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Abstract. We focus on an important property upon generalization of the Kullback-
Leibler divergence used in nonextensive statistical mechanics, i.e., bounds. We
explicitly show upper and lower bounds on it in terms of existing familiar divergences
based on the finite range of the probability distribution ratio. This provides a
link between the observed distribution functions based on histograms of events and
parameterized distance measures in physical sciences. The charactering parameter

q < 0 and g > 1 are rejected from the consideration of bounded divergence.
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Abstrak. Makalah ini berfokus pada sebuah sifat penting dari generalisasi diver-
gensi Kullback-Leibler yang digunakan dalam statistik mekanika nonextensif, yakni,
batas. Secara eksplisit diperlihatkan batas atas dan batas bawah dalam terma diver-
gensi yang dikenal berdasarkan pada jelajah terhingga dari rasio distribusi peluang.
Hal ini memberikan keterkaitan antara fungsi distribusi pengamatan berdasarkan
pada histogram dari kejadian-kejadian dan ukuran jarak terparameter dalam ilmu-
ilmu fisik. Parameter ¢ < 0 dan g > 1 tertolak sebagai divergensi terbatas. consid-

eration of bounded divergence.

Kata kunci: Divergensi informasi, entrofi relatif, generalisasi divergensi.

1. INTRODUCTION

The current upsurge of interest in divergence measures determined by two
probability distributions is due to both usefulness and necessity for practical dis-
criminations of different states and also for discovering how much they differ from
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each other. Such scenarios appear in many areas which use statistical methods.
Especially in statistical physics, the H-theorem is the most relevant notion to di-
vergence measures that probe proximity toward a stationary distribution in the
course of a given dynamics. Usually it is specified as the Kulback-Leibler diver-
gence (or relative entropy) [11]. For Markovian processes, however, the validity
of the proof of the H-theorem is shown for a wide class of divergences (Csiszér-
Morimoto f-divergence) [2, 15]. For the specific forms of the generalized divergence,
it is presented in [1, 18, 24]. Historically, an attempt for building a parameterized
divergence measure in a statistical mechanics context has presented in [14] without
using a notion of averaged information, where instead of the term ’divergence’, a
word of ’a relative degradation function of nth order’ was used.

Numerous properties upon generalization of the conventional relative entropy,
on the one hand, is becoming an interesting research topic in its own right, because
generalizations of one conventional measure provide an insight into its original ones.
Among them, the ranges or bounds of divergences can be regarded as fundamental,
since they contain structural property reflecting the geometric manifold governed
by the parameter used upon generalization. Also, the availability of bounds for the
distance is important in physics and in statistical inference test, where the bound
can be used to give an estimate for specific states (usually equilibrium states).
Therefore, upper and lower bounds for distance measures in general can be useful
information and provide a clue to interpret the meaning of the parameter.

The purpose of the present article is to provide such bounds for the Tsallis
relative entropy that are not presented in the literature [23] so far. The approach
here is based on the fact that a detector which produces statistical distributions of
occuered events has a finite dynamic range and consequently has finite probability
distribution ratio. Therefore, these bounds obtained must be more relevant in terms
of observational point of view. Our presentation proceeds as follows. First, we re-
view the definition of the Tsallis relative entropy. Then we consider the bounds
of it by the usual relative divergence. It can provide a degree of change by the
parameter ¢ of generalization. We next consider the upper bound by /;-norm and
the lower bound in terms of it (the so-called Pinsker like inequality). Bounds by
x? divergence followed by Hellinger’s distance are presented as simple applications
of inequalities that hold for generic f-divergences. We summarize our consideration
and present discussion in the last section.

2. THE NONEXTENSIVE RELATIVE ENTROPY

It was provided in [22] in the context of the consistent testing and some
properties were investigated in [1]. This generalization keeps the nonextensive
thermostatistics picture [18] and it belongs to the relative information of type s,
which has proposed in [17]. Presently, the generalization of the relative entropy
which is consistent with the nonextensive entropy of Tsallis [21] is provided by
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taking the linear mean (so-called the f-divergence [2]) of the corresponding distance
measure f between two probability distributions [22],

