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Abstract. The notion of semi-inner product (SIP) spaces is a generalization of inner

product (IP) spaces notion by reducing the positive definite property of the product

to positive semi-definite. As in IP spaces, the existence of an adjoint of a linear

operator on a SIP space is guaranteed when the operator is bounded. However, in

contrast, a bounded linear operator on SIP space can have more than one adjoint

linear operators. In this article we give an alternative proof of those results using the

generalized Riesz Representation Theorem in SIP space. Further, the description of

all adjoint operators of a bounded linear operator in SIP space is identified.
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1. INTRODUCTION

Semi-inner product (SIP) space is a generalization of inner product (IP) space.
The study of SIP spaces was pioneered by Krein in 1947 [9], and followed by Za-
anen in 1950 [16]. In the definition of SIP space, the positive definiteness of IP
was generalized into positive semi-definiteness. Hence,the stark difference between
SIP space and inner product (IP) space is the present of non-zero, self-orthogonal
elements. We call such elements as neutral elements of SIP space. SIP space also
known as semi-Hilbertian space ([1],[4],[5]) or semi-unitary space [7]. SIP had been
applied for the solution of general quadratic programming [14], also as a represen-
tation of quiver [7]. Latest studies on SIP showed the generalization of concepts in
IP space to SIP space, such as properties of normal operators ([11],[5]), isometry
and unitary properties [1], and closed operator [4]; also, geometrical aspects, such
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as metric on projections [2], Birkhoff-James orthogonality ([17],[12]) and numerical
radius ([8],[6],[13]).

As in IP space, we can introduce the notion of adjoint operator for a linear
operator on SIP space. In the case of finite dimensional IP space, every linear
operator has a unique adjoint operator. In contrast, there exists a linear operator
on finite dimensional SIP space that does not have an adjoint operator. In addition,
adjoint of a linear operator in SIP, if it exists, is not unique. The adjoint is unique
if the SIP is IP.

In this paper we study the class of linear operators in finite dimensional SIP
space that have adjoint. We discuss several necessary and sufficient conditions
for the existence of adjoint operator in finite dimensional SIP space. One of the
necessary and sufficient conditions is that the linear operator being bounded. For
this purpose, we derive Generalized Riesz Representation Theorem in SIP spaces.
Arias et.al [1] gave one distinguished adjoint operator in SIP which lead to the
discoveries of some properties of normal operator ([11], [5], [15]). Here, we give the
description of all adjoint operators of a bounded linear operator on SIP space. In
addition it is shown that the class of bounded linear operators on SIP spaces forms
a vector space.

2. BASIC PROPERTIES OF SEMI-INNER PRODUCT SPACES

In this section, we recall the definition of a SIP space [10] and show some of
its basic properties.

Definition 2.1. A Semi-Inner Product space (SIP) is a vector space U over the
field C equipped with a SIP, a mapping [·, ·] : U × U → C, which satisfies

(SIP1) symmetrical conjugate: [x, y] = [y, x], ∀x, y ∈ U
(SIP2) linearity on first variable:

[x+ y, z] = [x, z] + [y, z]

[αx, z] = α[x, z];∀x, y, z ∈ U and α ∈ C
(SIP3) positive semi-definite: [x, x] ≥ 0, ∀x ∈ U .

Let U denote a IP space with IP defined by ⟨·, ·⟩ and A be a self-adjoint
positive semi-definite linear operator on U . A mapping defined by

[x, y]A = ⟨Ax, y⟩
for all x, y ∈ U , will be a SIP [1]. On the other hand, let [·, ·] be a SIP on finite
dimensional vector space U , then there exists ⟨·, ·⟩ an IP on U and a self-adjoint
positive semi-definite linear operator on U , say A, such that [x, y] = ⟨Ax, y⟩ , for
all x, y ∈ U [7].

It is easy to see that Cauchy-Schwarz inequality also holds on SIP space, that
is for SIP space U , we will have

|[x, y]|2 ≤ [x, x][y, y], ∀x, y ∈ U. (1)
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Every SIP will induce a semi-norm on SIP space, a mapping ∥x∥ = [x, x]1/2, for all
x ∈ U . It is easy to show that a semi-norm ∥x∥ in vector space U will satisfy the
following condition.

(SN1) (Positive semi-definite) ∥x∥ ≥ 0, ∀x ∈ U ;
(SN2) (Homogeneous) ∥cx∥ = |c|∥x∥, ∀x ∈ U and scalar c;
(SN3) (Triangle inequality)∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∀x, y ∈ U .

