) ai : I → R, i = 1, 2 are continuous and bounded with Mi = sup
t∈I

|ai(t)|.

(ii) gi : I × R → R, i = 1, 2 are continuous and bounded with
Ni = sup

(t,x)∈I×R
|gi(t, x)|, i = 1, 2.

(iii) There exist constants hi, li, i = 1, 2 respectively satisfying

|gi(t, x)− gi(s, y)| ≤ li |t− s|+ hi |x− y|
for all t, s ∈ I and x, y ∈ R.

(iv) fi : I × R → R, i = 1, 2 satisfy Carathèodory condition (i.e. measurable
in t for all x : I → R and continuous in x for all t ∈ I ).

(v) There exist two functions mi ∈ L1 and positive constants bi such that
|fi(t, x)| ≤ mi(t) + bi |x| (∀ (t, x) ∈ I×R ) and ki = sup

t∈I
Iγi mi(t), i = 1, 2

for any γ1 ≤ α, γ2 ≤ β.
(vi) ψi, φi : I → I are continuous .

Let C(I) be the class of all real functions defined and continuous on I with the
norm

|| x || = sup{ | x(t) | : t ∈ I }.
Now, we define the Banach space X = {x(t)|x(t) ∈ C(I) } endowed with the
norm ||x||X = sup

t∈I
|x(t)|, Y = {y(t)|y(t) ∈ C(I)} endowed with the norm

||y||Y = sup
t∈I

|y(t)|. For (x, y) ∈ X × Y, let ||(x, y)||X×Y = sup{||x||X , ||y||Y }.

Clearly, ( X × Y, ||(x, y)||X×Y ) is a Banach space.
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Define the operator T by

T (x, y)(t) = (T1y(t), T2x(t)),

where

T1y(t) = a1(t) + g1(t, y(ψ1(t))) Iαf1(t, y(φ1(t))), α > 0, t ∈ I,

T2x(t) = a2(t) + g2(t, x(ψ2(t))) Iβf2(t, x(φ2(t))), β > 0, t ∈ I,

Theorem 2.1. Let the assumptions (i)-(vi) be satisfied, then the coupled system
of quadratic integral equations of fractional order (1) has at least one solution in
X × Y .

Proof. Define

U = {u = (x(t), y(t))|(x(t), y(t)) ∈ X × Y : ||(x, y)||X×Y ≤ r}.

For (x, y) ∈ U, we have

| T1y(t) | ≤ |a1(t)| + |g1(t, y(ψ1(t)))|
∫ t

0

(t − s)α−1

Γ(α)
|f1(s, y(φ1(s)))| ds

|T1y(t)| ≤ M1 + N1 I
α−γ1 Iγ1 m1(t) + N1 b1

∫ t

0

(t − s)α−1

Γ(α)
|y(φ(s))| ds.

Also, from assumption (v) we obtain

|T1y(t)| ≤ M1 + N1 k1

∫ t

0

(t − s)α−γ1−1

Γ(α− γ1)
ds

+ N1 b1 r1

∫ t

0

(t − s)α−1

Γ(α)
ds, ||y||Y = sup

t∈I
|y(t)| ≤ r1.

Then

||T1y(t)|| ≤ M1 +
N1 k1

Γ(α − γ1 + 1)
+

N1 b1 r1
Γ(1 + α)

.

From the last estimate we deduce that r1 = (M1 + N1 k1
Γ(α − γ1 + 1) )(1−

N1 b1
Γ(1+α) )

−1.

By a similar way as done above we have

||T2x(t)|| ≤ M2 +
N2 k2

Γ(β − γ2 + 1)
+

N2 b2 r2
Γ(1 + β)

and r2 = (M2 + N2 k2
Γ(β − γ2 + 1) )(1−

N2 b2
Γ(1+β) )

−1.

Therefore,

||Tu(t)|| = ||T (x, y)(t)|| = ||(T1y(t), T2x(t))||
= max

t∈I
{ ||T1y(t)|| , ||T2x(t)|| } = r.