]
19—t
Dy(pllr) =Y _"rif(t:), f(t:) = e
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where ¢; is used to denote the ratio of two probability distributions i.e., p;/r;
throughout this paper. When supp p € supp r, where supp p = {w € Q;p(w) > 0}
in o-finite measure space (2, divergences become infinity and this applies for later
considerations [25]. Alternatively, D,(p||r) is produced from taking a biased average
of the quantity (p; ¢ — 7, 9)/(1 — ¢) by p?. This can be expressed as
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3. BOUNDS IN TERMS OF USUAL KULLBACK-LEIBLER
DIVERGENCE

We first describe our setting of consideration. In discrete cases, it is common
to regard a histogram of observed values as a probability distribution associated
with the system under study. This means that a measured value in a single mea-
surement falls into one of the finite bins of a detector which has a finite dynamic
range. The measuring apparatus consists of a limited number of bins, therefore
the probability distribution also has a finite support reflecting the dynamic range.
It is therefore highly probable that when we compare the two different probability
distributions constructed in that manner, the ratio of them has finite ranges within
the identical bin 7. Let us call this quantity a ratio range hereafter. The ratio
range becomes null if there is no detected event for the distribution r of ith bin.
Furthermore, we set the minimum and the maximum values u and U, respectively
on this ratio range for ith bin: 0 < u < p;/r; < U < co. Under this setting, we
consider bounds for the generalized relative entropy D, (p||r).

Under this setting, we can use Theorem 6 provided in [4]. It was proved
that when f € C%(u,U) and when ¢f" () is bounded from below and from above
with constants m € R and M € R, respectively, an inequality holds in terms of
the Kullback-Leibler divergence Dy (p|r) from p to r. More concretely, for the
general f-divergences D/ (p||r) we know an inequality

mDxr(plr) < D! (pllr) < MDi(plr)- (2)

Note that Dy, (p||r) is the most well known measure of the f-divergence class and
it is obtained if we choose f(t) = tlogt (¢t > 0). For the divergence of Tsallis, we
have tf" (t) = qt?~*, then

roy [ AUt (g>1)
sup tf (t)—{ _ (q<1) (3)
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Therefore, we obtain the following inequalities,

qui™' D (pllr) < Dy(plr) < qU ' Dcr(pllr), (g > 1), (5)
qUT ' D (plr) < Dy(pllr) < qui™ ' Dk r(plir), (g <1). (6)

4. UPPER BOUNDS IN TERMS OF VARIATIONAL DISTANCE

The variational distance is also one of the f-divergences, since we can choose
f(t) = |t — 1] with ¢t € Ry. Dragomir provided in [5] that the following inequality
holds on [u, U] if f is absolutely continuous and if f’ € L*®[u, U],

0 < D (pllr) < [1f' |2V (p,7), (7)
where || f'|| e = ess.sup | f'(t)] and V(p,r) = 3, |p;—r;| is the variational distance
te(u,U)

(l3-norm). In the range 0 < u < p;/r; < U < oo for each i, the quantity for the
divergence of Tsallis is found to be

—1
qUZflfl (0O<g<ul ™ <lor2<qUi 1 +uiHorl<ul=9<ygq)
—1
f e = q"iiq_l (U9 <g<lor2>qUi t+ui=lorl<qg<Ut9) (®)
quq7171 (
g <0).
q—1

Therefore, we obtain the corresponding inequalities by substituting these into
Eq.(7).

5. LOWER BOUNDS BY PINSKER TYPE INEQUALITY

The Pinsker inequality provides a lower bound on the Kullback-Leibler diver-
gence in terms of the variational distance V (p,r) = Y, |[pi—ri| as D (p|jr) > V?/2
[16]. However, for other divergences, the corresponding inequality with the higher
order in the variational distances was not known until recently. We present it by
using the recent progress on the fourth-order extended Pinsker inequality proved
in [9] and this gives a lower bound for the f-divergence measures. Under a certain
condition, (for details see Theorem 7 in [9]) the following bound holds
e 1 [y FPW?] s

5 \% +72 3f (1) -4 71 Ve, (9)
where the coefficients must be positive and are best possible in the sense that there
exist no larger constants. Applying this bound for the divergence of Tsallis, we
obtain

DY (pllr) =

Dypllr) > 3aV? - Zsala~Ala+ VY, (a>0) (10)

When ¢ — 1, we recover the 4th order Pinsker’s inequality for the Kullback-Leibler
divergence, i.e. Dy (pllr) = V?/2 + V*/36, whose proof was provided in [10].
Note that the above bound are valid when g > 0, since the coefficient of V2, viz.
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f”(l), must be positive. The refinement of the Pinsker inequality with best pos-
sible coefficients up to eighth order with respect to V' has been obtained [20, §]
but the connection with physics remains unexplained so far, while the positivity
of Dy(p|lr) > 0 (information inequality or Gibbs inequality) has a clear physical
interpretation of the second law of thermodynamics.