An element x ∈ U which satisfies [x, x] = 0 is called a neutral element of U . Bovdi
[7] named the set of all neutral elements of U as the isotropic part.

Definition 2.2. Let U be a finite dimensional SIP space. Isotropic part of U is
the subset of U which contains all neutral elements of U , that is

U0 = {x ∈ U | [x, x] = 0.} (2)

The isotropic part U0 is a subspace of U [7]. It is easy to see that if A is
a positive semi-definite linear operator on U as an IP space that induces the SIP
space U , then U0 = N(A). Also, for every x ∈ U0, we have [x, y] = ⟨Ax, y⟩ =
⟨0, y⟩ = 0,∀y ∈ U .

Definition 2.3. Let U be a SIP space with a SIP [x, y]A = ⟨Ax, y⟩, for all x, y ∈ U
induced from the IP by a semi-definite positive operator A. An element x ∈ U is
said to be A-orthogonal to y ∈ U relative to SIP [·, ·]A if

[x, y]A = ⟨Ax, y⟩ = 0

and we denote x⊥Ay. [17]

A set in SIP space is an orthogonal set if all its elements are A-orthogonal
to each other. A unit elements in SIP space is an element which has semi-norm
of 1. An orthonormal set in SIP space is orthogonal set whose elements are unit
elements. Hence, a set O = {xi ∈ U |i = 1, 2, . . . , n} is an orthonormal set if every
xi, xj ∈ O satisfy [xi, xj ] = δi,j , where δi,j is Kronecker-delta function defined by

δi,j =

{
1, if i = j

0, if i ̸= j.

Let U be a n dimensional SIP space, then there exists a basis of U , where m of its

elements are orthonormal and the rest are neutral elements of U [7]. Such basis is
called the m-orthonormal basis of U .

The Example 1 show a SIP in C2, its isotropic part, and 1-orthonormal basis.
Example 1
Let

x =

[
x1

x2

]
, y =

[
y1
y2

]
∈ C2,

then

[x, y] = y1x1 =

〈[
1 0
0 0

]
x, y

〉
(3)
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is a SIP in C2, where ⟨x, y⟩ denotes the standard IP in C2. The isotropic part of
C2 is the set

U0 =

{[
0
s

] ∣∣∣∣s ∈ C

}
.

We can see that the 1-orthonormal basis of C2 is

B =

{[
1
0

]
,

[
0
1

]}
.

Next is the definition of adjoint operator in SIP space modified from the
definition mentioned by Krein [9].

Definition 2.4. Let U be a SIP space with SIP [·, ·] and T : U → U is a linear
operator. A linear operator S : U → U is called adjoint operator of T if

[T (x), y] = [x,S(y)],
for all x, y ∈ U .

In the next example, we will show that in a finite dimensional SIP space not
all linear operator has adjoint.
Example 2 Let C2 be a SIP space with SIP defined in Example 1. The operator

S =

[
1 0
0 0

]
is the adjoint of linear operator T =

[
1 0
1 1

]
since for every x, y ∈ C2,

where x =

[
x1

x2

]
and y =

[
y1
y2

]
, we have

[T (x), y] = ⟨AT (x), y⟩ = y1x1 = ⟨Ax,S(y)⟩ = [x,S(y)].

However, the operator R =

[
1 1
1 1

]
does not have adjoint, since for x =

[
0
1

]
and

y =

[
0
1

]
,

[R(x), y] = ⟨AR(x), y⟩ = 1,

while every linear operator Q : U → U will give

[x,Q(y)] = ⟨Ax,Q(y)⟩ = 0.

Definition 2.5. Let U be a SIP space and ∥ · ∥ be the seminorm induced by SIP
on U . A linear operator T : U → U is called bounded if there is a positive real
number c that satisfy

∥T (x)∥ ≤ c∥x∥, for all x ∈ U. (4)

Bovdi et.al. [7] give equivalence conditions of bounded properties in SIP space
in the following lemma.

Lemma 2.6. Let U be a finite dimensional SIP space and U0 is its isotropic part.
Let T be a linear operator on U . The following statements are equivalent.

(i) The operator T is bounded
(ii) The subspace U0 is T -invariant
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(iii) The matrix of T in each m-orthonormal basis has the lower block triangular
form

T =

[
S1 0
S2 S3

]
,

where S1 size is m×m

Note that in finite dimensional SIP space, an operator might not be bounded as
shown on Example 3.
Example 3

Let C2 be the SIP space as defined on Example 1, then the operator T =

[
1 0
1 1

]
is bounded. On the other hand, the operator S =

[
1 1
1 1

]
is unbounded, since

x =

[
0
1

]
will give

∥S(x)∥ = 1 > 0 = c∥x∥,

for every c > 0.