From the last estimate we can choose

r = max
t∈I

{r1, r2},
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then, for every u = (x, y) ∈ U we have Tu ∈ U and hence TU ⊂ U.
It is clear that the set U is closed and convex.
Assumptions (ii) and (iv) imply that T : U → C(I) × C(I) is a continuous
operator. Now, for u = (x, y) ∈ U, and for each t1, t2 ∈ I (without loss of
generality assume that t1 < t2 ), we get

|(T2x)(t2) − (T2x)(t1)| = |a2(t2) − a2(t1)

+ g2(t2, x(ψ2(t2))) Iβ f2(t2, x(φ2(t2))) − g2(t1, x(ψ2(t1))) Iβ f2(t1, x(φ2(t1)))

+ g2(t1, x(ψ2(t1))) Iβ f2(t2, x(φ2(t2))) − g2(t1, x(ψ2(t1))) Iβ f2(t2, x(φ2(t2)))|

≤ |a2(t2) − a2(t1)| + |g2(t2, x(ψ2(t2))) − g2(t1, x(ψ2(t1)))| Iβ |f2(t2, x(φ2(t2)))|

+ |g(t1, x(ψ2(t1)))| | Iβ f2(t2, x(φ2(t2))) − Iβ f2(t1, x(φ2(t1))) |,

but

|Iβ f2(t2, x(φ2(t2))) − Iβ f2(t1, x(φ2(t1)))| = |
∫ t1

0

(t2 − s)β−1

Γ(β)
f2(s, x(φ2(s))) ds

+
∫ t2

t1

(t2 − s)β−1

Γ(β)
f2(s, x(φ2(s))) ds −

∫ t1

0

(t1 − s)β−1

Γ(β)
f2(s, x(φ2(s))) ds|

≤ |
∫ t1

0

(t1 − s)β−1

Γ(β)
f2(s, x(φ2(s))) ds +

∫ t2

t1

(t2 − s)β−1

Γ(β)
f2(s, x(φ2(s))) ds

−
∫ t1

0

(t1 − s)β−1

Γ(β)
f2(s, x(φ2(s))) ds| ≤

∫ t2

t1

(t2 − s)β−1

Γ(β)
|f2(s, x(φ2(s)))| ds.

Then

|Iβ f2(t2, x(φ2(t2))) − Iβ f2(t1, x(φ2(t1)))|
≤ Iβ

t1 |f2(t2, x(φ2(t2)))|

≤ Iβ
t1m2(t2) + b2 I

β
t1 |x(φ2(t2))|

≤ Iβ−γ2
t1 Iγ2

t1 m2(t2) + b2 I
β
t1 |x(φ2(t2))|

≤ k2
(t2 − t1)β−γ2

Γ(β − γ2 + 1)
+ b2 r2

(t2 − t1)β

Γ(β + 1)
.

Then we get

|(T2x)(t2)− (T2x)(t1)|
≤ |a2(t2)− a2(t1)|
+ [ l2|t2 − t1| + h2|x(ψ2(t2))− x(ψ2(t1)) | ] Iβ | f2(t2, x(φ2(t2))) |

+ | g2(t1, x(ψ2(t1))) | (k2
(t2 − t1)β−γ2

Γ(β − γ2 + 1)
+ b2 r2

(t2 − t1)β

Γ(β + 1)
)
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i.e.,

| (T2x)(t2) − (T2x)(t1) |
≤ | a2(t2) − a2(t1) |
+ [l2|t2 − t1| + h2|x(t2)− x(t1)|] Iβ (m2(t2) + b2 |x(φ2(t2))|)

+ k2 N2
(t2 − t1)β−γ2

Γ(β − γ2 + 1)
+ N2 b2 r2

(t2 − t1)β

Γ(β + 1)

≤ | a2(t2) − a2(t1) | +
k2

Γ(β − γ2 + 1)
[l2|t2 − t1| + h2|x(t2)− x(t1)|]

+
b2 r2

Γ(β + 1)
[l2|t2 − t1| + h2|x(t2)− x(t1)|]

+
k2 N2

Γ(β − γ2 + 1)
(t2 − t1)β−γ2 +

N2 b2 r2
Γ(β + 1)

(t2 − t1)β .