6. BOUNDS IN TERMS OF HELLINGER’S DISTANCE

The Hellinger’s distance also belongs to the f-divergence class and is obtained
if we set f(t) = (vt —1)?/2 with ¢t € Ry. It is shown in [6] that for f € C2 on
(u,U) with the range 0 < u < 1 < U < o0, if Im, M s.t. m < t3/2f”(t) < M, then
the following inequality holds,

4mh*(plr) < D! (pllr) < MK (pllr). (1)

We apply these bounds for our present consideration. For the divergence of Tsallis,
we have t%f” (t) = qtq_%. Therefore, M and m are determined as

3 U2 (q>3)
t2 t == 1 2 12
sup f ( ) { quq_§ (q < %)7 ( )

te(u,U)
1
. 3 qui=z  (¢>3)
inf t2f (t)= { 1 2 13
ety 021 () U™ (g< i) 13)
We then have the inequalities,
1 _1 1
Aqu™2 12 (pllr) < Dy(pllr) < 4qU" 2% (pllr), (g > 3), (14)
1 _1 1
4qU?™ 20 (pl|r) < Dy(plir) < 4qu™212(plr), (¢ < 3)- (15)

7. BOUNDS IN TERMS OF x2-DIVERGENCE

It is useful to give bounds of Dy(p||r) in terms of x2-divergence because it
provides a bound for the mixing time of Markov chains [3]. When we set f(t) =
(t—1)% on [0, 00), the x?-divergence D,z (p||r) = >_,(p; —r;)*/r; is also found to be
a f-divergence. The Kullback-Leibler divergence is asymmetric about the exchange
of any two probability distributions p and r. Their difference quantifies information
to what extent the symmetry breaks. It was shown that the absolute value of the
difference of that measure from p to r and from r to p is bounded from above in
terms of y2-divergence [7],

U-—-u
IDr(pllr) = Drr(rlp)l < - Dya (pllr), (16)

where p; and r; satisfy the range 0 < u < p;/r; < U < oo for each i. The derivation
of Eq.(16) comes from a trapezoid inequality, which holds for any f-divergences
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(f(1) = 0) obtained in [7]

D (pllr) — 3 D (pllr)| < <(T ~1)Dye(lr), (1)

o¢)

where the function fy is defined for ¢ € (0,00) as fy(t) = (t — 1)f(t) and f ()
is assumed to be bounded by v = infcp, 1) f(t)and T = SUDte(u,0) f7(t). This
inequality provides bounds for the difference of various f-divergences and enables
us to evaluate and compare them in terms of the characteristics (the infimum and
the supremum) of the second derivative of the functions f. We now apply it to the
Tsallis divergence D, (p||r). We have

1 _
fu(t) = q—il(t —1)(gt?"" = 1). (18)
With this fx(¢;), where t; = p;/r;, we obtain for the second term of Eq.(17) as,
q(t)" ' -1
e S R e
_— ()" -1 ZT'&
= q i pi q—1 i i —1
= q{Dqg(pllr) + Da—q(r|p)}- (19)

We note that when ¢ — 1, we have the Jeffereys divergence Dg# (p|lr) — Drr(p|r)+
Dgr(rllp) = >, (pi — ri)log(pi/ri), which is also one of the f-divergences. Then,
we have for the L.h.s of the inequality Eq.(17),

D0ll) = D4 0ll)| = 312~ 0Dy (oll) — a2 (1) (20)

U < o0, Vi, we have

2
Since f'(t) = qt? 2 and 0 < u < t; <

)< QU2 (q>2)
<

qui=2 < f (¢ (21)
QU2 () <qui=2  (0<q<?2).
Noting the relation,
q
Dy(rlp) = ?qDl,q(pHT), (22)

and using I' and ~ obtained from Eq.(21) and applying them to the inequality
Eq.(17), we have finally inequalities

(2= @) {Dy(pllr) = 5 Der (0l

_ { U2 w2 D (pllr) (g > 2)
St - U De () (0<q<2).