3. MAIN RESULTS

The main results of this article are concerning adjoint operators on SIP spaces,
the existence and description. A necessary and sufficient condition for a linear oper-
ator on finite dimensional SIP space has an adjoint is it is bounded. In this section,
we show an alternative proof of this result using Generalized Riesz Representation
Theorem on SIP spaces. For that, first we will discuss about the class of bounded
operators on SIP spaces and a generalization of Riesz Representation Theorem on
SIP spaces.

3.1. Bounded Operators in SIP. The next theorem shows that the set bounded
linear operator on SIP space forms a vector space.

Theorem 3.1. Let U be finite dimensional SIP space over field C and define

B(U) = {T : U → U |T is bounded linear operator on U}. (5)

Then, B(U) equipped with addition and action on operators forms a vector space.

Proof. First, it is obvious that the operator 0 is bounded, so B(U) is not empty.
Next, we will show that B(U) is closed under addition and scalar multiplication.
Since B(U) is the set of all bounded operators, then for T1, T2 ∈ B(U), there are
c1, c2 > 0 such that

∥T1(x)∥ ≤ c1∥x∥ and ∥T2(x)∥ ≤ c2∥x∥
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for all x ∈ U . We can see that

∥(T1 + T2)(x)∥ = ∥T1(x) + T2(x)∥
≤ ∥T1(x)∥+ ∥T2(x)∥
≤ c1∥x∥+ c2∥x∥
≤ (c1 + c2)∥x∥.

Thus, B(U) is closed under addition. Also, for all α ∈ C

∥(αT1)(x)∥ = |α|∥T1(x)∥
≤ |α|c1∥T1(x)∥,

so B(U) is closed under scalar multiplication. It is easy to see that for every
T1, T2, T3 ∈ B(U), we have for every x ∈ U

(T1 + T2)(x) = (T2 + T1)(x)

and

((T1 + T2) + T3)(x) = (T1 + (T2 + T3))(x).
So, T1 + T2 = T2 + T1 and (T1 + T2) + T = T1 + (T2 + T3). We also have the
zero operator O acting as identity element under addition in B(U) and for every
T1 ∈ B(U) there is −T1 such that T1 + (−T1) = O = −T1 + T1.

It is also clear that for all T1, T2 ∈ B(U) and α, β ∈ C, we have

• α(T1 + T2) = αT1 + αT1 ∈ B(U);
• (α+ β)T1 = αT1 + βT1 ∈ B(U);
• (αβ)T1 = α(βT1) ∈ B(U).

Also, 1T1 = T1 ∈ B(U). Hence, B(U) is a vector space and a dual space of U .

Next, we show that the bounded operators of SIP space is closed under com-
position.

Corollary 3.2. Let U be finite dimensional SIP space over C and let B(U) as
defined on (5). If T1, T2 ∈ B(U), then T1 ◦ T2 is also in B(U).

Proof. Since T1, T2 ∈ B(U), then for all x ∈ U there are c1, c2 ∈ C such that

∥T1(x)∥ ≤ |c1|∥x∥

and

∥T2(x)∥ ≤ |c2|∥x∥.
Now take x ∈ U , then we have

∥T1 ◦ T2(x)∥ = ∥T1(T2(x))∥
≤ |c1|∥T2(x)∥
≤ |c|∥x∥,

where c = c1c2 Using composition of operators as multiplication in B(U) and
identity operator T (x) = x, ∀x ∈ U , it is easy to see that B(U) forms an algebra.



On the adjoint of bounded op. in SIP space 317

Lemma 3.3. Let U be a finite dimensional SIP space with U0 be the isotropic part
of U . Let N (U) = {T ∈ B(U)|R(T ) ⊆ U0}. Then N (U) is a subspace of B(U).

The proof of this lemma is quite straightforward using Cauchy-Schwarz in-
equality.

3.2. Adjoint operators in SIP. We start with the following lemma.

Lemma 3.4. Let U be a SIP space with the SIP [−,−] and let U0 be the isotropic
part of U , then U/U0 can be formed into inner product space induced by the SIP
[−,−].

Proof. Let us define ⟨x̂, ŷ⟩ = [x, y], ∀x̂, ŷ ∈ U/U0, where

x̂ = x+ U0 and ŷ = y + U0, x, y ∈ U.