As done above we can obtain

| (T1y)(t2) − (T1y)(t1) |
≤ | a1(t2) − a1(t1) |

+
k1

Γ(α− γ1 + 1)
[l1|t2 − t1| + h1|y(t2)− y(t1)|]

+
b1 r1

Γ(α+ 1)
[l1|t2 − t1| + h1|y(t2)− y(t1)|]

+
k1 N1

Γ(α− γ1 + 1)
(t2 − t1)α−γ1 +

N1 b1 r1
Γ(α+ 1)

(t2 − t1)α.

Now, from the definition of the operator T, we get

Tu(t2) − Tu(t1) = T (x, y)(t2) − T (x, y)(t1)
= (T1y(t2), T2x(t2)) − (T1y(t1), T2x(t1))
= (T1y(t2) − T1y(t1), T2x(t2) − T2x(t1)),

and

||Tu(t2) − Tu(t1)|| = max
t1,t2∈I

{||T1y(t2) − T1y(t1)||+ ||T2x(t2) − T2x(t1)||}

≤ || a1(t2)− a1(t1) || +
k1

Γ(α− γ1 + 1)
[l1|t2 − t1| + h1|y(t2)− y(t1)|]

+
b1 r1

Γ(α+ 1)
[l1|t2 − t1| + h1|y(t2)− y(t1)|] +

k1 N1

Γ(α− γ1 + 1)
(t2 − t1)α−γ1

+|| a2(t2) − a2(t1) || +
k2

Γ(β − γ2 + 1)
[l2|t2 − t1| + h2|x(t2)− x(t1)|]

+
b2 r2

Γ(β + 1)
[l2|t2 − t1| + h2|x(t2)− x(t1)|] +

k2 N2

Γ(β − γ2 + 1)
(t2 − t1)β−γ2

+
N2 b2 r2
Γ(β + 1)

(t2 − t1)β +
N1 b1 r1
Γ(α+ 1)

(t2 − t1)α.
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Hence

| t2 − t1 | < δ =⇒ || Tu(t2) − Tu(t1) || < ε(δ).

This means that the functions of TU are equi-continuous on I. Then by the
Arzela-Ascoli Theorem Curtain and Pritchard [12] the closure of TU is compact.
Since all conditions of the Schauder Fixed-point Theorem hold, then T has a fixed
point in U which completes the proof.

Example 2.2. Consider the following coupled system of functional equations for
t ∈ I

x(t) = 1 + [
√
t2 + 5 + t(|log(|y(t)|+ 3)|+ 1)]I2/3 [2t +

1
3− t

y(sin(t2 + 3t))],

(5)

y(t) = 1 + [
1 + 2t

10
+
x2(t)
30

e−t]I2/3[ − ln(1− t) +
1

3− t
x(sin(t2 + 4t )) ].

Set

f1(t, x) = 2 t +
1

3− t
x, g1(t, y) =

√
t2 + 5 + t(|log(|y(t)|+ 3)|+ 1), t ∈ I

f2(t, x) = − ln(1− t) +
1

3− t
x, g2(t, x) =

1 + 2t
10

+
x2

30
e−t, t ∈ I.

Then easily we can deduce that:

• M1 = M2 = 1.
• |f2(t, x)| ≤ ln(1− t) + 1/2 x and |f1(t, x)| ≤ 2 t + 1/2 x.