When one needs the bounds for Lh.s. of Eq.(23) in terms of other f-divergences,
we need to know the corresponding bounds on y2-divergence. Taneja and Kumar
[19] provided the upper bounds on the x2-divergence in terms of the Kullback-
Leibler divergence and of the Hellinger’s distance h(p||r) := >_.(\/pi — /7i)?/2 as

(23)
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D2 (pllr) < 2U%Dkr(r|lp) and as D, (p|r) < 8VU3h(p|r), respectively. With
these inequalities, the inequality Eq.(23) can be bounded by using Dg (p|r) and
h(p||r). Anyway, the upper bounds in terms of y2-divergence is tighter than those
in terms of others.

8. AN UPPER BOUND ON AN OVERLAP BETWEEN DIVERGENCES

We here concern how much the values of divergences differ each other when
we measure them with the identical reference distribution r. Namely, we shall want
to know an upper bound of an overlap between quantities Dg(p||r) and Dgy(p/||r)
for a given ¢. To this end we define the following quantity

U U
/ / F(®)g(w)|t — u~dtdu, (24)
0 0

where the two functions are respectively defined as f(t) = (t2 — t)/(¢ — 1) and
g(u) = (u? —u)/(q¢—1) with t =p/r and u = p'/r. The case A = 0 corresponds to
the usual overlap of functions f and g (or the inner product of two real funcions).
Otherwise it can give a normalized overlap tempered by A. We are concerned with
the bound on it. Recalling that for o, > 1 and 0 < A < n with a relation
1/a+ A/n+ 1/8 = 2, the Hardy-Littlewood-Sobolev inequality [12] reads

/ n / ndmdyw < O, \0)| fllallglls (25)

|z —y|*

where a sharp constant C(n, A, p) independent of functions f and g when oo = =
2n/(2n — A) is given as,

_3Dn/2=2/2) (T(m/2)\ "

T'(n—\/2) L'(n) '
Our problem is in a special case by equating n = 1 and f = g by setting its form
as (t9—1t)/(g—1). The desired upper bound is the multiple of the value of Eq.(26)
and that of ||f||?,  given in Appendix.

2
2—X

(26)

9. SUMMARY AND CONCLUDING REMARKS

We have presented the fundamental bounds on the generalized KL divergence
used in nonextensive statistical mechanics in terms of several known divergences.
The bounds for the parameterized divergence is indispensable, since without it most
(if not all) of the nonextensive structures in system would not fully be understood.
Our starting assumption was the existence of maximum and minimum values for
the ratio of probability distributions, which originates from the finite dynamic
range of measuring apparatus for events associated with physical system. The
bounds depend on the parameter range that bears nonextensivity. Then, a natural
question arises concerning the parameter range i.e., which value of ¢ we should use.
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Regarding this question, we resort to the criterion given as an inequality, which
holds for generic f-divergence [13],

0< D (plr) < lim {f(w)+uf(w ™}, u="L. (27)

Since we have f(u) = (u?—u)/(q—1) for Tsallis divergence, the upper bound after
taking the limit in the above becomes

= ((0<g<1)
+oo  (¢g>1).
When ¢ < 0 it does not give a bound. Therefore, the use of limitation is found to

be 0 < ¢ < 1 in order to guarantee the feasibility of measuring distance between
two distribution functions.

(28)

10. APPENDIX
When 0 < g < 1 the norm [|f||?, is calculated to be
2—X

2—X

4—X
_ =2 (2222 (2-a)(2-N)-24 1
(A= QUM — U928,y 1, Griiess?; Caiahie, -]

2¢+2—-2A

(1-q)7? (29)

where 2 F1(a, b; ¢; d) is the Hypergeometric function.
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For mathematical rigor, we mention the following for the continuous case. When the ratio
of distribution functions p and r appears, we suppose that P is absolutely continuous with
respect to R (P < R), where P and R are probability measures with o-finite measure p from
the Radon-Nikodym derivative p = dP/dp and r = dR/du, respectively. If P < R is not
satisfied, the divergence is +o0.