First, we show that ⟨x̂, ŷ⟩ is well-defined. Take any x̂1, x̂2, ŷ2, ŷ2 ∈ U/U0, where
x̂1 = x̂2 and ŷ1 = ŷ2. Let x1 − x2 = u1 ∈ U0 and y1 − y2 = u2 ∈ U0, then we have

⟨x̂1, ŷ1⟩ = [x1, y1] = [x2 + u1, y2 + u2]

= [x2, y2] + [u1, y2] + [x2, u2] + [u1, u2]

= [x2, y2] + 0 + 0 + 0

= [x2, y2] = ⟨x̂2, ŷ2⟩.

Next, we show that ⟨x̂, ŷ⟩ is an inner product.
From the definition of SIP, ⟨x̂, ŷ⟩ = [x, y] will satisfy (SIP1), (SIP2), and (SIP3).

Since 0̂ = U0, for x ∈ U0, we have ⟨0̂, 0̂⟩ = [x, x] = 0. Thus, we need to show that

⟨x̂, x̂⟩ = 0 is causing x̂ = 0̂.
Let x̂ = x+ U0 for some x ∈ U satisfying ⟨x̂, x̂⟩ = 0. Then, we have

0 = ⟨x̂, x̂⟩ = [x, x].

Therefore, x must be an element of U0, so that x̂ = U0 = 0̂. Hence, it has been
proven that ⟨x̂, ŷ⟩ is an inner product and U/U0 is inner product space.

One method of constructing the adjoint operator on IP space is by employ-
ing Riesz Representation Theorem. Here is an extension of Riesz Representation
Theorem in the context of SIP space.

Theorem 3.5. Let U be finite dimensional SIP space over C and let F : U → C
be a linear functional. The linear functional F is bounded if and only if there is
a ∈ U so that F(x) = [x, a] for all x ∈ U .

Proof. It is easy to show that the mapping that is defined by F(x) = [x, a] for
all x ∈ U , for some a ∈ U , is a bounded linear functional. Hence, we obtain the
theorem if we can show the implication from right to left. Let F be any bounded
linear functional on U and U0 is the isotropic part of U . Let c > 0 such that
|F(x)| ≤ c∥x∥ for all x ∈ U . First, we show U0 ⊆ N(F). Let x ∈ U0, then we
have |F(x)| ≤ c∥x∥ = 0, since x ∈ U0. Hence, |F(x)| = 0, which implies F = 0
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or x ∈ N(F). Thus, we have U0 ⊆ N(F). As a result, F induces the well defined
mapping

F̂ : U/U0 → C
x̂ 7→ F(x).

Linearity property of F̂ implies F̂ is a linear functional on U/U0 which is a finite
dimensional IP space, a finite dimensional Hilbert space. According to Riesz Repre-
sentation Theorem, there exists â ∈ U/U0 such that F̂(x̂) = ⟨x̂, â⟩ for all x̂ ∈ U/U0.
As a result, there exists a ∈ U such that for all x ∈ U

F(x) = F̂(x̂) = ⟨x̂, â⟩ = [x, a].

Remark: Theorem 3.5 guarantees the existence of a vector a ∈ U that
is representing the bounded functional F . The theorem does not guarantee the
uniqueness of such representation. It is indeed, in the context of SIP spaces, Riesz
vectors that representing a linear functional is not unique. The following explains
a counter example of such claim.

The following is an example of an application of the Theorem 3.5.

Example 4 Let A =

[
1 0
0 0

]
induced the SIP in C2 as shown on Example 1.

Every bounded linear functional on C2 has the form of

F(x) = [x, a] = αx1.

for some a =

[
α
0

]
, where α ∈ C.

On the other hand, for any u0 ∈ U0, we also have

F(x) = αx1 = [x, a+ u0].

We can also see that for the unbounded operator G(x) = x2, since x =

[
0
1

]
will

cause [x, a] = 0 for every a ∈ C2.

The next theorem states the necessary condition for the existence of adjoint
operators in SIP space.

Theorem 3.6. Let U be finite dimensional SIP space, with SIP [−,−]A induced by
positive semi-definite operator A, and U0 is the isotropic part of U . If T : U → U
is a bounded linear operator, then there is linear operator S : U → U a A-adjoin
operator of T . Moreover, if S,R are two adjoints of T , then S − R ∈ N (U).
Hence, the set of all adjoint of T is

S +N (U) = {S +R|R ∈ N (U)}.

Proof. First, take B a basis of U . For all b ∈ B,we define the linear functional

Fb : U → C
u 7→ [T (u), b]A.
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since T is bounded, there exists c > 0 such that for all u ∈ U we have

∥T (u)∥ ≤ c∥u∥

and for all u ∈ U , we also have

|Fb(u)| = |[T (u), b]A| ≤ ∥T (u)∥∥b∥ = c∥u∥∥b∥ = c∥b∥∥u∥.