• φ1(t) = sin(t2 + 3 t), φ2(t) = sin(t2 + 4 t), ψ1(t) = ψ2(t) = t,

|g1(t, z)− g1(s, y)| = |
√
t2 + 5 + t(|log(|z(t)|+ 3)|+ 1)

−
√
s2 + 5− s(|log(|y(s)|+ 3)|+ 1)|

≤ |
√
t2 + 5−

√
s2 + 5|+ t|log(|z(t)|+ 3)

−log(|y(s)|+ 3)|+ |t− s|

+ |t log(|y(s)|+ 3)− s log(|y(s)|+ 3)|

≤ 6
5
|t− s|+ |z − y|+ |t− s|+ r.|t− s|

≤ (2 + r) |t− s|+ |z − y|, r > 0
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and

|g2(t, z)− g2(s, x)| = |1 + 2t
10

+
z2

30
e−t − 1 + 2s

10
− x2

30
e−s|

≤ 2
10
|t− s|+ 1

30
|e−tz2 − e−tx2|+ 1

30
|e−tx2 − e−sx2|

≤ 1
5
|t− s|+ |x+ z|

30
|x− z|+ r2

30
|e−t − e−s|

≤ 1
5
|t− s|+ 2r

30
|x− z|+ r2

30
|t− s|

≤ 6 + r2

30
|t− s|+ r

15
|x− z|, r > 0.

Then all the assumptions of Theorem 2.1 are satisfied so the coupled system of the
functional equations (5) possesses at least one solution in X × Y .

3. Spacial Cases

Corollary 3.1. Let the assumptions of Theorem 2.1 be satisfied (with ψi(t) =
φi(t) = t, i = 1, 2), then the coupled system of the fractional-order quadratic
integral equations

x(t) = a1(t) + g1(t, y(t))
∫ t

0

(t − s)α−1

Γ(α)
f1(s, y(s)) ds, t ∈ I, α > 0

(6)

y(t) = a2(t) + g2(t, x(t))
∫ t

0

(t − s)β−1

Γ(β)
f2(s, x(s)) ds, t ∈ I, β > 0

has at least one solution in X × Y .

Corollary 3.2. Let the assumptions of Theorem 2.1 be satisfied (with gi(t, x) =
1, i = 1, 2 ), then the coupled system of the fractional-order integral equations

x(t) = a1(t) +
∫ t

0

(t − s)α−1

Γ(α)
f1(s, y(φ1(s))) ds, t ∈ I, α > 0

(7)

y(t) = a2(t) +
∫ t

0

(t − s)β−1

Γ(β)
f2(s, x(φ2(s))) ds, t ∈ I, β > 0

has at least one solution in X × Y .

Now, letting α, β → 1, we obtain
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Corollary 3.3. Let the assumptions of Theorem 2.1 be satisfied (with gi(t, x) =
1, a1(t) = x0, a2(t) = y0 and letting α, β → 1 ), then the coupled system of the
integral equations

x(t) = x0 +
∫ t

0

f1(s, y(φ1(s))) ds, t ∈ I, α > 0

y(t) = y0 +
∫ t

0

f2(s, x(φ2(s))) ds, t ∈ I, β > 0

has at least one solution in X ×Y which is equivalent to the coupled system of the
initial value problems (3).

4. The coupled system of the fractional order functional
differential equations

For the coupled system of the initial value problems of the nonlinear fractional-
order differential equations (2) we have the following theorem.

Theorem 4.1. Let the assumptions of Theorem 2.1 be satisfied (with ai(t) = 0
and gi(t, x(t)) = 1, i = 1, 2), then the coupled system of the Cauchy problems (2)
has at least one solution in X × Y .

Proof. Integrating (2) we obtain the coupled system of the integral equa-
tions

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
f1(s, y(φ1(s)))ds, t ∈ I, α > 0

(8)

y(t) =
∫ t

0

(t− s)β−1

Γ(β)
f2(s, x(φ2(s))) ds, t ∈ I, β > 0,

which by Theorem 2.1 has the desired solution.
Operating with RD

α on the first equation of the coupled system (8) and with
RD

β on the second equation of the coupled system (8) we obtain the coupled
system of the initial value problems (2). So the equivalence between the coupled
system of the initial value problems (2) and the coupled system of the integral
equations (8) is proved and then the results follow from Theorem 2.1.
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dratic Integral Equation”, Math. Sci. Res. J., 12(4) (2008), 71-95.
[14] El-Sayed, A.M.A., and Hashem, H.H.G., ”Monotonic Positive Solution of Nonlinear Qua-

dratic Hammerstein and Urysohn Functional Integral Equations”, Commentationes Mathe-

maticae, 48(2) (2008), 199-207.
[15] El-Sayed, A.M.A., and Hashem, H.H.G., ”Monotonic Solutions of Functional Integral and

Differential Equations of Fractional Order”, EJQTDE, 7 (2009), 1-8.