Hence, Fb is bounded. From Theorem 3.5 there exists a ∈ U such that Fb(u) =
[u, a]A for all u ∈ U . However, a is not unique, since every element of coset a+U0

satisfy Theorem 3.5. Let us select one ub ∈ a+ U0 and define

λ :B → U

b 7→ ub.

We have [T (u), b]A = [u, ub]A. Since b ∈ B is an arbitrary element of the basis of U ,
it implies λ can be expanded into linear operator on U using the linear combination
of the elements of B. That is,

S : U → U∑
b∈B

αbb 7→
∑
b∈B

αbub.

Therefore, for each u, v ∈ U , where v =
∑

b∈B αbb, we get

[T (u), v]A = [T (u),
∑
b∈B

αbb]A

=
∑
b∈B

αb[T (u), b]A

=
∑
b∈B

αb[u, ub]A

= [u,
∑
b∈B

αbub]A = [u,S(v)]A.

We see that to construct S, we map b into ub ∈ a + U0. Suppose we map b into
vb ∈ a + U0 to construct R another adjoint of T . Thus, S − T will map x into a
linear combination of ub − vb ∈ U0. Also, it is quite easy to see that S +R is also
adjoint operator of T , for every R ∈ N (U).

Ahmed and Saddi [3] showed one distinguished adjoint of operator T on
U = Cn×n, that is T ♯ = A†T ∗A, where A† is the Moore-Penrose inverse of A and
T ∗ is the conjugate transpose of T . However, in the proof in Theorem 3.6 we show
that the construction of the adjoint operator and that the adjoint in SIP space may
not unique since all elements of the coset are also adjoint operator. The adjoint
operator will be unique if the SIP is also IP, since the N (U) only has zero operator
as its element.

In the following, we show an example of adjoint construction in SIP space.
Example 5 Let U = C2 be a SIP space with SIP defined in Example 1 and 4.
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Also, let T =

[
1 0
1 1

]
be an operator on C2. Then, the operator

S =

[
1 0
0 0

]
is an adjoint of T .
Also, every Ŝ defined by

Ŝ =

[
1 0
α β

]
is also adjoint of T and the matrix R =

[
0 0
α β

]
∈ N (U)

On the following theorem, we show that boundedness of the operator is the
necessary and sufficient condition for the existence of the adjoint operator. More-
over, the adjoint operator is also bounded.

Theorem 3.7. Let U be a finite dimensional SIP space and A a linear operator
on U .

(i) T has adjoints if and only if T is bounded;
(ii) If T is a bounded linear operator and S is a adjoint of T , then S is also

bounded.

Proof. (i) It is obvious from theorem 3.6 that if T is bounded, then T has adjoint
operators. Thus, we still need to show the implication from left to right. Suppose
that T unbounded, then Lemma 2.6 states that U0 is not A-invariant, i.e. there
exists x0 ∈ U0, x0 ̸= 0 such that T (x0) /∈ U0. Let y0 = T (x0) ̸= 0, then [y0, y0] ̸= 0.
Take S any linear operator on U , then

[T (x0), y0] = [y0, y0] ̸= 0

= [x0,S(y0)], ( since x0 ∈ U0).

Hence, there exist x0, y0 ∈ U so that every linear operator S in U will made
[T (x0), y0] ̸= [x0,S(y0)]. Therefore, T must be bounded.

(ii) Let T be a bounded linear operator on U and S is the adjoint of T . We
will show that U0 is S-invariant. Since T is bounded, then U0 is T -invariant. Let
x ∈ U0 such that T (x) ∈ U0. For all y ∈ U , we have

[y,S(x)] = [T (y), x] = 0.

Choose y = S(x), so we have [S(x),S(x)] = 0 and S(x) ∈ U0. Therefore, U0 is
S-invariant and, from Lemma 2.6, S is bounded.

4. CONCLUSION

In this paper, we have showed generalizations of several properties of IP spaces
on SIP spaces. We have showed that the bounded operators on SIP space forms
an algebra under addition and composition of operators. We also gave the Riesz
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representation theorem in SIP space, where the vector representing the bounded
functional will be unique if the SIP is also IP. The boundedness of an operator is
the necessary and sufficient condition for the existence of its adjoint operator. The
adjoint operator is bounded and will be unique if the SIP is also IP. Recent studies
using the adjoint operator on SIP space mostly focused on the distinguished adjoint
T ♯, here we have shown the identification of all adjoint operator, which hopefully
will be useful for future studies, particularly the studies concerning self-adjoint
operators and normal operators on SIP spaces.
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