[16] El-Sayed, A.M.A., and Hashem, H.H.G., ”Monotonic Positive Solution of a Nonlinear Qua-
dratic Functional Integral Equation”, Appl. Math. and Comput., 216 (2010), 2576-2580.

[17] El-Sayed, A.M.A., Hashem H.H.G., and Ziada, E.A.A., ”Picard and Adomian Methods for

Quadratic Integral Equation”, Comp. Appl. Math., 29(3) (2010), 447-463.
[18] El-Sayed, A.M.A., and Hashem, H.H.G., ”Coupled Systems of Hammerstein and Urysohn In-

tegral Equations in Reflexive Banach Spaces”, Differential Equations And Control Processes,

1 (2012), 1-12.
[19] El-Sayed, A.M.A., and Hashem, H.H.G., ”Coupled Systems of Integral Equations in Reflexive

Banach Spaces”, Acta Mathematica Scientia, 32B(5), (2012), 1-8.
[20] El-Sayed, A.M.A., and Hashem, H.H.G., ”A coupled System of Fractional Order Integral

Equations in Reflexive Banach Spaces”, Commentationes Mathematicae, 52(1) (2012), 21-

28.
[21] El-Sayed, A.M.A., Hashem, H.H.G., and Ziada, E.A.A., ”Picard and Adomian Methods for

Coupled Systems of Quadratic Integral Equations of Fractional Order”, Journal of Nonlinear

Analysis and Optimization: Theory & Applications, 3(2), (2012), 171-183.
[22] El-Sayed, A.M.A., and Hashem, H.H.G., ”Existence Results for Coupled Systems of Qua-

dratic Integral Equations of Fractional Orders”, Optimization Letters, 7 (2013), 1251-1260.
[23] El-Sayed, W.G., and Rzepka, B., ”Nondecreasing Solutions of a Quadratic Integral Equation

of Urysohn Type”, Comput. Math. Appl., 51 (2006), 1065-1074.

[24] Gafiychuk, V., Datsko, B., and Meleshko, V., ”Mathematical Modeling of Time Fractional

Reaction-Diffusion Systems”, J. Comput. Appl. Math., 220 (2008), 215-225.
[25] Gejji, V. D., ”Positive Solutions of a System of Non-Autonomous Fractional Differential

Equations”, J. Math. Anal. Appl., 302 (2005), 56-64.



Solvability of Coupled Systems 121

[26] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J., Theory and Applications of Fractional

Differential Equations, Elsevier, North-Holland, 2006.

[27] Lazarevich, M.P., ”Finite Time Stability Analysis of PDα Fractional Control of Robotic
Time-Delay Systems”, Mech. Res. Comm. 33 (2006), 269-279.

[28] Podlubny, I., Fractional Differential Equations, San Diego-NewYork-London, 1999.
[29] Miller, K.S., and Ross, B., An Introduction to Fractional Calculus and Fractional Differential

Equations, John Wiley, New York, 1993.

[30] Samko, S.G., Kilbas, A.A., and Marichev, O., Integrals and Derivatives of Fractional Orders
and Some of Their Applications, Nauka i Teknika, Minsk, 1987.

[31] Salem, H.A.H., ”On the Quadratic Integral Equations and Their Applications”, Computers

and Mathematics with Applications, 62 (2011), 2931-2943.
[32] Su, X., ”Boundary Value Problem for a Coupled System of Nonlinear Fractional Differential

Equations”, Appl. Math. Lett., 22 (2009), 64-69.

[33] Gafiychuk, V., Datsko, B., Meleshko, V., and Blackmore, D., ”Analysis of the Solutions of
Coupled Nonlinear Fractional Reaction-Diffusion Equations”, Chaos Solitons Fractals, 41

(2009), 1095-1104.


